Tri-County Technical College
Animal Care Facility
7900 Highway 76, Pendleton, SC
SC# H59-6101-PD

LS3P COMMISSION NUMBER: 3202-130970

ARCHITECT
LS3P
110 WEST NORTH STREET
GREENVILLE, SOUTH CAROLINA 29601
PHONE: (864) 235-0405 FAX: (864) 233-4027

March 30, 2015
© 2015
Tri-County Technical College

Animal Care Facility

Pendleton, South Carolina

Architect

LS3P

110 West North Street, Suite 300

Greenville, South Carolina 29601

864-235-0405 (FAX) 864-233-4027

Principal in Charge: Scott May, AIA, LEED AP

Project Architect: Chris Stone, AIA, LEED GA

chrisstone@ls3p.com

CONSULTANT LIST & SEALS ON FOLLOWING PAGE

NOTICE: This project manual, an unpublished instrument of service of the authors, is for use on this Project only and is prepared for use in conjunction with the authors' interpretations, observations, decisions and administration as described in the Documents without which desired results can not be assured. Use in part or in whole for other purposes without the authors' expressed written consent may violate Act 17, United States Code, Paragraph 301, 1991.
CIVIL

SEAMON WHITESIDE + ASSOCIATES
607 PENDLETON STREET, SUITE 100
GREENVILLE, SOUTH CAROLINA 29601
PHONE: (864) 298-0534
Email: www.swasc.com

STRUCTURAL

ARROWOOD AND ARROWOOD PC
412 PETTIGRU STREET
GREENVILLE, SOUTH CAROLINA 29601
PHONE: (864) 233-9383
Email: john@arrowoodarrowood.com

PLUMBING, MECHANICAL, ELECTRICAL

RMF ENGINEERING
194 SEVEN FARMS DRIVE
CHARLESTON, SC 29482
PHONE: (843) 791-9639
Email:
Electrical: beth.crutchfield@rmf.com
Plumbing & Mechanical: don.zimmerman@rmf.com

In cooperation with: LS3P • 110 West North Street • Suite 300 • Greenville, South Carolina 29601
TABLE OF CONTENTS
FOR
Tri-County Technical College
Animal Care Facility
7900 Highway 76, Pendleton, South Carolina

PROJECT NUMBER: SC# H59-6101-PD

PROJECT NAME: Tri-County Technical College – ANIMAL CARE FACILITY

SECTION
Invitation for Bids (SE-310) ... 2
 00201-0SE Standard Supplemental Instructions to Bidders 10
 Ethics Act Certification ... 1
 Certificate of Independent Price Determination 1
Bid Bond (AIA Document A310 – 2010 Edition * Reference Page) 1
Standard Bid Form (SE-330) .. 6
Standard Form of Agreement between Owner and Contractor (AIA Document
 00501-0SE Standard Modifications to AIA A101-1997 3
General Conditions of the Contract for Construction (AIA Document
A201 – 1997 Edition* Reference Page) .. 1
 00811-Standard Supplementary Conditions (Supplement to AIA Document
Performance Bond (SE-355) .. 2
Labor and Material Payment Bond (SE-357) 2
Change Order to Construction Contract (SE-380) 1

*These publications are not included in the project manual, but are available from the publisher.

DIVISION 1 – GENERAL

011000 Summary
012300 Alternates
012500 Substitution Procedures
012600 Contract Modification Procedures
012900 Payment Procedures
013100 Project Management and Coordination
013200 Construction Progress Documentation
013300 Submittal Procedures
 Digital Data Letter of Agreement
014000 Quality Requirements
 Statement of Special Inspections
014200 References
015000 Temporary Facilities and Controls
016000 Product Requirements
017300 Execution
017700 Closeout Procedures
017820 Operations Manuals
017839 Project Record Documents
017900 Demonstration and Training

DIVISION 2 - EXISTING CONDITIONS
024116 Structure Demolition

DIVISION 3 – CONCRETE
033000 Cast-In-Place Concrete

DIVISION 4 – MASONRY

DIVISION 5 – METALS
051200 Structural Steel
055000 Metal Fabrications

DIVISION 6 - WOOD AND PLASTICS
061053 Miscellaneous Rough Carpentry
064023 Interior Architectural Woodwork
066400 Plastic Paneling

DIVISION 7 - THERMAL AND MOISTURE PROTECTION
078413 Penetration Firestopping
078446 Joint Firestopping
079200 Joint Sealants

DIVISION 8 - DOORS AND WINDOWS
081110 Hollow Metal Doors and Frames
083115 Dog Doors
084113 Aluminum-Framed Entrances and Storefronts
086200 Unit Skylights
087100 Door Hardware
088000 Glazing
089119 Fixed Louvers

DIVISION 9 - FINISHES
092216 Non-Structural Metal Framing
092900 Gypsum Board
095113 Acoustical Panel Ceilings
096723 Resinous Flooring
099600 High Performance Coatings

DIVISION 10 - SPECIALTIES
102215 Kennel Partition System
104400 Fire Protection Specialties
107326 Manufactured Walkway Covers
DIVISION 11 - EQUIPMENT
112300 Commercial Laundry Equipment
113100 Residential Equipment

DIVISION 12 - FURNISHINGS

DIVISION 13 – SPECIAL CONSTRUCTION
133419 Metal Building Systems

DIVISION 14 - CONVEYANCE

DIVISIONS 15 thru 20

DIVISION 21 – FIRE PROTECTION

DIVISION 22 PLUMBING
220500 Plumbing

DIVISION 23 MECHANICAL
230000 Mechanical COMCheck Mechanical Compliance Certificate
230500 General Provisions
230513 Motors
230530 Basic Materials & Methods
230548 Vibration, Sound and Seismic Controls
230593 Testing and Balancing
230700 Mechanical Insulation
230900 Instrumentation and Control for HVAC
233110 Air Distribution
237330 Dedicated Outdoor Air Units
238126 Heating and Air Conditioning Equipment

DIVISION 26 ELECTRICAL
260000 Electrical COMCheck Electrical Compliance Certificate
260519 Low-Voltage Electrical Power Conduits and Cables
260526 Grounding and Bonding for Electrical Systems
260529 Hangers and Supports for Electrical Systems
260533 Raceways and Boxes for Electrical Systems
260543 Underground Ducts and Raceways for Electrical Systems
260544 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
260548 Vibration and Seismic Controls for Electrical Systems
260553 Identification for Electrical Systems
260573 Overcurrent Protective Device Coordination Study
260923 Lighting Control Devices
262416 Panelboards
262726 Wiring Devices
262813 Fuses
262816 Enclosed Switches and Circuit Breakers
262913 Enclosed Controllers
263213 Engine Generators
263600 Transfer Switches
264113 Lightning Protection Structures
265100 Interior Lighting
265600 Exterior Lighting

DIVISION 27 COMMUNICATIONS
270528 Pathways for Communications Systems

DIVISION 28 ELECTRICAL
283111 Digital Addressable Fire Alarm System

DIVISION 31 EARTHWORK
311000 Site Clearing and Erosion Control
312000 Earth Moving
313116 Termite Control

DIVISION 32 EXTERIOR IMPROVEMENTS
321313 Concrete Paving
323113 Chain Link Fences and Gates
323223 Segmented Retaining Wall
329200 Turf and Grasses

DIVISION 31 UTILITIES
331100 Water Distribution System
333100 Gravity Flow Sanitary Sewerage System
334100 Storm Drainage System
334600 Subdrainage System

END OF TABLE OF CONTENTS
SE-310
INVITATION FOR CONSTRUCTION SERVICES

PROJECT NAME: Tri-County Technical College - Animal Care Facility
PROJECT NUMBER: H59-6101-PD
PROJECT LOCATION: Pendleton, SC

BID SECURITY REQUIRED? Yes ☒ No ☐ NOTE: Contractor may be subject to a performance appraisal at the close of the project.
PERFORMANCE BOND REQUIRED? Yes ☒ No ☐
PAYMENT BOND REQUIRED? Yes ☒ No ☐ CONSTRUCTION COST RANGE: $1,100,000-$1,500,000

DESCRIPTION OF PROJECT: The project is a pre-engineered metal building construction with insulated metal panel exterior walls, over a slab-on-grade foundation. It will house 33 dog runs, laundry room, cat ward, bathing, and storage areas. The new building will be built behind the existing Halbert Hall building on TCTC’s Pendleton Campus. Demolition of existing kennel responsibility of bidder.

BIDDING DOCUMENTS/PLANS MAY BE OBTAINED FROM: Contact Amy Rembert: amrembert@ls3p.com

PLAN DEPOSIT AMOUNT: $150.00 IS DEPOSIT REFUNDABLE Yes ☒ No ☐ N/A ☐
Bidders must obtain Bidding Documents/Plans from the above listed source(s) to be listed as an official plan holder. Only those Bidding Documents/Plans obtained from the above listed source(s) are official. Bidders that rely on copies of Bidding Documents/Plans obtained from any other source do so at their own risk. All written communications with official plan holders & bidders WILL ☒ WILL NOT ☐ be via email or website posting.

IN ADDITION TO THE ABOVE OFFICIAL SOURCE(S), BIDDING DOCUMENTS/PLANS ARE ALSO AVAILABLE AT:
AGC/ISG Ft: www.isgft.com

All questions & correspondence concerning this invitation shall be addressed to the A-E.
A-E NAME: LS3P Architects
A-E CONTACT: Luke Sims, Associate AIA, CDT
A-E ADDRESS: Street/PO Box: 110 W. North Street, Suite 300
City: Greenville State: SC ZIP: 29601-4818

EMAIL: lukesims@ls3p.com
TELEPHONE: 864.235.0405 FAX: 864.233.4027

AGENCY: Tri-County Technical College
AGENCY PROJECT COORDINATOR: Ken Kopera
ADDRESS: Street/PO Box: Highway 76, PO Box 387
City: Pendleton State: SC ZIP: 29670

EMAIL: kkopera@tcctc.edu
TELEPHONE: (864) 646-1770 FAX: (864) 646-1891

PRE-BID CONFERENCE: Yes ☒ No ☐ MANDATORY ATTENDANCE: Yes ☒ No ☐
PRE-BID DATE: 4/14/2015 TIME: 10:00am PLACE: TCTC Halbert Hall, TriCounty Tech Campus
BID CLOSING DATE 04/30/2015 TIME: 4:00pm PLACE: TCTC Physical Plant Conference Room 101
BID DELIVERY ADDRESSES: MAIL SERVICE:
HAND-DELIVERY: Attn: Kristal Doherty
Purchasing Office Rm 113 Ruby Hicks Bldg
7900 Highway 76, Pendleton, SC 29670

MAIL SERVICE:
PO Box 587 mail, 7900 Hwy 76 delivery service
Pendleton, SC 29670

IS PROJECT WITHIN AGENCY CONSTRUCTION CERTIFICATION? (Agency MUST check one) Yes ☐ No ☒

APPROVED BY: [Signature] (OSE Project Manager) DATE: 3.31.15
Instructions to Bidders (AIA Document A701-1997 Edition)

AIA Document can be viewed at the office of LS3P or online at AIA.org
1. STANDARD SUPPLEMENTAL INSTRUCTIONS TO BIDDERS

1.1 These Standard Supplemental Instructions to Bidders amend or supplement Instructions to Bidders (AIA Document A701-1997) and other provisions of Bidding and Contract Documents as indicated below.

1.2 Compliance with these Standard Supplemental Instructions is required by the Office of State Engineer (OSE) for all State projects when competitive sealed bidding is used as the method of procurement.

1.3 All provisions of the A701-1997, which are not so amended or supplemented, remain in full force and effect.

1.4 Bidders are cautioned to carefully examine the Bidding and Contract Documents for additional instructions or requirements.

2. MODIFICATIONS TO A701-1997

2.1 Delete Section 1.1 and insert the following:

"Bidding Documents, collectively referred to as the Invitation for Bids, include the Bidding Requirements and the proposed Contract Documents. The Bidding Requirements consist of the Advertisement, Instructions to Bidders (A-701), Supplementary Instructions to Bidders, the bid form (SE-330), the Notice of Intent to Award (SE-370), and other sample bidding and contract forms. The proposed Contract Documents consist of the form of Agreement between the Owner and Contractor, Conditions of the Contract (General, Supplementary and other Conditions), Drawings, Specifications, all Addenda issued prior to execution of the Contract, and other documents set forth in the Bidding Documents. Any reference in this document to the Agreement between the Owner and Contractor, AIA Document A101, or some abbreviated reference thereof, shall mean the AIA A101, 2007 Edition as modified by OSE Form 00501 – Standard Modification to Agreement between Owner and Contractor. Any reference in this document to the General Conditions of the Contract for Construction, AIA Document A201, or some abbreviated reference thereof, shall mean the AIA A201, 2007 Edition as modified by OSE Form 00811 – Standard Supplementary Conditions.

2.2 In Section 1.8, delete the words "and who meets the requirements set forth in the Bidding Documents".

2.3 In Section 2.1, delete the word "making" and substitute the word "submitting."

2.4 In Section 2.1.1:

After the words "Bidding Documents," delete the word "or" and substitute the word "and."

Insert the following at the end of this section:

Bidders are expected to examine the Bidding Documents and Contract Documents thoroughly and should request an explanation of any ambiguities, discrepancies, errors, omissions, or conflicting statements. Failure to do so will be at the Bidder’s risk. Bidder assumes responsibility for any patent ambiguity that Bidder does not bring to the Owner’s attention prior to bid opening.

2.5 In Section 2.1.3, insert the following after the term "Contract Documents" and before the period:

and accepts full responsibility for any pre-bid existing conditions that would affect the Bid that could have been ascertained by a site visit. As provided in Regulation 19-445.2042(B), a bidder’s failure to attend an advertised pre-bid conference will not excuse its responsibility for estimating properly the difficulty and cost of successfully performing the work, or for proceeding to successfully perform the work without additional expense to the State.

2.6 Insert the following Sections 2.2 through 2.6:

2.2 CERTIFICATION OF INDEPENDENT PRICE DETERMINATION

GIVING FALSE, MISLEADING, OR INCOMPLETE INFORMATION ON THIS CERTIFICATION MAY RENDER YOU SUBJECT TO PROSECUTION UNDER SECTION 16-9-10 OF THE SOUTH CAROLINA CODE OF LAWS AND OTHER APPLICABLE LAWS.
OSE FORM 00201
STANDARD SUPPLEMENTAL INSTRUCTIONS TO BIDDERS

A. By submitting an bid, the bidder certifies that—
 1. The prices in this bid have been arrived at independently, without, for the purpose of restricting competition, any consultation, communication, or agreement with any other bidder or competitor relating to—
 a. Those prices;
 b. The intention to submit an bid; or
 c. The methods or factors used to calculate the prices offered.
 2. The prices in this bid have not been and will not be knowingly disclosed by the bidder, directly or indirectly, to any other bidder or competitor before bid opening (in the case of a sealed bid solicitation) or contract award (in the case of a negotiated solicitation) unless otherwise required by law; and
 3. No attempt has been made or will be made by the bidder to induce any other concern to submit or not to submit a bid for the purpose of restricting competition.

B. Each signature on the bid is considered to be a certification by the signatory that the signatory—
 1. Is the person in the bidder’s organization responsible for determining the prices being offered in this bid, and that the signatory has not participated and will not participate in any action contrary to paragraphs A.1 through A.3 of this certification; or
 2. a. Has been authorized, in writing, to act as agent for the bidder's principals in certifying that those principals have not participated, and will not participate in any action contrary to paragraphs A.1 through A.3 of this certification [As used in this subdivision B.2.a, the term "principals" means the person(s) in the bidder’s organization responsible for determining the prices offered in this bid];
 b. As an authorized agent, does certify that the principals referenced in subdivision B.2.a of this certification have not participated, and will not participate, in any action contrary to paragraphs A.1 through A.3 of this certification; and
 c. As an agent, has not personally participated, and will not participate, in any action contrary to paragraphs A.1 through A.3 of this certification.
 C. If the bidder deletes or modifies paragraph (a)(2) of this certification, the bidder must furnish with its offer a signed statement setting forth in detail the circumstances of the disclosure.

2.3 DRUG FREE WORKPLACE
By submitting a bid, the Bidder certifies that Bidder will maintain a drug free workplace in accordance with the requirements of Title 44, Chapter 107 of South Carolina Code of Laws, as amended.

2.4 CERTIFICATION REGARDING DEBARMENT AND OTHER RESPONSIBILITY MATTERS
A. 1. By submitting an Bid, Bidder certifies, to the best of its knowledge and belief, that—
 a. Bidder and/or any of its Principals-
 (i) Are not presently debarred, suspended, proposed for debarment, or declared ineligible for the award of contracts by any state or federal agency;
 (ii) Have not, within a three-year period preceding this bid, been convicted of or had a civil judgment rendered against them for: commission of fraud or a criminal offense in connection with obtaining, attempting to obtain, or performing a public (Federal, state, or local) contract or subcontract; violation of Federal or state antitrust statutes relating to the submission of bids; or commission of embezzlement, theft, forgery, bribery, falsification or destruction of records, making false statements, tax evasion, or receiving stolen property; and
 (iii) Are not presently indicted for, or otherwise criminally or civilly charged by a governmental entity with, commission of any of the offenses enumerated in paragraph A.1.a.(ii) of this provision.
 b. Bidder has not, within a three-year period preceding this bid, had one or more contracts terminated for default by any public (Federal, state, or local) entity.
 2. "Principals," for the purposes of this certification, means officers; directors; owners; partners; and, persons having primary management or supervisory responsibilities within a business entity (e.g., general manager; plant manager; head of a subsidiary, division, or business segment, and similar positions).
B. Bidder shall provide immediate written notice to the Procurement Officer if, at any time prior to contract award, Bidder learns that its certification was erroneous when submitted or has become erroneous by reason of changed circumstances.
C. If Bidder is unable to certify the representations stated in paragraphs A.1, Bidder must submit a written explanation regarding its inability to make the certification. The certification will be considered in connection with a review of the Bidder's responsibility. Failure of the Bidder to furnish additional information as requested by the Procurement Officer may render the Bidder nonresponsible.
OSE FORM 00201
STANDARD SUPPLEMENTAL INSTRUCTIONS TO BIDDERS

Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render, in good faith, the certification required by paragraph A of this provision. The knowledge and information of a Bidder is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.

D. The certification in paragraph A of this provision is a material representation of fact upon which reliance was placed when making award. If it is later determined that the Bidder knowingly or in bad faith rendered an erroneous certification, in addition to other remedies available to the State, the Procurement Officer may terminate the contract resulting from this solicitation for default.

2.5 ETHICS CERTIFICATE
By submitting a bid, the bidder certifies that the bidder has and will comply with, and has not, and will not, induce a person to violate Title 8, Chapter 13 of the South Carolina Code of Laws, as amended (ethics act). The following statutes require special attention: Section 8-13-700, regarding use of official position for financial gain; Section 8-13-705, regarding gifts to influence action of public official; Section 8-13-720, regarding offering money for advice or assistance of public official; Sections 8-13-755 and 8-13-760, regarding restrictions on employment by former public official; Section 8-13-775, prohibiting public official with economic interests from acting on contracts; Section 8-13-790, regarding recovery of kickbacks; Section 8-13-1150, regarding statements to be filed by consultants; and Section 8-13-1342, regarding restrictions on contributions by contractor to candidate who participated in awarding of contract. The state may rescind any contract and recover all amounts expended as a result of any action taken in violation of this provision. If contractor participates, directly or indirectly, in the evaluation or award of public contracts, including without limitation, change orders or task orders regarding a public contract, contractor shall, if required by law to file such a statement, provide the statement required by Section 8-13-1150 to the procurement officer at the same time the law requires the statement to be filed.

2.6 RESTRICTIONS APPLICABLE TO BIDDERS & GIFTS
Violation of these restrictions may result in disqualification of your bid, suspension or debarment, and may constitute a violation of the state Ethics Act. (a) After issuance of the solicitation, bidder agrees not to discuss this procurement activity in any way with the Owner or its employees, agents or officials. All communications must be solely with the Procurement Officer. This restriction may be lifted by express written permission from the Procurement Officer. This restriction expires once a contract has been formed. (b) Unless otherwise approved in writing by the Procurement Officer, bidder agrees not to give anything to the Owner, any affiliated organizations, or the employees, agents or officials of either, prior to award. (c) Bidder acknowledges that the policy of the State is that a governmental body should not accept or solicit a gift, directly or indirectly, from a donor if the governmental body has reason to believe the donor has or is seeking to obtain contractual or other business or financial relationships with the governmental body. Regulation 19-445.2165(C) broadly defines the term donor.

2.7 IRAN DIVESTMENT ACT CERTIFICATION
(a) The Iran Divestment Act List is a list published by the Board pursuant to Section 11-57-310 that identifies persons engaged in investment activities in Iran. The list is available at the following URL: http://procurement.sc.gov/PS/PS-iran-divestment.phtm(. Section 11-57-310 requires the government to provide a person ninety days written notice before he is included on the list. The following representation, which is required by Section 11-57-330(A), is a material inducement for the State to award a contract to you. (b) By signing your Offer, you certify that, as of the date you sign, you are not on the then-current version of the Iran Divestment Act List. (c) You must notify the Procurement Officer immediately if, at any time before posting of a final statement of award, you are added to the Iran Divestment Act List.

2.7 Delete Section 3.1.1 and substitute the following:

3.1.1 Bidders may obtain complete sets of the Bidding Documents from the issuing office designated in the Advertisement in the number and for the deposit sum, if any, stated therein. If so provided in the Advertisement, the deposit will be refunded to all plan holders who return the Bidding Documents in good condition within ten days after receipt of Bids. The cost of replacement of missing or damaged documents will be deducted from the deposit. A Bidder receiving a Contract award may retain the Bidding Documents and the Bidder's deposit will be refunded.

2.8 Delete the language of Section 3.1.2 and insert the word “Reserved.”

2.9 In Section 3.1.4, delete the words “and Architect may make” and substitute the words “has made.”

2.10 Insert the following Section 3.1.5

3.1.5 All persons obtaining Bidding Documents from the issuing office designated in the Advertisement shall provide that office with Bidder's contact information to include the Bidder's name, telephone number, mailing address, and email address.
2.11 In Section 3.2.2:
Delete the words “and Sub-bidders”
Delete the word “seven” and substitute the word “ten”

2.12 In Section 3.2.3:
In the first Sentence, insert the word “written” before the word “Addendum.”
Insert the following at the end of the section:
As provided in Regulation 19-445.2042(B), nothing stated at the pre-bid conference shall change the Bidding Documents unless a change is made by written Addendum.

2.13 Insert the following at the end of Section 3.3.1:
Reference in the Bidding Documents to a designated material, product, thing, or service by specific brand or trade name followed by the words “or equal” and “or approved equal” shall be interpreted as establishing a standard of quality and shall not be construed as limiting competition.

2.14 Delete Section 3.3.2 and substitute the following:
3.3.2 No request to substitute materials, products, or equipment for materials, products, or equipment described in the Bidding Documents and no request for addition of a manufacturer or supplier to a list of approved manufacturers or suppliers in the Bidding Documents will be considered prior to receipt of Bids unless written request for approval has been received by the Architect at least ten days prior to the date for receipt of Bids established in the Invitation for Bids. Any subsequent extension of the date for receipt of Bids by addendum shall not extend the date for receipt of such requests unless the addendum so specifies. Such requests shall include the name of the material or equipment for which it is to be substituted and a complete description of the proposed substitution including drawings, performance and test data, and other information necessary for an evaluation. A statement setting forth changes in other materials, equipment or other portions of the Work, including changes in the work of other contracts that incorporation of the proposed substitution would require, shall be included. The burden of proof of the merit of the proposed substitution is upon the proposer. The Architect’s decision of approval or disapproval of a proposed substitution shall be final.

2.15 Delete Section 3.4.3 and substitute the following:

3.4.3 Addenda will be issued no later than 120 hours prior to the time for receipt of Bids except an Addendum withdrawing the request for Bids or one which includes postponement of the date for receipt of Bids.

2.16 Insert the following Sections 3.4.5 and 3.4.6:

3.4.5 When the date for receipt of Bids is to be postponed and there is insufficient time to issue a written Addendum prior to the original Bid Date, Owner will notify prospective Bidders by telephone or other appropriate means with immediate follow up with a written Addendum. This Addendum will verify the postponement of the original Bid Date and establish a new Bid Date. The new Bid Date will be no earlier than the fifth (5th) calendar day after the date of issuance of the Addendum postponing the original Bid Date.

3.4.6 If an emergency or unanticipated event interrupts normal government processes so that bids cannot be received at the government office designated for receipt of bids by the exact time specified in the solicitation, the time specified for receipt of bids will be deemed to be extended to the same time of day specified in the solicitation on the first work day on which normal government processes resume. In lieu of an automatic extension, an Addendum may be issued to reschedule bid opening. If state offices are closed at the time a pre-bid or pre-proposal conference is scheduled, an Addendum will be issued to reschedule the conference.

2.17 In Section 4.1.1, delete the word “forms” and substitute the words “SE-330 Bid Form.”

2.18 Delete Section 4.1.2 and substitute the following:

4.1.2 Any blanks on the bid form to be filled in by the Bidder shall be legibly executed in a non-erasable medium. Bids shall be signed in ink or other indelible media.

2.19 Delete Section 4.1.3 and substitute the following:

4.1.3 Sums shall be expressed in figures.

2.20 Insert the following at the end of Section 4.1.4:
Bidder shall not make stipulations or qualify his bid in any manner not permitted on the bid form. An incomplete Bid or information not requested that is written on or attached to the Bid Form that could be considered a qualification of the Bid, may be cause for rejection of the Bid.
2.21 *Delete Section 4.1.5 and substitute the following:*

4.1.5 All requested Alternates shall be bid. The failure of the bidder to indicate a price for an Alternate shall render the Bid non-responsive. Indicate the change to the Base Bid by entering the dollar amount and marking, as appropriate, the box for “ADD TO” or “DEDUCT FROM”. If no change in the Base Bid is required, enter “ZERO” or “No Change.” For add alternates to the base bid, Subcontractor(s) listed on page BF-2 of the Bid Form to perform Alternate Work shall be used for both Alternates and Base Bid Work if Alternates are accepted.

2.22 *Delete Section 4.1.6 and substitute the following:*

4.1.6 Pursuant to Title 11, Chapter 35, Section 3020(b)(i) of the South Carolina Code of Laws, as amended, Section 7 of the Bid Form sets forth a list of subcontractor specialties for which Bidder is required to identify only those subcontractors Bidder will use to perform the work of each listed specialty. Bidder must follow the Instructions in the Bid Form for filling out this section of the Bid Form. Failure to properly fill out Section 7 may result in rejection of Bidder’s bid as non-responsive.

2.23 *Delete Section 4.1.7 and substitute the following:*

4.1.7 Each copy of the Bid shall state the legal name of the Bidder and the nature of legal form of the Bidder. Each copy shall be signed by the person or persons legally authorized to bind the Bidder to a contract. A Bid submitted by an agent shall have a current power of attorney attached certifying the agent’s authority to bind the Bidder.

2.24 *Delete Section 4.2.1 and substitute the following:*

4.2.1 If required by the Invitation for Bids, each Bid shall be accompanied by a bid security in an amount of not less than five percent of the Base Bid. The bid security shall be a bid bond or a certified cashier’s check. The Bidder pledges to enter into a Contract with the Owner on the terms stated in the Bid and will, if required, furnish bonds covering the faithful performance of the Contract and payment of all obligations arising thereunder. Should the Bidder refuse to enter into such Contract or fail to furnish such bonds if required, the amount of the bid security shall be forfeited to the Owner as liquidated damages, not as a penalty.

2.25 *Delete Section 4.2.2 and substitute the following:*

4.2.2 If a surety bond is required, it shall be written on AIA Document A310, Bid Bond, and the attorney-in-fact who executes the bond on behalf of the surety shall affix to the bond a certified and current copy of the power of attorney. The bid bond shall:

1. Be issued by a surety company licensed to do business in South Carolina;
2. Be issued by a surety company having, at a minimum, a "Best Rating" of "A" as stated in the most current publication of "Best's Key Rating Guide, Property-Casualty", which company shows a financial strength rating of at least five (5) times the contract price.
3. Be enclosed in the bid envelope at the time of Bid Opening, either in paper copy or as an electronic bid bond authorization number provided on the Bid Form and issued by a firm or organization authorized by the surety to receive, authenticate and issue binding electronic bid bonds on behalf the surety.

2.26 *Delete Section 4.2.3 and substitute the following:*

4.2.3 By submitting a bid bond via an electronic bid bond authorization number on the Bid Form and signing the Bid Form, the Bidder certifies that an electronic bid bond has been executed by a Surety meeting the standards required by the Bidding Documents and the Bidder and Surety are firmly bound unto the State of South Carolina under the conditions provided in this Section 4.2.

2.27 *Insert the following Section 4.2.4:*

4.2.4 The Owner will have the right to retain the bid security of Bidders to whom an award is being considered until either (a) the Contract has been executed and performance and payment bonds, if required, have been furnished, or (b) the specified time has elapsed so that Bids may be withdrawn or (c) all Bids have been rejected.

2.28 *Delete Section 4.3.1 and substitute the following:*

4.3.1 All copies of the Bid, the bid security, if any, and any other documents required to be submitted with the Bid shall be enclosed in a sealed opaque envelope. The envelope shall, unless hand delivered by the Bidder, be addressed to the Owner’s designated purchasing office as shown in the Invitation for Bids. The envelope shall be identified with the Project name, the Bidder’s name and address and, if applicable, the designated portion of the Work for which the Bid is submitted. If the Bid is sent by mail or special delivery service (UPS, Federal Express, etc.), the envelope should be labeled "BID ENCLOSED" on the face thereof. Bidders hand delivering their Bids shall deliver Bids to the place of the Bid Opening as shown in the Invitation for Bids. Whether or not Bidders attend the Bid Opening, they
shall give their Bids to the Owner’s procurement officer or his/her designee as shown in the Invitation for Bids prior to the time of the Bid Opening.

2.29 *Insert the following Section 4.3.6 and substitute the following:*

4.3.6 The official time for receipt of Bids will be determined by reference to the clock designated by the Owner’s procurement officer or his/her designee. The procurement officer conducting the Bid Opening will determine and announce that the deadline has arrived and no further Bids or bid modifications will be accepted. All Bids and bid modifications in the possession of the procurement officer at the time the announcement is completed will be timely, whether or not the bid envelope has been date/time stamped or otherwise marked by the procurement officer.

2.30 *Delete Section 4.4.2 and substitute the following:*

4.4.2 Prior to the time and date designated for receipt of Bids, a Bid submitted may be withdrawn in person or by written notice to the party receiving Bids at the place designated for receipt of Bids. Withdrawal by written notice shall be in writing over the signature of the Bidder.

2.31 *In Section 5.1, delete everything following the caption “OPENING OF BIDS” and substitute the following:*

5.1.1 Bids received on time will be publicly opened and will be read aloud. Owner will not read aloud Bids that Owner determines, at the time of opening, to be non-responsive.

5.1.2 At bid opening, Owner will announce the date and location of the posting of the Notice of Intended Award.

5.1.3 Owner will send a copy of the final Bid Tabulation to all Bidders within ten (10) working days of the Bid Opening.

5.1.4 If Owner determines to award the Project, Owner will, after posting a Notice of Intended Award, send a copy of the Notice to all Bidders.

5.1.5 If only one Bid is received, Owner will open and consider the Bid.

2.32 *In Section 5.2, insert the section number “5.2.1” before the words of the “The Owner” at the beginning of the sentence.*

2.33 *Insert the following Sections 5.2.2 and 5.2.3:*

5.2.2 The reasons for which the Owner will reject Bids include, but are not limited to:

.1 Failure by a Bidder to be represented at a Mandatory Pre-Bid Conference or site visit;

.2 Failure to deliver the Bid on time;

.3 Failure to comply with Bid Security requirements, except as expressly allowed by law;

.4 Listing an invalid electronic Bid Bond authorization number on the bid form;

.5 Failure to Bid an Alternate, except as expressly allowed by law;

.6 Failure to list qualified Subcontractors as required by law;

.7 Showing any material modification(s) or exception(s) qualifying the Bid;

.8 Faxing a Bid directly to the Owner or their representative; or

.9 Failure to include a properly executed Power-of-Attorney with the bid bond.

5.2.3 The Owner may reject a Bid as nonresponsive if the prices bid are materially unbalanced between line items or sub-line items. A bid is materially unbalanced when it is based on prices significantly less than cost for some work and prices which are significantly overstated in relation to cost for other work, and if there is a reasonable doubt that the bid will result in the lowest overall cost to the Owner even though it may be the low evaluated bid, or if it is so unbalanced as to be tantamount to allowing an advance payment.

2.34 *Delete Section 6.1 and substitute the following:*

6.1 **CONTRACTOR’S RESPONSIBILITY**

Owner will make a determination of Bidder’s responsibility before awarding a contract. Bidder shall provide all information and documentation requested by the Owner to support the Owner’s evaluation of responsibility. Failure of Bidder to provide requested information is cause for the Owner, at its option, to determine the Bidder to be non-responsible

2.35 *Delete the language of Section 6.2 and insert the word “Reserved.”*

2.36 *Delete the language of Sections 6.3.2, 6.3.3, and 6.3.4 and insert the word “Reserved” after each Section Number.*
2.37 Insert the following Section 6.4

6.4 CLARIFICATION
Pursuant to Section 11-35-1520(8), the Procurement Officer may elect to communicate with a Bidder after opening for the purpose of clarifying either the Bid or the requirements of the Invitation for Bids. Such communications may be conducted only with Bidders who have submitted a Bid which obviously conforms in all material aspects to the Invitation for Bids and only in accordance with Appendix D (Paragraph A(6)) to the Manual for Planning and Execution of State Permanent Improvement, Part II. Clarification of a Bid must be documented in writing and included with the Bid. Clarifications may not be used to revise a Bid or the Invitation for Bids. [Section 11-35-1520(8); R.19-445.2080]

2.38 Delete Section 7.1.2 and substitute the following:

7.1.2 The performance and payment bonds shall conform to the requirements of Section 11.4 of the General Conditions of the Contract. If the furnishing of such bonds is stipulated in the Bidding Documents, the cost shall be included in the Bid.

2.39 Delete the language of Section 7.1.3 and insert the word “Reserved.”

2.40 In Section 7.2, insert the words “CONTRACT, CERTIFICATES OF INSURANCE” into the caption after the word “Delivery.”

2.41 Delete Section 7.2.1 and substitute the following:

7.2.1 After expiration of the protest period, the Owner will tender a signed Contract for Construction to the Bidder and the Bidder shall return the fully executed Contract for Construction to the Owner within seven days thereafter. The Bidder shall deliver the required bonds and certificate of insurance to the Owner not later than three days following the date of execution of the Contract. Failure to deliver these documents as required shall entitle the Owner to consider the Bidder’s failure as a refusal to enter into a contract in accordance with the terms and conditions of the Bidder’s Bid and to make claim on the Bid Security for re-procurement cost.

2.42 Delete the language of Section 7.2.2 and insert the word “Reserved.”

2.43 Delete the language of Article 8 and insert the following:

Unless otherwise required in the Bidding Documents, the Agreement for the Work will be written on South Carolina Modified AIA Document A101, 2007, Standard Form of Agreement Between Owner and Contractor as modified by OSE Form 00501 – Standard Modification to Agreement Between Owner and Contractor.

2.44 Insert the following Article 9:

ARTICLE 9 MISCELLANEOUS

9.1 NONRESIDENT TAXPAYER REGISTRATION AFFIDAVIT INCOME TAX WITHHOLDING IMPORTANT TAX NOTICE - NONRESIDENTS ONLY

Withholding Requirements for Payments to Nonresidents: Section 12-8-550 of the South Carolina Code of Laws requires persons hiring or contracting with a nonresident conducting a business or performing personal services of a temporary nature within South Carolina to withhold 2% of each payment made to the nonresident. The withholding requirement does not apply to (1) payments on purchase orders for tangible personal property when the payments are not accompanied by services to be performed in South Carolina, (2) nonresidents who are not conducting business in South Carolina, (3) nonresidents for contracts that do not exceed $10,000 in a calendar year, or (4) payments to a nonresident who (a) registers with either the S.C. Department of Revenue or the S.C. Secretary of State and (b) submits a Nonresident Taxpayer Registration Affidavit - Income Tax Withholding, Form I-312 to the person letting the contract.

For information about other withholding requirements (e.g., employee withholding), contact the Withholding Section at the South Carolina Department of Revenue at 803-898-5383 or visit the Department's website at: www.sctax.org

This notice is for informational purposes only. This Owner does not administer and has no authority over tax issues. All registration questions should be directed to the License and Registration Section at 803-898-5872 or to the South Carolina Department of Revenue, Registration Unit, Columbia, S.C. 29214-0140. All withholding questions should be directed to the Withholding Section at 803-898-5383.

PLEASE SEE THE "NONRESIDENT TAXPAYER REGISTRATION AFFIDAVIT INCOME TAX WITHHOLDING" FORM (Available through SC Department of Revenue).
9.2 CONTRACTOR LICENSING
Contractors and Subcontractors listed in Section 7 of the Bid Form who are required by the South Carolina Code of Laws to be licensed, must be licensed at the time of bidding.

9.3 SUBMITTING CONFIDENTIAL INFORMATION
For every document Bidder submits in response to or with regard to this solicitation or request, Bidder must separately mark with the word "CONFIDENTIAL" every page, or portion thereof, that Bidder contends contains information that is exempt from public disclosure because it is either (a) a trade secret as defined in Section 30-4-40(a)(1), or (b) privileged & confidential, as that phrase is used in Section 11-35-410. For every document Bidder submits in response to or with regard to this solicitation or request, Bidder must separately mark with the words "TRADE SECRET" every page, or portion thereof, that Bidder contends contains a trade secret as that term is defined by Section 39-8-20 of the Trade Secrets Act. For every document Bidder submits in response to or with regard to this solicitation or request, Bidder must separately mark with the word "PROTECTED" every page, or portion thereof, that Bidder contends is protected by Section 11-35-1810. All markings must be conspicuous; use color, bold, underlining, or some other method in order to conspicuously distinguish the mark from the other text. Do not mark your entire bid as confidential, trade secret, or protected! If your bid, or any part thereof, is improperly marked as confidential or trade secret or protected, the State may, in its sole discretion, determine it nonresponsive. If only portions of a page are subject to some protection, do not mark the entire page. By submitting a response to this solicitation, Bidder (1) agrees to the public disclosure of every page of every document regarding this solicitation or request that was submitted at any time prior to entering into a contract (including, but not limited to, documents contained in a response, documents submitted to clarify a response, & documents submitted during negotiations), unless the page is conspicuously marked "TRADE SECRET" or "CONFIDENTIAL" or "PROTECTED", (2) agrees that any information not marked, as required by these bidding instructions, as a "Trade Secret" is not a trade secret as defined by the Trade Secrets Act, & (3) agrees that, notwithstanding any claims or markings otherwise, any prices, commissions, discounts, or other financial figures used to determine the award, as well as the final contract amount, are subject to public disclosure. In determining whether to release documents, the State will detrimentally rely on Bidders's marking of documents, as required by these bidding instructions, as being either "Confidential" or "Trade Secret" or "PROTECTED". By submitting a response, Bidder agrees to defend, indemnify & hold harmless the State of South Carolina, its officers & employees, from every claim, demand, loss, expense, cost, damage or injury, including attorney’s fees, arising out of or resulting from the State withholding information that Bidder marked as "confidential" or "trade secret" or "PROTECTED".

9.4 POSTING OF INTENT TO AWARD
Notice of Intent to Award, SE-370, will be posted at the following location:

<table>
<thead>
<tr>
<th>Room or Area of Posting</th>
<th>Building Where Posted</th>
<th>Address of Building</th>
<th>WEB site address (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH 131</td>
<td>Ruby Hicks</td>
<td>7900 Hwy 76, Pendleton, SC 29670</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Posting date will be announced at bid opening. In addition to posting the notice, the Owner will promptly send all responsive bidders a copy of the notice of intent to award and the final bid tabulation.

9.5 PROTEST OF SOLICITATION OR AWARD
Any prospective bidder, offeror, contractor, or subcontractor who is aggrieved in connection with the solicitation of a contract shall protest within fifteen days of the date of issuance of the applicable solicitation document at issue. Any actual bidder, offeror, contractor, or subcontractor who is aggrieved in connection with the intended award or award of a contract shall protest within ten days of the date notification of intent to award is posted in accordance with Title 11, Chapter 35, Section 4210 of the South Carolina Code of Laws, as amended. A protest shall be in writing, shall set forth the grounds of the protest and the relief requested with enough particularity to give notice of the issues to be decided, and must be received by the State Engineer within the time provided. Any protest must be addressed to the CPO, Office of State Engineer, and submitted in writing:

A. by email to protest-ose@mmo.sc.gov,
B. by facsimile at 803-737-0639, or
C. by post or delivery to 1201 Main Street, Suite 600, Columbia, SC 29201.

By submitting a protest to the foregoing email address, you (and any person acting on your behalf) consent to receive communications regarding your protest (and any related protests) at the e-mail address from which you sent your protest.
9.6 SOLICITATION INFORMATION FROM SOURCES OTHER THAN OFFICIAL SOURCE
South Carolina Business Opportunities (SCBO) is the official state government publication for State of South Carolina solicitations. Any information on State agency solicitations obtained from any other source is unofficial and any reliance placed on such information is at the bidder’s sole risk and is without recourse under the South Carolina Consolidated Procurement Code.

9.7 BUILDER'S RISK INSURANCE
Bidders are directed to Article 11.3 of the South Carolina Modified AIA Document A201, 2007 Edition, which, unless provided otherwise in the bid documents, requires the contractor to provide builder's risk insurance on the project.

9.8 TAX CREDIT FOR SUBCONTRACTING WITH MINORITY FIRMS
Pursuant to Section 12-6-3350, taxpayers, who utilize certified minority subcontractors, may take a tax credit equal to 4% of the payments they make to said subcontractors. The payments claimed must be based on work performed directly for a South Carolina state contract. The credit is limited to a maximum of fifty thousand dollars annually. The taxpayer is eligible to claim the credit for 10 consecutive taxable years beginning with the taxable year in which the first payment is made to the subcontractor that qualifies for the credit. After the above ten consecutive taxable years, the taxpayer is no longer eligible for the credit. The credit may be claimed on Form TC-2, "Minority Business Credit." A copy of the subcontractor's certificate from the Governor's Office of Small and Minority Business (OSMBA) is to be attached to the contractor's income tax return. Taxpayers must maintain evidence of work performed for a State contract by the minority subcontractor. Questions regarding the tax credit and how to file are to be referred to: SC Department of Revenue, Research and Review, Phone: (803) 898-5786, Fax: (803) 898-5888. The subcontractor must be certified as to the criteria of a "Minority Firm" by the Governor's Office of Small and Minority Business Assistance (OSMBA). Certificates are issued to subcontractors upon successful completion of the certification process. Questions regarding subcontractor certification are to be referred to: Governor's Office of Small and Minority Business Assistance, Phone: (803) 734-0657, Fax: (803) 734-2498. Reference: SC §11-35-5010 – Definition for Minority Subcontractor & SC §11-35-5230 (B) – Regulations for Negotiating with State Minority Firms.

9.9 OTHER SPECIAL CONDITIONS OF THE WORK
Archaeological Material Discovery - "If archaeological materials are encountered during construction, the procedures codified at 36 CFR 800.13(b) will apply and the South Carolina State Historic Preservation Office and the Catawba Indian Nation shall be contacted immediately. Archaeological materials consist of any items, fifty years or older, which were made or used by man. These items include, but are not limited to, stone projectile points (arrowheads), ceramic sherds, bricks, worked wood, bone and stone, metal and glass objects, and human skeletal materials."

END OF DOCUMENT
ETHICS ACT (JAN 2004) By submitting an Offer, You certify that You are in compliance with South Carolina’s Ethics, Government Accountability, and Campaign Reform Act of 1991, as amended. The following statutes require special attention: (a) Offering, giving, soliciting, or receiving anything of value to influence action of public employee – Section 8-13-790, (b) Recovery of kickbacks – Section 8-13-790, (c) Offering, soliciting, or receiving money for advice or assistance of public official – Section 8-13-720, (d) Use or disclosure of confidential information – Section 8-13-725, and (e) Persons hired to assist in the preparation of specifications or evaluation of bids – Section 8-13-1150.
GIVING FALSE, MISLEADING, OR INCOMPLETE INFORMATION ON THIS CERTIFICATION MAY RENDER YOU SUBJECT TO PROSECUTION UNDER SECTION 16-9-10 OF THE SOUTH CAROLINA CODE OF LAWS AND OTHER APPLICABLE LAWS.

(a) By submitting an offer, the offeror certifies that—

(1) The prices in this offer have been arrived at independently, without, for the purpose of restricting competition, any consultation, communication, or agreement with any other offeror or competitor relating to—
 (i) Those prices;
 (ii) The intention to submit an offer; or
 (iii) The methods or factors used to calculate the prices offered.

(2) The prices in this offer have not been and will not be knowingly disclosed by the offeror, directly or indirectly, to any other offeror or competitor before bid opening (in the case of a sealed bid solicitation) or contract award (in the case of a negotiated solicitation) unless otherwise required by law; and

(3) No attempt has been made or will be made by the offeror to induce any other concern to submit or not to submit an offer for the purpose of restricting competition.

(b) Each signature on the offer is considered to be a certification by the signatory that the signatory—

(1) Is the person in the offeror’s organization responsible for determining the prices being offered in this bid or proposal, and that the signatory has not participated and will not participate in any action contrary to paragraphs (a)(1) through (a)(3) of this certification; or

(2)(i) Has been authorized, in writing, to act as agent for the offeror's principals in certifying that those principals have not participated, and will not participate in any action contrary to paragraphs (a)(1) through (a)(3) of this certification [As used in this subdivision (b)(2)(i), the term "principals" means the person(s) in the offeror’s organization responsible for determining the prices offered in this bid or proposal];

(ii) As an authorized agent, does certify that the principals referenced in subdivision (b)(2)(i) of this certification have not participated, and will not participate, in any action contrary to paragraphs (a)(1) through (a)(3) of this certification; and

(iii) As an agent, has not personally participated, and will not participate, in any action contrary to paragraphs (a)(1) through (a)(3) of this certification.

(c) If the offeror deletes or modifies paragraph (a)(2) of this certification, the offeror must furnish with its offer a signed statement setting forth in detail the circumstances of the disclosure. [02-2A032-1]
Bid Bond (AIA Document A310 - 2010 Edition)

AIA Document can be viewed at the office of LS3P or online at AIA.org
BID SUBMITTED BY: ________________________________

(Bidder’s Name)

BID SUBMITTED TO: Tri-County Technical College

(Owner’s Name)

FOR: PROJECT NAME: Animal Care Facility

PROJECT NUMBER: H59-6101-PD

OFFER

§ 1. In response to the Invitation for Construction Services and in compliance with the Instructions to Bidders for the above-named Project, the undersigned Bidder proposes and agrees, if this Bid is accepted, to enter into a Contract with the Owner on the terms included in the Bidding Documents, and to perform all Work as specified or indicated in the Bidding Documents, for the prices and within the time frames indicated in this Bid and in accordance with the other terms and conditions of the Bidding Documents.

§ 2. Pursuant to Section 11-35-3030(1) of the SC Code of Laws, as amended, Bidder has submitted Bid Security as follows in the amount and form required by the Bidding Documents:

☐ Bid Bond with Power of Attorney ☐ Electronic Bid Bond ☐ Cashier’s Check

(Bidder check one)

§ 3. Bidder acknowledges the receipt of the following Addenda to the Bidding Documents and has incorporated the effects of said Addenda into this Bid:

(Bidder, check all that apply. Note, there may be more boxes than actual addenda. Do not check boxes that do not apply)

ADDENDA:

☐ #1 ☐ #2 ☐ #3 ☐ #4 ☐ #5

§ 4. Bidder accepts all terms and conditions of the Invitation for Bids, including, without limitation, those dealing with the disposition of Bid Security. Bidder agrees that this Bid, including all Bid Alternates, if any, may not be revoked or withdrawn after the opening of bids, and shall remain open for acceptance for a period of 60 Days following the Bid Date, or for such longer period of time that Bidder may agree to in writing upon request of the Owner.

§ 5. Bidder herewith offers to provide all labor, materials, equipment, tools of trades and labor, accessories, appliances, warranties and guarantees, and to pay all royalties, fees, permits, licenses and applicable taxes necessary to complete the following items of construction work:

§ 6.1 BASE BID WORK (as indicated in the Bidding Documents and generally described as follows): ________________________________

$__, which sum is hereafter called the Base Bid.

(Bidder - insert Base Bid Amount on line above)
§ 6.2 BID ALTERNATES as indicated in the Bidding Documents and generally described as follows:

ALTERNATE # 1 (Brief Description): Provide conduit & backup generator pad as seen in electrical drawings. Installation of natural gas line included.

- [] ADD TO or [] DEDUCT FROM BASE BID: $

(Bidder to Mark appropriate box to clearly indicate the price adjustment offered for each alternate)

ALTERNATE # 2 (Brief Description): Provide & install backup generator & related wiring as seen in electrical drawings.

- [] ADD TO or [] DEDUCT FROM BASE BID: $

(Bidder to Mark appropriate box to clearly indicate the price adjustment offered for each alternate)

ALTERNATE # 3 (Brief Description): N/A

- [] ADD TO or [] DEDUCT FROM BASE BID: $

(Bidder to Mark appropriate box to clearly indicate the price adjustment offered for each alternate)

§ 6.3 UNIT PRICES:

BIDDER offers for the Agency’s consideration and use, the following UNIT PRICES. The UNIT PRICES offered by BIDDER indicate the amount to be added to or deducted from the CONTRACT SUM for each item-unit combination. UNIT PRICES include all costs to the Agency, including those for materials, labor, equipment, tools of trades and labor, fees, taxes, insurance, bonding, overhead, profit, etc. The Agency reserves the right to include or not to include any of the following UNIT PRICES in the Contract and to negotiate the UNIT PRICES with BIDDER.

<table>
<thead>
<tr>
<th>No.</th>
<th>ITEM</th>
<th>Unit of Measure</th>
<th>ADD</th>
<th>DEDUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>
§ 7. LISTING OF PROPOSED SUBCONTRACTORS PURSUANT TO SECTION 3020(b)(i), CHAPTER 35, TITLE 11 OF THE SOUTH CAROLINA CODE OF LAWS, AS AMENDED
(See Instructions on the following page BF-2A)

Bidder shall use the below-listed Subcontractors in the performance of the Subcontractor Classification work listed:

<table>
<thead>
<tr>
<th>SUBCONTRACTOR CLASSIFICATION By License Classification and/or Subclassification (Completed by Owner)</th>
<th>SUBCONTRACTOR'S PRIME CONTRACTOR'S NAME (Must be completed by Bidder)</th>
<th>SUBCONTRACTOR'S PRIME CONTRACTOR'S SC LICENSE NUMBER (Requested, but not Required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE BID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Engineered Metal Building (MB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical (EL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing (PB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating (HT) Air Conditioning (AC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATE #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical (EL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing (PB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATE #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical (EL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATE #3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If a Bid Alternate is accepted, Subcontractors listed for the Bid Alternate shall be used for the work of both the Alternate and the Base Bid work.
INSTRUCTIONS FOR
SUBCONTRACTOR LISTING

1. Section 7 of the Bid Form sets forth an Owner developed list of contractor/subcontractor specialties by contractor license category and/or subcategory for which bidder is required to identify the entity (subcontractor(s) and/or himself) Bidder will use to perform the work of each listed specialty.
 a. **Column A:** The Owner fills out this column, which identifies the contractor/subcontractor specialties for which the bidder must list either a subcontractor or himself as the entity that will perform this work. Subcontractor specialties are identified by contractor license categories or subcategories listed in Title 40 of the South Carolina Code of laws. If the owner has not identified a specialty, the bidder does not list a subcontractor.
 b. **Columns B and C:** In these columns, the Bidder identifies the subcontractors it will use for the work of each specialty listed by the Owner in Column A. Bidder must identify only the subcontractor(s) who will perform the work and no others. Bidders should make sure that their identification of each subcontractor is clear and unambiguous. A listing that could be any number of different entities may be cause for rejection of the bid as non-responsive. For example, a listing of M&M without more may be problematic if there are multiple different licensed contractors in South Carolina whose names start with M&M.

2. **Subcontractor Defined:** For purposes of subcontractor listing, a subcontractor is an entity who will perform work or render service to the prime contractor or about the construction site pursuant to a contract with the prime contractor. Bidder should not identify sub-subcontractors in the spaces provided on the bid form but only those entities with which bidder will contract directly. Likewise, do not identify material suppliers, manufacturers, and fabricators that will not perform physical work at the site of the project but will only supply materials or equipment to the bidder or proposed subcontractor(s). If Bidder intends to use both his own employees to perform such work, the Bidder must insert its own name in the space provided for that specialty.

3. **Subcontractor Qualifications:** Bidder must only list subcontractors who possess a South Carolina Contractor's license with the license classification and/or subclassification identified by the Owner in the first column on the left. The subcontractor license must also be within the appropriate license group for the work of the specialty. If Bidder lists a subcontractor who is not qualified to perform the work, the Bidder will be rejected as non-responsive.

4. **Use of Own forces:** If under the terms of the Bidding Documents, Bidder is qualified to perform the work of a listed specialty and Bidder does not intend to subcontract such work but to use Bidder’s own employees to perform such work, the Bidder must insert its own name in the space provided for that specialty.

5. **Use of Multiple Subcontractors:**
 a. If Bidder intends to use multiple subcontractors to perform the work of a single specialty listing, Bidder must insert the name of each subcontractor Bidder will use, preferably separating the name of each by the word “and”. If Bidder intends to use both his own employees to perform a part of the work of a single specialty listing and to use one or more subcontractors to perform the remaining work for that specialty listing, bidder must insert his own name and the name of each subcontractor, preferably separating the name of each with the word “and”.Bidder must use each entity listed for the work of a single specialty listing in the performance of that work.
 b. **Optional Listing Prohibited:** Bidder may not list multiple subcontractors for a specialty listing, in a form that provides the Bidder the option, after bid opening or award, to choose to use one or more but not all the listed subcontractors to perform the work for which they are listed. A listing, which on its face requires subsequent explanation to determine whether it is an optional listing, is non-responsive. If bidder intends to use multiple entities to perform the work for a single specialty listing, bidder must clearly set forth on the bid form such intent. Bidder may accomplish this by simply inserting the word “and” between the names of each entity listed for that specialty. Agency will reject as non-responsive a listing that contains the names of multiple subcontractors separated by a blank space, the word “or”, a virgule (that is a /), or any separator that the Agency may reasonably interpret as an optional listing.

6. If Bidder is awarded the contract, bidder must, except with the approval of the Agency for good cause shown, use the listed entities to perform the work for which they are listed.

7. If bidder is awarded the contract, bidder will not be allowed to substitute another entity as subcontractor in place of a subcontractor listed in Section 7 of the Bid except for one or more of the reasons allowed by the SC Code of Laws.

8. Bidder’s failure to identify an entity (subcontractor or himself) to perform the work of a subcontractor specialty listed in the first column on the left will render the Bid non-responsive.
§ 8. LIST OF MANUFACTURERS, MATERIAL SUPPLIERS, AND SUBCONTRACTORS OTHER THAN SUBCONTRACTORS LISTED IN SECTION 7 ABOVE (FOR INFORMATION ONLY):

Pursuant to instructions in the Invitation for Construction Services, if any, Bidder will provide to Owner upon the Owner’s request and within 24 hours of such request, a listing of manufacturers, material suppliers, and subcontractors, other than those listed in Section 7 above, that Bidder intends to use on the project. Bidder acknowledges and agrees that this list is provided for purposes of determining responsibility and not pursuant to the subcontractor listing requirements of SC Code Ann § 11-35-3020(b)(i).

§ 9. TIME OF CONTRACT PERFORMANCE AND LIQUIDATED DAMAGES

a) CONTRACT TIME

Bidder agrees that the Date of Commencement of the Work shall be established in a Notice to Proceed to be issued by the Owner. Bidder agrees to substantially complete the Work within __150___ Calendar Days from the Date of Commencement, subject to adjustments as provided in the Contract Documents.

b) LIQUIDATED DAMAGES

Bidder further agrees that from the compensation to be paid, the Owner shall retain as Liquidated Damages the amount of $ __250.00___ for each Calendar Day the actual construction time required to achieve Substantial Completion exceeds the specified or adjusted time for Substantial Completion as provided in the Contract Documents. This amount is intended by the parties as the predetermined measure of compensation for actual damages, not as a penalty for nonperformance.

§ 10. AGREEMENTS

a) Bidder agrees that this bid is subject to the requirements of the laws of the State of South Carolina.

b) Bidder agrees that at any time prior to the issuance of the Notice to Proceed for this Project, this Project may be canceled for the convenience of, and without cost to, the State.

c) Bidder agrees that neither the State of South Carolina nor any of its agencies, employees or agents shall be responsible for any bid preparation costs, or any costs or charges of any type, should all bids be rejected or the Project canceled for any reason prior to the issuance of the Notice to Proceed.

§ 11. ELECTRONIC BID BOND

By signing below, the Principal is affirming that the identified electronic bid bond has been executed and that the Principal and Surety are firmly bound unto the State of South Carolina under the terms and conditions of the AIA Document A310, Bid Bond, included in the Bidding Documents.

ELECTRONIC BID BOND NUMBER: ________________________________

SIGNATURE AND TITLE: ________________________________
CONTRACTOR'S CLASSIFICATIONS AND SUBCLASSIFICATIONS WITH LIMITATION

SC Contractor's License Number(s):

Classification(s) & Limits:

Subclassification(s) & Limits:

By signing this Bid, the person signing reaffirms all representation and certification made by both the person signing and the Bidder, including without limitation, those appearing in Article 2 of the Instructions to Bidders, is expressly incorporated by reference.

BIDDER’S LEGAL NAME:

ADDRESS:

TELEPHONE:

EMAIL:

SIGNATURE: DATE:

PRINT NAME:

TITLE:

AIA Document can be viewed at the office of LS3P or online at AIA.org
1. STANDARD MODIFICATIONS TO AIA A101-2007

1.1 These Standard Modifications amend or supplement the *Standard Form of Agreement Between Owner and Contractor* (AIA Document A101-2007) and other provisions of Bidding and Contract Documents as indicated below.

1.2 All provisions of A101-2007, which are not so amended or supplemented, remain in full force and effect.

2. MODIFICATIONS TO A101

2.1 *Insert the following at the end of Article 1:*

2.2 *Delete Section 3.1 and substitute the following:*

 3.1 The Date of Commencement of the Work shall be the date fixed in a Notice to Proceed issued by the Owner. The Owner shall issue the Notice to Proceed to the Contractor in writing, no less than seven days prior to the Date of Commencement. Unless otherwise provided elsewhere in the contract documents, and provided the contractor has secured all required insurance and surety bonds, the contractor may commence work immediately after receipt of the Notice to Proceed.

2.3 *Delete Section 3.2 and substitute the following:*

 3.2 The Contract Time as provided in Section 9(a) of the Bid Form (SE-330) for this Project shall be measured from the Date of Commencement. Contractor agrees that if the Contractor fails to achieve Substantial Completion of the Work within the Contract Time, the Owner shall be entitled to withhold or recover from the Contractor Liquidated Damages in the amounts set forth in Section 9(b) of the Bid Form (SE-330), subject to adjustments of this Contract Time as provided in the Contract Documents.

2.4 *In Section 5.1.1, insert the words “and Owner” after the phrase “Payment submitted to the Architect.”*

2.5 *Delete Section 5.1.3 and substitute the following:*

 5.1.3 The Owner shall make payment of the certified amount to the Contractor not later than 21 days after receipt of the Application for Payment.

2.6 *In Section 5.1.6, insert the following after the phrase “Subject to other provisions of the Contract Documents”:

 and subject to Title 12, Chapter 8, Section 550 of the South Carolina Code of Laws, as amended (Withholding Requirements for Payments to Non-Residents).

 In the spaces provided in Sub-Sections 1 and 2 for inserting the retainage amount, insert “three and one-half percent (3.5%).”

2.7 *In Section 5.1.8, delete the word “follows” and the colon and substitute the following:

2.8 *In Section 5.1.9, delete the words “Except with the Owner’s prior approval, the” before the word “Contractor.”*

2.9 *In Section 5.2.2, delete the number 30 and substitute the number 21, delete everything following the words “Certificate for Payment” and place a period at the end of the resulting sentence.*

2.10 *Delete the language of Sections 6.1 and 6.2 and substitute the word “Reserved” for the deleted language of each Section.*

2.11 *Delete the language of Section 8.2 and substitute the word “Reserved.”*
2.12 *In Section 8.3, make the word “Representative” in the title plural, delete everything following the title, and substitute the following:*

8.3.1 Owner designates the individual listed below as its Senior Representative (“Owner's Senior Representative”), which individual has the responsibility for and, subject to Section 7.2.1 of the General Conditions, the authority to resolve disputes under Section 15.6 of the General Conditions:

Name:	Ken Kopera
Title:	Director of Physical Plant
Address:	7900 Hwy 76, Pendleton, SC 29670
Telephone:	864.646.1770
Email:	kkopera@tctc.edu

8.3.2 Owner designates the individual listed below as its Owner's Representative, which individual has the authority and responsibility set forth in Section 2.1.1 of the General Conditions:

Name:	Richard Macbeth
Title:	Project Manager
Address:	7900 Hwy 76, Pendleton, SC 29670
Telephone:	864.646.2067
Email:	macbeth@tctc.edu

2.13 *In Section 8.4, make the word “Representative” in the title plural, delete everything following the title, and substitute the following:*

8.4.1 Contractor designates the individual listed below as its Senior Representative (“Contractor's Senior Representative”), which individual has the responsibility for and authority to resolve disputes under Section 15.6 of the General Conditions:

Name:	
Title:	
Address:	
Telephone:	
Email:	

8.4.2 Contractor designates the individual listed below as its Contractor's Representative, which individual has the authority and responsibility set forth in Section 3.1.1 of the General Conditions:

Name:	
Title:	
Address:	
Telephone:	
Email:	

2.14 *Add the following Section 8.6.1:*

8.6.1 The Architect’s representative:

Name:	Luke Sims
Title:	Associate AIA, CDT
Address:	110 W. North St. Suite 300
Telephone:	864.235.0405
Email:	lukesims@ls3p.com
OSE FORM 00501
STANDARD MODIFICATIONS TO AGREEMENT BETWEEN OWNER AND CONTRACTOR

2.15 In Section 9.1.7, Sub-Section 2, list the following documents in the space provided for listing documents:

- Invitation for Construction Services (SE-310)
- Instructions to Bidders (AIA Document A701-1997)
- Standard Supplemental Instructions to Bidders (OSE Form 00201)
- Contractor’s Bid (Completed SE-330)
- Notice of Intent to Award (Completed SE-370)

2.16 In Article 10, delete everything after the first sentence.

END OF DOCUMENT

AIA Document can be viewed at the office of LS3P or online at AIA.org
AGENCY: Tri-County Technical College
PROJECT NAME: Tri-County Technical College - Animal Care Facility
PROJECT NUMBER: H59-6101-PD

1. GENERAL CONDITIONS
The General Conditions of the Contract for Construction, AIA Document A201, 2007 Edition, Articles 1 through 15 inclusive, is a part of this Contract and is incorporated as fully as if herein set forth. For brevity, AIA Document A201 is also referred to in the Contract Documents collectively as the "General Conditions."

2. STANDARD SUPPLEMENTARY CONDITIONS
2.1 The following supplements modify, delete and/or add to the General Conditions. Where any portion of the General Conditions is modified or any paragraph, Section or clause thereof is modified or deleted by these Supplementary Conditions, the unaltered provisions of the General Conditions shall remain in effect.

2.2 Unless otherwise stated, the terms used in these Standard Supplementary Conditions which are defined in the General Conditions have the meanings assigned to them in the General Conditions.

3. MODIFICATIONS TO A201-2007
3.1 Insert the following at the end of Section 1.1.1:

3.2 Delete the language of Section 1.1.8 and substitute the word “Reserved.”

3.3 Add the following Section 1.1.9:

1.1.9 NOTICE TO PROCEED
Notice to Proceed is a document issued by the Owner to the Contractor, with a copy to the Architect, directing the Contractor to begin prosecution of the Work in accordance with the requirements of the Contract Documents. The Notice to Proceed shall fix the date on which the Contract Time will commence.

3.4 Insert the following at the end of Section 1.2.1:
In the event of patent ambiguities within or between parts of the Contract Documents, the contractor shall 1) provide the better quality or greater quantity of Work, or 2) comply with the more stringent requirement, either or both in accordance with the Architect’s interpretation.

3.5 Delete Section 1.5.1 and substitute the following:

1.5.1 The Architect and the Architect’s consultants shall be deemed the authors and owners of their respective Instruments of Service and will retain all common law, statutory and other reserved rights, including copyrights. The Contractor, Subcontractors, Sub-subcontractors, and material or equipment suppliers shall not own or claim a copyright in the Instruments of Service. Submittal or distribution to meet official regulatory requirements or for other purposes in connection with this Project is not to be construed as a violation of the Architect’s or Architect’s consultants’ reserved rights.

3.6 Delete Section 2.1.1 and substitute the following:

2.1.1 The Owner is the person or entity identified as such in the Agreement and is referred to throughout the Contract Documents as if singular in number. The Owner shall designate in writing a representative who shall have express authority to bind the Owner with respect to all matters requiring the Owner’s approval or authorization, except as provided in Section 7.1.2. Except as otherwise provided in Section 4.2.1, the Architect does not have such authority. The term “Owner” means the Owner or the Owner’s Representative. [Reference § 8.2 of the Agreement.]

3.7 Delete Section 2.1.2 and substitute the following:

2.1.2 The Owner shall furnish to the Contractor within fifteen days after receipt of a written request, information necessary and relevant for the Contractor to post Notice of Project Commencement pursuant to Title 29, Chapter 5, Section 23 of the South Carolina Code of Laws, as amended.
3.8 *Delete Section 2.2.3 and substitute the following:*

2.2.3 The Owner shall furnish surveys describing physical characteristics, legal limitations and utility locations for the site of the Project, and a legal description of the site. Subject to the Contractor’s obligations, including those in Section 3.2, the Contractor shall be entitled to rely on the accuracy of information furnished by the Owner pursuant to this Section but shall exercise proper precautions relating to the safe performance of the Work.

3.9 *Replace the period at the end of the last sentence of Section 2.2.4 with a semicolon and insert the following after the inserted semicolon:*

“however, the Owner does not warrant the accuracy of any such information requested by the Contractor that is not otherwise required of the Owner by the Contract Documents. Neither the Owner nor the Architect shall be required to conduct investigations or to furnish the Contractor with any information concerning subsurface characteristics or other conditions of the area where the Work is to be performed beyond that which is provide in the Contract Documents.”

3.10 *Delete Section 2.2.5 and substitute the following:*

2.2.5 Unless otherwise provided in the Contract Documents, the Owner shall furnish to the Contractor with ten copies of the Contract Documents. The Contractor may make reproductions of the Contract Documents pursuant to Section 1.5.2. All copies of the drawings and specifications, except the Contractor’s record set, shall be returned or suitably accounted for to the Owner, on request, upon completion of the Work.

3.11 *Add the following Sections 2.2.6 and 2.2.7:*

2.2.6 The Owner assumes no responsibility for any conclusions or interpretation made by the Contractor based on information made available by the Owner.

2.2.7 The Owner shall obtain, at its own cost, general building and specialty inspection services as required by the Contract Documents. The Contractor shall be responsible for payment of any charges imposed for reinspections.

3.12 *Delete Section 2.4 and substitute the following:*

2.4 If the Contractor defaults or neglects to carry out the Work in accordance with the Contract Documents and fails within a ten-day period after receipt of written notice from the Owner to commence and continue correction of such default or neglect, including but not limited to providing necessary resources, with diligence and promptness, the Owner may, without prejudice to other remedies the Owner may have, correct such deficiencies. In such case an appropriate Change Directive shall be issued deducting from payments then or thereafter due the Contractor the reasonable cost of correcting such deficiencies, including Owner’s expenses and compensation for the Architect’s additional services made necessary by such default, neglect or failure. If payments then or thereafter due the Contractor are not sufficient to cover such amounts, the Contractor shall pay the difference to the Owner.

3.13 *Insert the following at the end of Section 3.2.1:*

The Contractor acknowledges that it has investigated and satisfied itself as to the general and local conditions which can affect the work or its cost, including but not limited to (1) conditions bearing upon transportation, disposal, handling, and storage of materials; (2) the availability of labor, water, electric power, and roads; (3) uncertainties of weather, river stages, tides, or similar physical conditions at the site; (4) the conformation and conditions of the ground; and (5) the character of equipment and facilities needed preliminary to and during work performance. The Contractor also acknowledges that it has satisfied itself as to the character, quality, and quantity of surface and subsurface materials or obstacles to be encountered insofar as this information is reasonably ascertained from an inspection of the site, including all exploratory work done by the Owner, as well as from the drawings and specifications made a part of this contract. Any failure of the Contractor to take the actions described and acknowledged in this paragraph will not relieve the Contractor from responsibility for estimating properly the difficulty and cost of successfully performing the work, or for proceeding to successfully perform the work without additional expense to the Owner.

3.14 *In the third sentence of Section 3.2.4, insert the word “latent” before the word “errors.”*

3.15 *In the last sentence of Section 3.3.1, insert the words “by the Owner in writing” after the word “instructed.”*

3.16 *Delete the third sentence of Section 3.5 and substitute the following sentences:*

Work, materials, or equipment not conforming to these requirements shall be considered defective. Unless caused by the Contractor or a subcontractor at any tier, the Contractor’s warranty excludes remedy for damage or defect caused by abuse, alterations to the Work not executed by the Contractor, improper or insufficient maintenance, improper operation, or normal wear and tear and normal usage.
3.17 Insert the following at the end of Section 3.6:
The Contractor shall comply with the requirements of Title 12, Chapter 9 of the South Carolina Code of Laws, as amended, regarding withholding tax for nonresidents, employees, contractors and subcontractors.

3.18 In Section 3.7.1, delete the words “the building permit as well as for other” and insert the following sentence at the end of this section:
Pursuant to Title 10, Chapter 1, Section 180 of the South Carolina Code of Laws, as amended, no local general or specialty building permits are required for state buildings.

3.19 Delete the last sentence of Section 3.7.5 and substitute the following:
Adjustments in the Contract Sum and Contract Time arising from the existence of such remains or features may be made as provided in Article 7.3.3.

3.20 Delete the last sentence of Section 3.8.2.3 and substitute the following:
The amount of the Change Order shall reflect the difference between actual costs, as documented by invoices, and the allowances under Section 3.8.2.1.

3.21 In Section 3.9.1, insert a comma after the word “superintendent” in the first sentence and insert the following after the inserted comma:
acceptable to the Owner,

3.22 Delete Section 3.9.2 and substitute the following:
3.9.2 The Contractor, as soon as practicable after award of the Contract, shall furnish in writing to the Owner the name and qualifications of a proposed superintendent. The Owner may reply within 14 days to the Contractor in writing stating (1) whether the Owner has reasonable objection to the proposed superintendent or (2) that the Owner requires additional time to review. Failure of the Owner to reply within the 14-day period shall constitute notice of no reasonable objection.

3.23 After the first sentence in Section 3.9.3, insert the following sentence:
The Contractor shall notify the Owner, in writing, of any proposed change in the superintendent, including the reason therefore, prior to making such change.

3.24 Delete Section 3.10.3 and substitute the following:
3.10.3 Additional requirements, if any, for the construction schedule are as follows:
(Check box if applicable to this Contract))
- The construction schedule shall be in a detailed precedence-style critical path management (CPM) or primavera-type format satisfactory to the Owner and the Architect that shall also (1) provide a graphic representation of all activities and events that will occur during performance of the work; (2) identify each phase of construction and occupancy; and (3) set forth dates that are critical in ensuring the timely and orderly completion of the Work in accordance with the requirements of the Contract Documents (hereinafter referred to as “Milestone Dates”). Upon review and acceptance by the Owner and the Architect of the Milestone Dates, the construction schedule shall be deemed part of the Contract Documents and attached to the Agreement as Exhibit “A.” If not accepted, the construction schedule shall be promptly revised by the Contractor in accordance with the recommendations of the Owner and the Architect and resubmitted for acceptance. The Contractor shall monitor the progress of the Work for conformance with the requirements of the construction schedule and shall promptly advise the Owner of any delays or potential delays. Whenever the approved construction schedule no longer reflects actual conditions and progress of the work or the Contract Time is modified in accordance with the terms of the Contract Documents, the Contractor shall update the accepted construction schedule to reflect such conditions. In the event any progress report indicates any delays, the Contractor shall propose an affirmative plan to correct the delay, including overtime and/or additional labor, if necessary. In no event shall any progress report constitute an adjustment in the Contract Time, any Milestone Date, or the Contract Sum unless any such adjustment is agreed to by the Owner and authorized pursuant to Change Order.

3.25 Add the following Section 3.10.4:
3.10.4 Owner’s review and acceptance of Contractor’s schedule is not conducted for the purpose of either determining its accuracy and completeness or approving the construction means, methods, techniques, sequences or procedures. The Owner’s approval shall not relieve the Contractor of any obligations. Unless expressly addressed in a Modification, the Owner’s approval of a schedule shall not change the Contract Time.
3.26 Add the following Section 3.12.5.1:

3.12.5.1 The fire sprinkler shop drawings shall be prepared by a licensed fire sprinkler contractor and shall accurately reflect actual conditions affecting the required layout of the fire sprinkler system. The fire sprinkler contractor shall certify the accuracy of his shop drawings prior to submitting them for review and approval. The fire sprinkler shop drawings shall be reviewed and approved by the Architect’s engineer of record who, upon approving the sprinkler shop drawings will submit them to the State Fire Marshal or other authorities having jurisdiction for review and approval. The Architect’s engineer of record will submit a copy of the State Fire Marshal’s approval letter to the Contractor, Architect, and OSE. Unless authorized in writing by OSE, neither the Contractor nor subcontractor at any tier shall submit the fire sprinkler shop drawings directly to the State Fire Marshal or other authorities having jurisdiction for approval.

3.27 In the fourth sentence of Section 3.12.10, after the comma following the words “licensed design professional,” insert the following:

who shall comply with reasonable requirements of the Owner regarding qualifications and insurance and

3.28 In Section 3.13, insert the section number “3.13.1” before the before the opening words “The Contractors shall.”

3.29 Add the following Sections 3.13.2 and 3.13.3:

3.13.2 Protection of construction materials and equipment stored at the Project site from weather, theft, vandalism, damage, and all other adversity is solely the responsibility of the Contractor. The Contractor shall perform the work in a manner that affords reasonable access, both vehicular and pedestrian, to the site of the Work and all adjacent areas. The Work shall be performed, to the fullest extent reasonably possible, in such a manner that public areas adjacent to the site of the Work shall be free from all debris, building materials, and equipment likely to cause hazardous conditions.

3.13.3 The Contractor and any entity for which the Contractor is responsible shall not erect any sign on the Project site without the prior written consent of the Owner.

3.30 In the first sentence of Section 3.18.1, after the parenthetical “…(other than the Work itself),…” and before the word “…but…”, insert the following:

including loss of use resulting therefrom,

3.31 Delete Section 4.1.1 and substitute the following:

4.1.1 The Architect is that person or entity identified as the Architect in the Agreement and is referred to throughout the Contract Documents as if singular in number.

3.32 Insert the following at the end of Section 4.2.1:

Any reference in the Contract Documents to the Architect taking action or rendering a decision with a “reasonable time” is understood to mean no more than fourteen days, unless otherwise specified in the Contract Documents or otherwise agreed to by the parties.

3.33 Delete the first sentence of Section 4.2.2 and substitute the following:

The Architect will visit the site as necessary to fulfill its obligation to the Owner for inspection services, if any, and, at a minimum, to assure conformance with the Architect’s design as shown in the Contract Documents and to observe the progress and quality of the various components of the Contractor’s Work, and to determine if the Work observed is being performed in a manner indicating that the Work, when fully completed, will be in accordance with the Contract Documents.

3.34 Delete the first sentence of Section 4.2.3 and substitute the following:

On the basis of the site visits, the Architect will keep the Owner informed about the progress and quality of the portion of the Work completed, and report to the Owner (1) deviations from the Contract Documents and from the most recent construction schedule submitted by the Contractor, and (2) defects and deficiencies observed in the Work.

3.35 In Section 4.2.5, after the words “evaluations of the” and before the word “Contractor’s,” insert the following:

Work completed and correlated with the

3.36 Delete the first sentence of Section 4.2.11 and substitute the following:

4.2.11 The Architect will, in the first instance, interpret and decide matters concerning performance under, and requirements of, the Contract Documents on written request of either the Owner or Contractor. Upon receipt of such request, the Architect will promptly provide the non-requesting party with a copy of the request.
3.37 Insert the following at the end of Section 4.2.12:
If either party disputes the Architect’s interpretation or decision, that party may proceed as provided in Article 15. The Architect’s interpretations and decisions may be, but need not be, accorded any deference in any review conducted pursuant to law or the Contract Documents.

3.38 Delete Section 4.2.14 and substitute the following:
The Architect will review and respond to requests for information about the Contract Documents so as to avoid delay to the construction of the Project. The Architect’s response to such requests will be made in writing with reasonable promptness. If appropriate, the Architect will prepare and issue supplemental Drawings and Specifications in response to the requests for information. Any response to a request for information must be consistent with the intent of, and reasonably inferable from, the Contract Documents and will be in writing or in the form of drawings. Unless issued pursuant to a Modification, supplemental Drawings or Specifications will not involve an adjustment to the Contract Sum or Contract Time.

3.39 Delete Section 5.2.1 and substitute the following:

5.2.1 Unless otherwise stated in the Contract Documents or the bidding requirements, the Contractor, within fourteen days after posting of the Notice of Intent to Award the Contract, shall furnish in writing to the Owner through the Architect the names of persons or entities (excluding Listed Subcontractors but including those who are to furnish materials or equipment fabricated to a special design) proposed for each principal portion of the Work. The Owner may reply within 14 days to the Contractor in writing stating (1) whether the Owner has reasonable objection to any such proposed person or entity. Failure of the Owner to reply within the 14 day period shall constitute notice of no reasonable objection.

3.40 Delete Section 5.2.2 and substitute the following:

5.2.2 The Contractor shall not contract with a proposed person or entity to whom the Owner has made reasonable and timely objection. The Owner shall not direct the Contractor to contract with any specific individual or entity for supplies or services unless such supplies and services are necessary for completion of the Work and the specified individual or entity is the only source of such supply or services.

3.41 In the first sentence of Section 5.2.3, delete the words “…or Architect…” in the two places they appear.

3.42 Delete the words “…or Architect…” in the in the first sentence of Section 5.2.4 and insert the following sentence at the end of Section 5.2.4:
The Contractor’s request for substitution must be made to the Owner in writing accompanied by supporting information.

3.43 Add the following Section 5.2.5:

5.2.5 A Subcontractor identified in the Contractor’s Bid in response the specialty subcontractor listing requirements of Section 7 of the Bid Form (SE-330) may only be substituted in accordance with and as permitted by the provisions of Title 11, Chapter 35, Section 3021 of the South Carolina Code of Laws, as amended. A proposed substitute for a Listed Subcontractor shall be subject to the Owner’s approval as set forth is Section 5.2.3.

3.44 Add the following Section 5.2.6:

5.2.6 The Iran Divestment Act List is a list published by the Board pursuant to Section 11-57-310 that identifies persons engaged in investment activities in Iran. Currently, the list is available at the following URL: http://procurement.sc.gov/PS/PS-iran-divestment.htm(. Consistent with Section 11-57-330(B), the Contractor shall not contract with any person to perform a part of the Work, if, at the time you enter into the subcontract, that person is on the then-current version of the Iran Divestment Act List.

3.45 In Section 5.3, delete everything following the heading “SUBCONTRACTUAL RELATIONS” and insert the following Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4:

5.3.1 By appropriate written agreement, the Contractor shall require each Subcontractor, to the extent of the Work to be performed by the Subcontractor, to be bound to the Contractor by terms of the Contract Documents, and to assume toward the Contractor all the obligations and responsibilities, including the responsibility for safety of the Subcontractor’s Work, which the Contractor, by these Documents, assumes toward the Owner and Architect. Each subcontract agreement shall preserve and protect the rights of the Owner and Architect under the Contract Documents with respect to the Work to be performed by the Subcontractor so that subcontracting thereof will not prejudice such rights, and shall allow to the Subcontractor, unless specifically provided otherwise herein or in the subcontract agreement, the benefit of all rights, remedies and redress against the Contractor that the Contractor, by the Contract
Documents, has against the Owner. Where appropriate, the Contractor shall require each Subcontractor to enter into similar agreements with Sub-subcontractors. The Contractor shall make available to each proposed Subcontractor, prior to the execution of the subcontract agreement, copies of the Contract Documents to which the Subcontractor will be bound, and, upon written request of the Subcontractor, identify to the Subcontractor terms and conditions of the proposed subcontract agreement that may be at variance with the Contract Documents. Subcontractors will similarly make copies of applicable portions of such documents available to their respective proposed Sub-subcontractors.

5.3.2 Without limitation on the generality of Section 5.3.1, each Subcontract agreement and each Sub-subcontract agreement shall include, and shall be deemed to include, the following Sections of these General Conditions: 3.2, 3.5, 3.18, 5.3, 5.4, 6.2.2, 7.3.3, 7.5, 7.6, 13.1, 13.12, 14.3, 14.4, and 15.1.6.

5.3.3 Each Subcontract Agreement and each Sub-subcontract agreement shall exclude, and shall be deemed to exclude, Sections 13.2.1 and 13.6 and all of Article 15, except Section 15.1.6, of these General Conditions. In the place of these excluded sections of the General Conditions, each Subcontract Agreement and each Sub-subcontract may include Sections 13.2.1 and 13.6 and all of Article 15, except Section 15.1.6, of AIA Document A201-2007, Conditions of the Contract, as originally issued by the American Institute of Architects.

5.3.4 The Contractor shall assure the Owner that all agreements between the Contractor and its Subcontractor incorporate the provisions of Subparagraph 5.3.1 as necessary to preserve and protect the rights of the Owner and the Architect under the Contract Documents with respect to the work to be performed by Subcontractors so that the subcontracting thereof will not prejudice such rights. The Contractor’s assurance shall be in the form of an affidavit or in such other form as the Owner may approve. Upon request, the Contractor shall provide the Owner or Architect with copies of any or all subcontracts or purchase orders.

3.46 Delete the last sentence of Section 5.4.1.

3.47 Add the following Sections 5.4.4, 5.4.5 and 5.4.6:

5.4.4 Each subcontract shall specifically provide that the Owner shall only be responsible to the subcontractor for those obligations of the Contractor that accrue subsequent to the Owner’s exercise of any rights under this conditional assignment.

5.4.5 Each subcontract shall specifically provide that the Subcontractor agrees to perform portions of the Work assigned to the Owner in accordance with the Contract Documents.

5.4.6 Nothing in this Section 5.4 shall act to reduce or discharge the Contractor’s payment bond surety’s obligations to claimants for claims arising prior to the Owner’s exercise of any rights under this conditional assignment.

3.48 Delete the language of Section 6.1.4 and substitute the word “Reserved.”

3.49 Insert the following at the end of Section 7.1.2:

If the amount of a Modification exceeds the limits of the Owner’s Construction Change Order Certification (reference Section 9.1.7.2 of the Agreement), then the Owner’s agreement is not effective, and Work may not proceed, until approved in writing by the Office of State Engineer.

3.50 Delete Section 7.2.1 and substitute the following:

7.2.1 A Change Order is a written instrument prepared by the Architect (using State Form SE-480 “Construction Change Order”) and signed by the Owner, Contractor and Architect stating their agreement upon all of the following:

1. The change in the Work;
2. The amount of the adjustment, if any, in the Contract Sum; and
3. The extent of the adjustment, if any, in the Contract Time.

3.51 Add the following Sections 7.2.2, 7.2.3, 7.2.4, and 7.2.5:

7.2.2 If a Change Order provides for an adjustment to the Contract Sum, the adjustment must be calculated in accordance with Section 7.3.3.

7.2.3 At the Owner’s request, the Contractor shall prepare a proposal to perform the work of a proposed Change Order setting forth the amount of the proposed adjustment, if any, in the Contract Sum; and the extent of the proposed adjustment, if any, in the Contract Time. Any proposed adjustment in the Contract sum shall be prepared in accordance with Section 7.2.2. The Owner’s request shall include any revisions to the Drawings or Specifications necessary to define any changes in the Work. Within fifteen days of receiving the request, the Contractor shall submit the proposal to the Owner and Architect along with all documentation required by Section 7.6.
7.2.4 If the Contractor requests a Change Order, the request shall set forth the proposed change in the Work and shall be prepared in accordance with Section 7.2.3. If the Contractor requests a change to the Work that involves a revision to either the Drawings or Specifications, the Contractor shall reimburse the Owner for any expenditure associated with the Architects’ review of the proposed revisions, except to the extent the revisions are accepted by execution of a Change Order.

7.2.5 Agreement on any Change Order shall constitute a final settlement of all matters relating to the change in the Work that is the subject of the Change Order, including, but not limited to, any adjustments to the Contract Sum or the Contract Time.

3.52 Delete 7.3.3 and substitute the following:

7.3.3 PRICE ADJUSTMENTS

7.3.3.1 If any Modification, including a Construction Change Directive, provides for an adjustment to the Contract Sum, the adjustment shall be based on whichever of the following methods is the most valid approximation of the actual cost to the contractor, with overhead and profit as allowed by Section 7.5:

1. Mutual acceptance of a lump sum;
2. Unit prices stated in the Contract Documents, except as provided in Section 7.3.4, or subsequently agreed upon;
3. Cost attributable to the events or situations under applicable clauses with adjustment of profits or fee, all as specified in the contract, or subsequently agreed upon by the parties, or by some other method as the parties may agree; or
4. As provided in Section 7.3.7.

7.3.3.2 Consistent with Section 7.6, costs must be properly itemized and supported by substantiating data sufficient to permit evaluation before commencement of the pertinent performance or as soon after that as practicable. All costs incurred by the Contractor must be justifiably compared with prevailing industry standards. Except as provided in Section 7.5, all adjustments to the Contract Price shall be limited to job specific costs and shall not include indirect costs, overhead, home office overhead, or profit.

3.53 Delete Section 7.3.7 and substitute the following:

7.3.7 If the Contractor does not respond promptly or disagrees with the method for adjustment in the Contract Sum, the Architect shall make an initial determination, consistent with Section 7.3.3, of the method and the adjustment on the basis of reasonable expenditures and savings of those performing the Work attributable to the change, including, in case of an increase in the Contract Sum, an amount for overhead and profit as set forth in Section 7.5. In such case, and also under Section 7.3.3.1.3, the Contractor shall keep and present, in such form as the Architect may prescribe, an itemized accounting together with appropriate supporting data. Unless otherwise provided in the Contract Documents, costs for the purposes of this Section 7.3.7 shall be limited to the following:

1. Costs of labor, including social security, old age and unemployment insurance, fringe benefits required by agreement or custom, and workers’ compensation insurance;
2. Costs of materials, supplies and equipment, including cost of transportation, whether incorporated or consumed;
3. Rental costs of machinery and equipment, exclusive of hand tools, whether rented from the Contractor or others; and
4. Costs of premiums for all bonds and insurance, permit fees, and sales, use or similar taxes related to the Work.

3.54 Delete Section 7.3.8 and substitute the following:

7.3.8 Using the percentages stated in Section 7.5, any adjustment to the Contract Sum for deleted work shall include any overhead and profit attributable to the cost for the deleted Work.

3.55 Add the following Sections 7.5 and 7.6:

7.5 AGREED OVERHEAD AND PROFIT RATES

7.5.1 For any adjustment to the Contract Sum for which overhead and profit may be recovered, other than those made pursuant to Unit Prices stated in the Contract Documents, the Contractor agrees to charge and accept, as full payment for overhead and profit, the following percentages of costs attributable to the change in the Work. The percentages cited below shall be considered to include all indirect costs including, but not limited to: field and office managers, supervisors and assistants, incidental job burdens, small tools, and general overhead allocations. The allowable percentages for overhead and profit are as follows:
.1 To the Contractor for work performed by the Contractor’s own forces, 17% of the Contractor’s actual costs.

.2 To each Subcontractor for work performed by the Subcontractor’s own forces, 17% of the subcontractor’s actual costs.

.3 To the Contractor for work performed by a subcontractor, 10% of the subcontractor’s actual costs (not including the subcontractor’s overhead and profit).

7.6 PRICING DATA AND AUDIT

7.6.1 Cost or Pricing Data.

 Upon request of the Owner or Architect, Contractor shall submit cost or pricing data prior to execution of a Modification which exceeds $500,000. Contractor shall certify that, to the best of its knowledge and belief, the cost or pricing data submitted is accurate, complete, and current as of a mutually determined specified date prior to the date of pricing the Modification. Contractor’s price, including profit, shall be adjusted to exclude any significant sums by which such price was increased because Contractor furnished cost or pricing data that was inaccurate, incomplete, or not current as of the date specified by the parties. Notwithstanding Subparagraph 9.10.4, such adjustments may be made after final payment to the Contractor.

7.6.2 Cost or pricing data means all facts that, as of the date specified by the parties, prudent buyers and sellers would reasonably expect to affect price negotiations significantly. Cost or pricing data are factual, not judgmental; and are verifiable. While they do not indicate the accuracy of the prospective contractor's judgment about estimated future costs or projections, they do include the data forming the basis for that judgment. Cost or pricing data are more than historical accounting data; they are all the facts that can be reasonably expected to contribute to the soundness of estimates of future costs and to the validity of determinations of costs already incurred.

7.6.3 Records Retention.

 As used in Section 7.6, the term "records" means any books or records that relate to cost or pricing data that Contractor is required to submit pursuant to Section 7.6.1. Contractor shall maintain records for three years from the date of final payment, or longer if requested by the chief procurement officer. The Owner may audit Contractor’s records at reasonable times and places.

3.56 Delete Section 8.2.2 and substitute the following:

8.2.2 The Contractor shall not knowingly commence operations on the site or elsewhere prior to the effective date of surety bonds and insurance required by Article 11 to be furnished by the Contractor and Owner. The date of commencement of the Work shall not be changed by the effective date of such surety bonds or insurance.

3.57 Delete Section 8.3.1 and substitute the following:

8.3.1 If the Contractor is delayed at any time in the commencement or progress of the Work by an act or neglect of the Owner or Architect, or of an employee of either, or of a separate contractor employed by the Owner; or by changes ordered in the Work; or by labor disputes, fire, unusual delay in deliveries, unavoidable casualties or other causes beyond the control of the Contractor and any subcontractor at any tier; or by delay authorized by the Owner pending dispute resolution; or by other causes that the Architect determines may justify delay, then to the extent such delay will prevent the Contractor from achieving Substantial Completion within the Contract Time and provided the delay (1) is not caused by the fault or negligence of the Contractor or a subcontractor at any tier and (2) is not due to unusual delay in the delivery of supplies, machinery, equipment, or services when such supplies, machinery, equipment, or services were obtainable from other sources in sufficient time for the Contractor to meet the required delivery, the Contract Time shall be extended by Change Order for such reasonable time as the Architect may determine.

3.58 Insert the following at the end of Section 9.1:

All changes to the Contract Sum shall be adjusted in accordance with Section 7.3.3.

3.59 Delete Section 9.2 and substitute the following:

9.2 SCHEDULE OF VALUES

9.2.1 The Contractor shall submit to the Architect, within ten days of full execution of the Agreement, a schedule of values allocating the entire Contract Sum to the various portions of the Work and prepared in such form and supported by such data to substantiate its accuracy as the Architect may require. This schedule, unless objected to by the Architect, shall be used as a basis for reviewing the Contractor’s Applications for Payment. As requested by the Architect, the Contractor and each Subcontractor shall prepare a trade payment breakdown for the Work for which each is responsible, such breakdown being submitted on a uniform standardized format approved by the Architect and Owner. The breakdown shall be divided in detail, using convenient units, sufficient to accurately determine the value
of completed Work during the course of the Project. The Contractor shall update the schedule of values as required by either the Architect or Owner as necessary to reflect:

 .1 the description of Work (listing labor and material separately);
 .2 the total value;
 .3 the percent and value of the Work completed to date;
 .4 the percent and value of previous amounts billed; and
 .5 the current percent completed and amount billed.

9.2.2 Any schedule of values or trade breakdown that fails to include sufficient detail, is unbalanced, or exhibits "front-loading" of the value of the Work shall be rejected. If a schedule of values or trade breakdown is used as the basis for payment and later determined to be inaccurate, sufficient funds shall be withheld from future Applications for Payment to ensure an adequate reserve (exclusive of normal retainage) to complete the Work.

3.60 Delete Section 9.3.1 and substitute the following:

 Monthly, the Contractor shall submit to the Architect an itemized Application for Payment prepared in accordance with the schedule of values, if required under Section 9.2., for completed portions of the Work. Such application shall be notarized, if required, and supported by such data substantiating the Contractor’s right to payment as the Owner or Architect may require (such as copies of requisitions from Subcontractors and material suppliers) and shall reflect retainage and any other adjustments provided in Section 5 of the Agreement. If required by the Owner or Architect, the Application for Payment shall be accompanied by a current construction schedule.

3.61 In Section 9.3.2, add the following words to the end of the second sentence:

 provided such materials or equipment will be subsequently incorporated in the Work

 Insert the following at the end of Section 9.3.2:

 The Contractor shall 1) protect such materials from diversion, vandalism, theft, destruction, and damage, 2) mark such materials specifically for use on the Project, and 3) segregate such materials from other materials at the storage facility. The Architect and the Owner shall have the right to make inspections of the storage areas at any time.

3.62 In Section 9.4.2, in the first sentence, after the words “Work has progressed to the point indicated,” insert the following:

 in both the Application for Payment and, if required to be submitted by the Contractor, the accompanying current construction schedule

 In the last sentence, delete the third item starting with “(3) reviewed copies” and ending with “Contractor’s right to payment,”

3.63 In Section 9.5.1, in the first sentence, delete the word “may” after the opening words “The Architect” and substitute the word “shall.”

 In Section 9.5.1, insert the following sentence after the first sentence:

 The Architect shall withhold a Certificate of Payment if the Application for Payment is not accompanied by the current construction schedule required by Section 3.10.1.

3.64 In Section 9.6.2, delete the word “The…” at the beginning of the first sentence and substitute the following:

 Pursuant to Chapter 6 of Title 29 of the South Carolina Code of Laws, as amended, the

3.65 Delete Section 9.7 and substitute following:

 9.7 FAILURE OF PAYMENT

 If the Architect does not issue a Certificate for Payment to the Owner, through no fault of the Contractor, within seven days after receipt of the Contractor’s Application for Payment, or if the Owner does not pay the Contractor within seven days after the time established in the Contract Documents the amount certified by the Architect or awarded by a final dispute resolution order, then the Contractor may, upon seven additional days’ written notice to the Owner and Architect, stop the Work until payment of the amount owing has been received. The Contract Time shall be extended appropriately and the Contract Sum shall be increased, in accordance with the provisions of Section 7.3.3, by the amount of the Contractor’s reasonable costs of shut-down, delay and start-up, plus interest as provided for in the Contract Documents.

3.66 Insert the following words at the end of the sentence in Section 9.8.1:

 and when all required occupancy permits, if any, have been issued and copies have been delivered to the Owner.
In Section 9.8.2, insert the word “written” after the word “comprehensive” and before the word “list.”

Delete Section 9.8.3 and substitute the following:

9.8.3.1 Upon receipt of the Contractor’s list, the Architect, with the Owner and any other person the Architect or the Owner choose, will make an inspection on a date and at a time mutually agreeable to the Architect, Owner, and Contractor, to determine whether the Work or designated portion thereof is substantially complete. The Contractor shall furnish access for the inspection and testing as provided in this Contract. The inspection shall include a demonstration by the Contractor that all equipment, systems and operable components of the Work function properly and in accordance with the Contract Documents. If the Architect’s inspection discloses any item, whether or not included on the Contractor’s list, which is not sufficiently complete in accordance with the Contract Documents so that the Owner can occupy or utilize the Work or designated portion thereof for its intended use, the Contractor shall, before issuance of the Certificate of Substantial Completion, complete or correct such item upon notification by the Architect. In such case, the Contractor shall then submit a request for another inspection by the Architect to determine Substantial Completion. If more than one Substantial Completion inspection is required, the Contractor shall reimburse the Owner for all costs of re-inspections or, at the Owner’s option, the costs may be deducted from payments due to the Contractor.

9.8.3.2 If the Architect and Owner concur in the Contractor’s assessment that the Work or a portion of the Work is safe to occupy, the Owner and Contractor may arrange for a Certificate of Occupancy Inspection by OSE. The Owner, Architect, and Contractor shall be present at OSE’s inspection. Upon verifying that the Work or a portion of the Work is substantially complete and safe to occupy, OSE will issue, as appropriate, a Full or Partial Certificate of Occupancy.

In the second sentence of Section 9.8.5, delete the words “and consent of surety, if any.”

In the first sentence of Section 9.9.1, delete the words “Section 11.3.1.5” and substitute the words “Section 11.3.1.3.”

Delete Section 9.10.1 and substitute the following:

9.10.1 Unless the parties agree otherwise in the Certificate of Substantial Completion, the Contractor shall achieve Final Completion no later than thirty days after Substantial Completion. Upon receipt of the Contractor’s written notice that the Work is ready for final inspection and acceptance and upon receipt of a final Application for Payment, the Architect, with the Owner and any other person the Architect or the Owner choose, will make an inspection on a date and at a time mutually agreeable to the Architect, Owner, and Contractor, and, when the Architect finds the Work acceptable under the Contract Documents and the Contract fully performed, the Architect will promptly issue a final Certificate for Payment stating that to the best of the Architect’s knowledge, information and belief, and on the basis of the Architect’s on-site visits and inspections, the Work has been completed in accordance with terms and conditions of the Contract Documents and that the entire balance found to be due the Contractor and noted in the final Certificate is due and payable. The Architect’s final Certificate for Payment will constitute a further representation that conditions listed in Section 9.10.2 as precedent to the Contractor’s being entitled to final payment have been fulfilled. If more than one Final Completion inspection is required, the Contractor shall reimburse the Owner for all costs of re-inspections or, at the Owner’s option, the costs may be deducted from payments due to the Contractor. If the Contractor does not achieve final completion within thirty days after Substantial Completion or the timeframe agreed to by the parties in the Certificate of Substantial Completion, whichever is greater, the Contractor shall be responsible for any additional Architectural fees resulting from the delay.

Delete the first sentence of Section 9.10.2 and substitute the following:

Neither final payment nor any remaining retained percentage shall become due until the Contractor submits to the Architect (1) an affidavit that payrolls, bills for materials and equipment, and other indebtedness connected with the Work for which the Owner or the Owner’s property might be responsible or encumbered (less amounts withheld by Owner) have been paid or otherwise satisfied, (2) a certificate evidencing that insurance required by the Contract Documents to remain in force after final payment is currently in effect and will not be canceled or allowed to expire until at least 30 days’ prior written notice has been given to the Owner, (3) a written statement that the Contractor knows of no substantial reason that the insurance will not be renewable to cover the period required by the Contract Documents, (4) consent of surety, if any, to final payment (5), if required by the Owner, other data establishing payment or satisfaction of obligations, such as receipts, releases and waivers of liens, claims, security interests or encumbrances arising out of the Contract, to the extent and in such form as may be designated by the Owner, (6) required Training Manuals, (7) equipment Operations and Maintenance Manuals, (8) any certificates of testing, inspection or approval required by the Contract Documents and not previously provided (9) all warranties and guarantees required under or pursuant to the Contract Documents, and (10) one copy of the Documents required by Section 3.11.
3.73 Delete the first sentence of Section 9.10.3 and substitute the following:
If, after Substantial Completion of the Work, final completion thereof is delayed 60 days through no fault of the Contractor or by issuance of Change Orders affecting final completion, and the Architect so confirms, the Owner shall, upon application by the Contractor and certification by the Architect, and without terminating the Contract, make payment of the balance due for that portion of the Work fully completed and accepted.

3.74 Delete Section 9.10.5 and substitute the following:

9.10.5 Acceptance of final payment by the Contractor, a Subcontractor or material supplier shall constitute a waiver of claims by that payee except those specific claims in stated amounts that have been previously made in writing and identified by that payee as unsettled at the time of final Application for Payment.

3.75 Add the following Section 9.10.6:

9.10.6 If OSE has not previously issued a Certificate of Occupancy for the entire Project, the Parties shall arrange for a representative of OSE to participate in the Final Completion Inspection. Representatives of the State Fire Marshal’s Office and other authorities having jurisdiction may be present at the Final Completion Inspection or otherwise inspect the completed Work and advise the Owner whether the Work meets their respective requirements for the Project.

3.76 Delete Section 10.3.1 and substitute the following:

10.3.1 If the Contractor encounters a hazardous material or substance which was not discoverable as provided in Section 3.2.1 and not required by the Contract Documents, and if reasonable precautions will be inadequate to prevent foreseeable bodily injury or death to persons or serious loss to real or personal property resulting from such material or substance encountered on the site by the Contractor, the Contractor shall, upon recognizing the condition, immediately stop Work in the affected area and report the condition to the Owner and Architect in writing. Hazardous materials or substances are those hazardous, toxic, or radioactive materials or substances subject to regulations by applicable governmental authorities having jurisdiction, such as, but not limited to, the S.C. Department of Health and Environmental Control, the U.S. Environmental Protection Agency, and the U.S. Nuclear Regulatory Commission.

3.77 Insert the following at the end of Section 10.3.2:
In the absence of agreement, the Architect will make an interim determination regarding any delay or impact on the Contractor’s additional costs. The Architect’s interim determination of cost shall adjust the Contract Sum on the same basis as a Change Order, subject to the right of either party to disagree and assert a Claim in accordance with Article 15. Any adjustment in the Contract Sum shall be determined in accordance with Section 7.3.3.

3.78 Delete Section 10.3.3 and substitute the following:

10.3.3 The Work in the affected area shall be resumed immediately following the occurrence of any one of the following events: (a) the Owner causes remedial work to be performed that results in the absence of hazardous materials or substances; (b) the Owner and the Contractor, by written agreement, decide to resume performance of the Work; or (c) the Work may safely and lawfully proceed, as determined by an appropriate governmental authority or as evidenced by a written report to both the Owner and the Contractor, which is prepared by an environmental engineer reasonably satisfactory to both the Owner and the Contractor.

3.79 In Section 10.3.5, delete the word “The” at the beginning of the sentence and substitute the following:
In addition to its obligations under Section 3.18, the

3.80 Delete the language of Section 10.3.6 and substitute the word “Reserved.”

3.81 Insert the following at the end of Section 10.4:

The Contractor shall immediately give the Architect notice of the emergency. This initial notice may be oral followed within five days by a written notice setting forth the nature and scope of the emergency. Within fourteen days of the start of the emergency, the Contractor shall give the Architect a written estimate of the cost and probable effect of delay on the progress of the Work.

3.82 Delete 11.1.2 and substitute the following:

11.1.2 The insurance required by Section 11.1.1 shall be written for not less than limits of liability specified below or required by law, whichever coverage is greater. Coverages shall be written on an occurrence basis and shall be maintained without interruption from the date of commencement of the Work until the date of final payment and termination of any coverage required to be maintained after final payment, and, with respect to the Contractor’s completed operations coverage, until the expiration of the period for correction of Work or for such other period for maintenance of completed operations coverage as specified in the Contract Documents.
In lieu of separate insurance policies for Commercial General Liability, Business Auto Liability, and Employers Liability, the Contractor may provide an umbrella policy meeting or exceeding all coverage requirements set forth in this Section 11.1.2. The umbrella policy limits shall not be less than $3,000,000.

3.83 Delete Section 11.1.3 and substitute the following:

11.1.3 Prior to commencement of the Work, and thereafter upon replacement of each required policy of insurance, Contractor shall provide to the Owner a written endorsement to the Contractor’s general liability insurance policy that:

(i) names the Owner as an additional insureds for claims caused in whole or in part by the Contractor’s negligent acts or omissions during the Contractor’s operations;

(ii) provides that no material alteration, cancellation, non-renewal, or expiration of the coverage contained in such policy shall have effect unless all additional insureds have been given at least ten (10) days prior written notice of cancellation for non-payment of premiums and thirty (30) days prior written notice of cancellation for any other reason; and

(iii) provides that the Contractor’s liability insurance policy shall be primary, with any liability insurance of the Owner as secondary and noncontributory.

Prior to commencement of the Work, and thereafter upon renewal or replacement of each required policy of insurance, Contractor shall provide to the Owner a signed, original certificate of liability insurance (ACORD 25). Consistent with this Section 11.1, the certificate shall identify the types of insurance, state the limits of liability for each type of coverage, name the Owner a Consultants as Certificate Holder, provide that the general aggregate limit applies per project, and provide that coverage is written on an occurrence basis. Both the certificates and the endorsements must be received directly from either the Contractor's insurance agent or the insurance company. An additional certificate evidencing continuation of liability coverage, including coverage for completed operations, naming the Owner as an additional insured for claims made under the Contractor’s completed operations, and otherwise meeting the above requirements, shall be submitted with the final Application for Payment as required by Section 9.10.2 and thereafter upon renewal or replacement of such coverage until the expiration of the time required by Section 11.1.2. Information concerning reduction of coverage on account of revised limits or claims paid under the General Aggregate, or both, shall be furnished by the Contractor with reasonable promptness.

3.84 Delete Section 11.1.4 and substitute the following:

11.1.4 A failure by the Owner either (i) to demand a certificate of insurance or written endorsement required by Section 11.1, or (ii) to reject a certificate or endorsement on the grounds that it fails to comply with Section 11.1 shall not be considered a waiver of Contractor's obligations to obtain the required insurance.

3.85 In Section 11.3.1, delete the first sentence and substitute the following:

Unless otherwise provided in the Contract Documents, the Contractor shall purchase and maintain, in a company or companies lawfully authorized to do business in the jurisdiction in which the Project is located, property insurance written on a builder’s risk “all-risk” or equivalent policy form in the amount of the initial Contract Sum, plus value of subsequent Contract Modifications and cost of materials supplied or installed by others, comprising total value for the entire Project at the site on a replacement cost basis.

3.86 Delete the language of Section 11.3.1.2 and substitute the word “Reserved.”

3.87 Delete the language of Section 11.3.1.3 and substitute the word “Reserved.”
3.88 Delete Section 11.3.2 and substitute the following:

11.3.2 BOILER AND MACHINERY INSURANCE
The Contractor shall purchase and maintain boiler and machinery insurance required by the Contract Documents or by law, which shall specifically cover such insured objects during installation and until final acceptance by the Owner; this insurance shall include interests of the Owner, Contractor, Subcontractors and Sub-subcontractors in the Work, and the Owner and Contractor shall both be named insureds.

3.89 Delete Section 11.3.3 and substitute the following:

11.3.3 LOSS OF USE INSURANCE
The Owner, at the Owner’s option, may purchase and maintain such insurance as will insure the Owner against loss of use of the Owner’s property due to fire or other hazards, however caused. To the extent any losses are covered and paid for by such insurance, the Owner waives all rights of action against the Contractor for loss of use of the Owner’s property, including consequential losses due to fire or other hazards however caused.

3.90 Delete Section 11.3.4 and substitute the following:

11.3.4
If the Owner requests in writing that insurance for risks other than those described herein or other special causes of loss be included in the property insurance policy, the Contractor shall, if possible, include such insurance, and the cost thereof shall be charged to the Owner by appropriate Change Order.

3.91 Delete the language of Section 11.3.5 and substitute the word “Reserved.”

3.92 Delete Section 11.3.6 and substitute the following:

11.3.6
Before an exposure to loss may occur, the Contractor shall file with the Owner a copy of each policy that includes insurance coverages required by this Section 11.3. Each policy shall contain all generally applicable conditions, definitions, exclusions and endorsements related to this Project. Each policy shall contain a provision that the policy will not be canceled or allowed to expire, and that its limits will not be reduced, until at least 30 days’ prior written notice has been given to the Owner.

3.93 Delete the first sentence of Section 11.3.7 and substitute the following:

The Owner and Contractor waive all rights against (1) each other and any of their subcontractors, sub-subcontractors, agents and employees, each of the other, and (2) the Architect, Architect’s consultants, separate contractors described in Article 6, if any, and any of their subcontractors, sub-subcontractors, agents and employees, for damages caused by fire or other causes of loss to the extent the property insurance provided by the Contractor pursuant to this Section 11.3 covers and pays for the damage, except such rights as they have to proceeds of such insurance held by the Contractor as fiduciary.

3.94 Delete the first sentence of Section 11.3.8 and substitute the following:

A loss insured under the Contractor’s property insurance shall be adjusted by the Contractor as fiduciary and made payable to the Contractor as fiduciary for the insureds, as their interests may appear, subject to requirements of any applicable mortgagee clause and of Section 11.3.10.

3.95 Delete Section 11.3.9 and substitute the following:

11.3.9
If required in writing by a party in interest, the Contractor as fiduciary shall, upon occurrence of an insured loss, give bond for proper performance of the Contractor’s duties. The cost of required bonds shall be charged against proceeds received as fiduciary. The Contractor shall deposit in a separate account proceeds so received, which the Contractor shall distribute in accordance with such agreement as the parties in interest may reach. If after such loss no other special agreement is made and unless the Owner terminates the Contract for convenience, replacement of damaged property shall be performed by the Contractor.

3.96 Delete Section 11.3.10 and substitute the following:

11.3.10
The Contractor as fiduciary shall have power to adjust and settle a loss with insurers unless one of the parties in interest shall object in writing within five days after occurrence of loss to the Contractor’s exercise of this power; if such objection is made, the dispute shall be resolved in the manner provided in the contract between the parties in dispute as the method of binding dispute resolution. The Contractor as fiduciary shall make settlement with insurers or, in the case of a dispute over distribution of insurance proceeds, in accordance with a final order or determination issued by the appropriate authority having jurisdiction over the dispute.
3.97 Delete Section 11.4.1 and substitute the following:

11.4.1 Before commencing any services hereunder, the Contractor shall provide the Owner with Performance and Payment Bonds, each in an amount not less than the Contract Price set forth in Article 4 of the Agreement. The Surety shall have, at a minimum, a "Best Rating" of "A" as stated in the most current publication of "Best's Key Rating Guide, Property-Casualty". In addition, the Surety shall have a minimum "Best Financial Strength Category" of "Class V", and in no case less than five (5) times the contract amount. The Performance Bond shall be written on Form SE-355, "Performance Bond" and the Payment Bond shall written on Form SE-357, "Labor and Material Payment Bond", and both shall be made payable to the Owner.

3.98 Delete Section 11.4.2 and substitute the following:

11.4.2 The Performance and Labor and Material Payment Bonds shall:

.1 be issued by a surety company licensed to do business in South Carolina;
.2 be accompanied by a current power of attorney and certified by the attorney-in-fact who executes the bond on the behalf of the surety company; and
.3 remain in effect for a period not less than one (1) year following the date of Substantial Completion or the time required to resolve any items of incomplete Work and the payment of any disputed amounts, whichever time period is longer.

3.99 Add the following Sections 11.4.3 and 11.4.4:

11.4.3 Any bonds required by this Contract shall meet the requirements of the South Carolina Code of Laws and Regulations, as amended.

11.4.4 Upon the request of any person or entity appearing to be a potential beneficiary of bonds covering payment of obligations arising under the Contract, the Contractor shall promptly furnish a copy of the bonds or shall authorize a copy to be furnished.

3.100 Delete Section 12.1.1 and substitute the following:

12.1.1 If a portion of the Work is covered contrary to the to requirements specifically expressed in the Contract Documents, including inspections of work-in-progress required by all authorities having jurisdiction over the Project, it must, upon demand of the Architect or authority having jurisdiction, be uncovered for observation and be replaced at the Contractor’s expense without change in the Contract Time.

3.101 In Section 12.2.2.1, delete the words “and to make a claim for breach of warranty” at the end of the third sentence.

3.102 In Section 12.2.2.3, add the following to the end of the sentence:

unless otherwise provided in the Contract Documents.

3.103 Insert the following at the end of Section 12.2.4:

If, prior to the date of Substantial Completion, the Contractor, a Subcontractor, or anyone for whom either is responsible, uses or damages any portion of the Work, including, without limitation, mechanical, electrical, plumbing, and other building systems, machinery, equipment, or other mechanical device, the Contractor shall cause such item to be restored to "like new" condition at no expense to the Owner.

3.104 Delete Section 13.1 and substitute the following:

13.1 GOVERNING LAW
The Contract, any dispute, claim, or controversy relating to the Contract, and all the rights and obligations of the parties shall, in all respects, be interpreted, construed, enforced and governed by and under the laws of the State of South Carolina, except its choice of law rules.

3.105 Delete Section 13.2, including its Sub-Sections 13.2.1 and 13.2.2, and substitute the following:

13.2 SUCCESSORS AND ASSIGNS
The Owner and Contractor respectively bind themselves, their partners, successors, assigns and legal representatives to covenants, agreements and obligations contained in the Contract Documents. Neither party to the Contract shall assign the Contract as a whole, or in part, without written consent of the other and then only in accordance with and as permitted by Regulation 19-445.2180 of the South Carolina Code of Regulations, as amended. If either party attempts to make such an assignment without such consent, that party shall nevertheless remain legally responsible for all obligations under the Contract.
3.106 **Delete Section 13.3 and substitute the following:**

13.3 WRITTEN NOTICE

Unless otherwise permitted herein, all notices contemplated by the Contract Documents shall be in writing and shall be deemed given:

.1 upon actual delivery, if delivery is by hand;
.2 upon receipt by the transmitting party of confirmation or reply, if delivery is by electronic mail, facsimile, telex or telegram;
.3 upon receipt, if delivery is by the United States mail.

Notice to Contractor shall be to the address provided in Section 8.3.2 of the Agreement. Notice to Owner shall be to the address provided in Section 8.2.2 of the Agreement. Either party may designate a different address for notice by giving notice in accordance with this paragraph.

3.107 **In Section 13.4.1, insert the following at the beginning of the sentence:**

Unless expressly provided otherwise,

3.108 **Add the following Section 13.4.3:**

13.4.3 Notwithstanding Section 9.10.4, the rights and obligations which, by their nature, would continue beyond the termination, cancellation, rejection, or expiration of this contract shall survive such termination, cancellation, rejection, or expiration, including, but not limited to, the rights and obligations created by the following clauses:

1.5 Ownership and Use of Drawings, Specifications and Other Instruments of Service;
3.5 Warranty
3.17 Royalties, Patents and Copyrights
3.18 Indemnification
7.6 Cost or Pricing Data
11.1 Contractor's Liability Insurance
11.4 Performance and Payment Bond
15.1.6 Claims for Listed Damages
15.1.7 Waiver of Claims Against the Architect
15.6 Dispute Resolution
15.6.5 Service of Process

3.109 **Delete Section 13.6 and substitute the following:**

13.6 INTEREST

Payments due to the Contractor and unpaid under the Contract Documents shall bear interest only if and to the extent allowed by Title 29, Chapter 6, Article 1 of the South Carolina Code of Laws. Amounts due to the Owner shall bear interest at the rate of one percent a month or a pro rata fraction thereof on the unpaid balance as may be due.

3.110 **Delete the language of Section 13.7 and substitute the word “Reserved.”**

3.111 **Add the following Sections 13.8 through 13.16:**

13.8 PROCUREMENT OF MATERIALS BY OWNER

The Contractor accepts assignment of all purchase orders and other agreements for procurement of materials and equipment by the Owner that are identified as part of the Contract Documents. The Contractor shall, upon delivery, be responsible for the storage, protection, proper installation, and preservation of such Owner purchased items, if any, as if the Contractor were the original purchaser. The Contract Sum includes, without limitation, all costs and expenses in connection with delivery, storage, insurance, installation, and testing of items covered in any assigned purchase orders or agreements. Unless the Contract Documents specifically provide otherwise, all Contractor warranty of workmanship and correction of the Work obligations under the Contract Documents shall apply to the Contractor’s installation of and modifications to any Owner purchased items.

13.9 INTERPRETATION OF BUILDING CODES

As required by Title 10, Chapter 1, Section 180 of the South Caroline Code of Laws, as amended, OSE shall determine the enforcement and interpretation of all building codes and referenced standards on state buildings. The Contractor shall refer any questions, comments, or directives from local officials to the Owner and OSE for resolution.
13.10 MINORITY BUSINESS ENTERPRISES
Contractor shall notify Owner of each Minority Business Enterprise (MBE) providing labor, materials, equipment, or supplies to the Project under a contract with the Contractor. Contractor’s notification shall be via the first monthly status report submitted to the Owner after execution of the contract with the MBE. For each such MBE, the Contractor shall provide the MBE’s name, address, and telephone number, the nature of the work to be performed or materials or equipment to be supplied by the MBE, whether the MBE is certified by the South Carolina Office of Small and Minority Business Assistance, and the value of the contract.

13.11 SEVERABILITY
If any provision or any part of a provision of the Contract Documents shall be finally determined to be superseded, invalid, illegal, or otherwise unenforceable pursuant to any applicable Legal Requirements, such determination shall not impair or otherwise affect the validity, legality, or enforceability of the remaining provision or parts of the provision of the Contract Documents, which shall remain in full force and effect as if the unenforceable provision or part were deleted.

13.12 ILLEGAL IMMIGRATION
Contractor certifies and agrees that it will comply with the applicable requirements of Title 8, Chapter 14 of the South Carolina Code of Laws and agrees to provide to the State upon request any documentation required to establish either: (a) that Title 8, Chapter 14 is inapplicable both to Contractor and its subcontractors or sub-subcontractors; or (b) that Contractor and its subcontractors or sub-subcontractors are in compliance with Title 8, Chapter 14. Pursuant to Section 8-14-60, "A person who knowingly makes or files any false, fictitious, or fraudulent document, statement, or report pursuant to this chapter is guilty of a felony and, upon conviction, must be fined within the discretion of the court or imprisoned for not more than five years, or both." Contractor agrees to include in any contracts with its subcontractors language requiring its subcontractors to (a) comply with the applicable requirements of Title 8, Chapter 14, and (b) include in their contracts with the sub-subcontractors language requiring the sub-subcontractors to comply with the applicable requirements of Title 8, Chapter 14. (An overview is available at www.procurement.sc.gov)

13.13 SETOFF
The Owner shall have all of its common law, equitable, and statutory rights of set-off.

13.14 DRUG-FREE WORKPLACE
The Contractor certifies to the Owner that Contractor will provide a Drug-Free Workplace, as required by Title 44, Chapter 107 of the South Carolina Code of Laws, as amended.

13.15 FALSE CLAIMS
According to the S.C. Code of Laws § 16-13-240, "a person who by false pretense or representation obtains the signature of a person to a written instrument or obtains from another person any chattel, money, valuable security, or other property, real or personal, with intent to cheat and defraud a person of that property is guilty" of a crime.

13.16 NON-INDEMNIFICATION:
Any term or condition is void to the extent it requires the State to indemnify anyone. It is unlawful for a person charged with disbursements of state funds appropriated by the General Assembly to exceed the amounts and purposes stated in the appropriations. (§ 11-9-20) It is unlawful for an authorized public officer to enter into a contract for a purpose in which the sum is in excess of the amount appropriated for that purpose. It is unlawful for an authorized public officer to divert or appropriate the funds arising from any tax levied and collected for any one fiscal year to the payment of an indebtedness contracted or incurred for a previous year. (§ 11-1-40)

3.112 Delete Section 14.1.1 and substitute the following:

14.1.1 The Contractor may terminate the Contract if the Work is stopped for a period of 45 consecutive days through no act or fault of the Contractor or a Subcontractor, Sub-subcontractor or their agents or employees or any other persons or entities performing portions of the Work under direct or indirect contract with the Contractor, for any of the following reasons:

.1 Issuance of an order of a court or other public authority having jurisdiction that requires substantially all Work to be stopped; or

.2 An act of government, such as a declaration of national emergency that requires substantially all Work to be stopped.

.3 Because the Architect has not issued a Certificate for Payment and has not notified the Contractor of the reason for withholding certification as provided in Section 9.4.1, or because the Owner has not made payment on a Certificate for Payment within the time stated in the Contract Documents and the Contractor has stopped work in accordance with Section 9.7
3.113 **Insert the following at the end of Section 14.1.3:**

Any adjustment to the Contract Sum pursuant to this Section shall be made in accordance with the requirements of Article 7.

3.114 **In Section 14.1.4, replace the word “repeatedly” with the word “persistently.”**

3.115 **Delete Section 14.2.1 and substitute the following:**

14.2.1 The Owner may terminate the Contract if the Contractor

.1 repeatedly refuses or fails to supply enough properly skilled workers or proper materials, or otherwise fails to prosecute the Work, or any separable part of the Work, with the diligence, resources and skill that will ensure its completion within the time specified in the Contract Documents, including any authorized adjustments;

.2 fails to make payment to Subcontractors for materials or labor in accordance with the Contract Documents and the respective agreements between the Contractor and the Subcontractors;

.3 repeatedly disregards applicable laws, statutes, ordinances, codes, rules and regulations, or lawful orders of a public authority; or

.4 otherwise is guilty of substantial breach of a provision of the Contract Documents.

3.116 **In Section 14.2.2, delete the parenthetical statement “, upon certification by the Initial Decision Maker that sufficient cause exists to justify such action,” immediately following the word “Owner” in the first line.**

3.117 **In Section 14.2.4, replace the words “Initial Decision Maker” with the word “Architect”**

3.118 **Add the following Section 14.2.5:**

14.2.5 If, after termination for cause, it is determined that the Owner lacked justification to terminate under Section 14.2.1, or that the Contractor’s default was excusable, the rights and obligations of the parties shall be the same as if the termination had been issued for the convenience of the Owner under Section 14.4.

3.119 **Delete the second sentence of Section 14.3.2 and substitute the following:**

Any adjustment to the Contract Sum made pursuant to this section shall be made in accordance with the requirements of Article 7.3.3.

3.120 **Delete Section 14.4.1 and substitute the following:**

14.4.1 The Owner may, at any time, terminate the Contract, in whole or in part for the Owner’s convenience and without cause. The Owner shall give written notice of the termination to the Contractor specifying the part of the Contract terminated and when termination becomes effective.

3.121 **Delete Section 14.4.2 and substitute the following:**

14.4.2 Upon receipt of written notice from the Owner of such termination for the Owner’s convenience, the Contractor shall

.1 cease operations as directed by the Owner in the notice;

.2 take actions necessary, or that the Owner may direct, for the protection and preservation of the Work;

.3 except for Work directed to be performed prior to the effective date of termination stated in the notice, terminate all existing subcontracts and purchase orders and enter into no further subcontracts and purchase orders; and

.4 complete the performance of the Work not terminated, if any.

3.122 **Delete Section 14.4.3 and substitute the following:**

14.4.3 In case of such termination for the Owner’s convenience, the Contractor shall be entitled to receive payment for Work executed, costs incurred by reason of such termination, and any other adjustments otherwise allowed by the Contract. Any adjustment to the Contract Sum made pursuant to this Section 14.4 shall be made in accordance with the requirements of Article 7.3.3.

3.123 **Add the following Sections 14.4.4, 14.4.5, and 14.5:**

14.4.4 Contractor’s failure to include an appropriate termination for convenience clause in any subcontract shall not (i) affect the Owner’s right to require the termination of a subcontract, or (ii) increase the obligation of the Owner beyond what it would have been if the subcontract had contained an appropriate clause.
14.4.5 Upon written consent of the Contractor, the Owner may reinstate the terminated portion of this Contract in whole or in part by amending the notice of termination if it has been determined that:

.1 the termination was due to withdrawal of funding by the General Assembly, Governor, or Budget and Control Board or the need to divert project funds to respond to an emergency as defined by Regulation 19-445.2110(B) of the South Carolina Code of Regulations, as amended;

.2 funding for the reinstated portion of the work has been restored;

.3 circumstances clearly indicate a requirement for the terminated work; and

.4 reinstatement of the terminated work is advantageous to the Owner.

14.5 CANCELLATION AFTER AWARD BUT PRIOR TO PERFORMANCE
Pursuant to Title 11, Chapter 35 and Regulation 19-445.2085 of the South Carolina Code of Laws and Regulations, as amended, this contract may be canceled after award but prior to performance.

3.124 Insert the following sentence after the second sentence of Section 15.1.1:
A voucher, invoice, payment application or other routine request for payment that is not in dispute when submitted is not a Claim under this definition.

3.125 Delete Section 15.1.2 and substitute the following:

15.1.2 NOTICE OF CLAIMS
Claims by either the Owner or Contractor must be initiated by written notice to the other party and to the Architect. Such notice shall include sufficient information to advise the Architect and other party of the circumstances giving rise to the claim, the specific contractual adjustment or relief requested and the basis of such request. Claims by either party arising prior to the date final payment is due must be initiated within 21 days after occurrence of the event giving rise to such Claim or within 21 days after the claimant first recognizes the condition giving rise to the Claim, whichever is later except as stated for adverse weather days in Section 15.1.5.2. By failing to give written notice of a Claim within the time required by this Section, a party expressly waives its claim.

3.126 Delete Section 15.1.3 and substitute the following:

15.1.3 CONTINUING CONTRACT PERFORMANCE
Pending final resolution of a Claim, including any administrative review allowed under Section 15.6, except as otherwise agreed in writing or as provided in Section 9.7 and Article 14, the Contractor shall proceed diligently with performance of the Contract and the Owner shall continue to make payments in accordance with the Contract Documents. The Architect will issue Certificates for Payment in accordance with the initial decisions and determinations of the Architect.

3.127 Insert the following at the end of Section 15.1.5.1:
Claims for an increase in the Contract Time shall be based on one additional calendar day for each full calendar day that the Contractor is prevented from working.

3.128 Insert the following Sub-Sections at the end of Section 15.1.5.2:

.1 Claims for adverse weather shall be based on actual weather conditions at the job site or other place of performance of the Work, as documented in the Contractor’s job site log.

.2 For the purpose of this Contract, a total of five (5) days per calendar month (non-cumulative) shall be anticipated as “adverse weather” at the job site, and such time will not be considered justification for an extension of time. If, in any month, adverse weather develops beyond the five (5) days, the Contractor shall be allowed to claim additional days to compensate for the excess weather delays only to the extent of the impact on the approved construction schedule and days the contractor was already scheduled to work. The remedy for this condition is for an extension of time only and is exclusive of all other rights and remedies available under the Contract Documents or imposed or available by law.

.3 The Contractor shall submit monthly with their pay application all claims for adverse weather conditions that occurred during the previous month. The Architect shall review each monthly submittal in accordance with Section 15.5 and inform the Contractor and the Owner promptly of its evaluation. Approved days shall be included in the next Change Order issued by the Architect. Adverse weather conditions not claimed within the time limits of this Subparagraph shall be considered to be waived by the Contractor. Claims will not be allowed for adverse weather days that occur after the scheduled (original or adjusted) date of Substantial Completion.
3.129 Delete Section 15.1.6 and substitute the following:

15.1.6 CLAIMS FOR LISTED DAMAGES
Notwithstanding any other provision of the Contract Documents, including Section 1.2.1, but subject to a duty of good faith and fair dealing, the Contractor and Owner waive Claims against each other for listed damages arising out of or relating to this Contract.

15.1.6.1 For the Owner, listed damages are (i) lost revenue and profit, (ii) losses resulting from injury to business or reputation, (iii) additional or escalated overhead and administration expenses, (iv) additional financing costs, (v) costs suffered by a third party unable to commence work, (vi) attorney's fees, (vii) any interest, except to the extent allowed by Section 13.6 (Interest), (viii) lost revenue and profit for lost use of the property, (ix) costs resulting from lost productivity or efficiency.

15.1.6.2 For the Contractor, listed damages are (i) lost revenue and profit, (ii) losses resulting from injury to business or reputation, (iii) additional or escalated overhead and administration expenses, (iv) additional financing costs, (v) attorney's fees, (vi) any interest, except to the extent allowed by Section 13.6 (Interest); (vii) unamortized equipment costs; and, (viii) losses incurred by subcontractors for the types of damages the Contractor has waive as against the Owner. Without limitation, this mutual waiver is applicable to all damages due to either party’s termination in accordance with Article 14.

15.1.6.3 Nothing contained in this Section shall be deemed to preclude an award of liquidated damages, when applicable, in accordance with the requirements of the Contract Documents. This mutual waiver is not applicable to amounts due or obligations under Section 3.18 (Indemnification).

3.130 Add the following Section 15.1.7:

15.1.7 WAIVER OF CLAIMS AGAINST THE ARCHITECT
Notwithstanding any other provision of the Contract Documents, including Section 1.2.1, but subject to a duty of good faith and fair dealing, the Contractor waives all claims against the Architect and any other design professionals who provide design and/or project management services to the Owner, either directly or as independent contractors or subcontractors to the Architect, for listed damages arising out of or relating to this Contract. The listed damages are (i) lost revenue and profit, (ii) losses resulting from injury to business or reputation, (iii) additional or escalated overhead and administration expenses, (iv) additional financing costs, (v) attorney's fees, (vi) any interest; (vii) unamortized equipment costs; and, (viii) losses incurred by subcontractors for the types of damages the Contractor has waive as against the Owner. This mutual waiver is not applicable to amounts due or obligations under Section 3.18 (Indemnification).

3.131 Delete the language of Sections 15.2, 15.3, and 15.4, including all Sub-Sections, and substitute the word “Reserved” for the deleted language of each Section and Sub-Section.

3.132 Add the following Sections 15.5 and 15.6 with their sub-sections:

15.5 CLAIM AND DISPUTES - DUTY OF COOPERATION, NOTICE, AND ARCHITECTS INITIAL DECISION

15.5.1 Contractor and Owner are fully committed to working with each other throughout the Project to avoid or minimize claims. To further this goal, Contractor and Owner agree to communicate regularly with each other and the Architect at all times notifying one another as soon as reasonably possible of any issue that if not addressed may cause loss, delay, and/or disruption of the Work. If claims do arise, Contractor and Owner each commit to resolving such claims in an amicable, professional, and expeditious manner to avoid unnecessary losses, delays, and disruptions to the Work.

15.5.2 Claims shall first be referred to the Architect for initial decision. An initial decision shall be required as a condition precedent to resolution pursuant to Section 15.6 of any Claim arising prior to the date of final payment, unless 30 days have passed after the Claim has been referred to the Architect with no decision having been rendered, or after all the Architect’s requests for additional supporting data have been answered, whichever is later. The Architect will not address claims between the Contractor and persons or entities other than the Owner.

15.5.3 The Architect will review Claims and within ten days of the receipt of a Claim (1) request additional supporting data from the claimant or a response with supporting data from the other party or (2) render an initial decision in accordance with Section 15.5.5.
15.5.4 If the Architect requests a party to provide a response to a Claim or to furnish additional supporting data, such party shall respond, within ten days after receipt of such request, and shall either (1) provide a response on the requested supporting data, (2) advise the Architect when the response or supporting data will be furnished or (3) advise the Architect that all supporting data has already been provided. Upon receipt of the response or supporting data, the Architect will render an initial decision in accordance with Section 15.5.5.

15.5.5 The Architect will render an initial decision in writing; (1) stating the reasons therefor; and (2) notifying the parties of any change in the Contract Sum or Contract Time or both. The Architect will deliver the initial decision to the parties within two weeks of receipt of any response or supporting data requested pursuant to Section 16.4 or within such longer period as may be mutually agreeable to the parties. If the parties accept the initial decision, the Architect shall prepare a Change Order with appropriate supporting documentation for the review and approval of the parties and the Office of State Engineer. If either the Contractor, Owner, or both, disagree with the initial decision, the Contractor and Owner shall proceed with dispute resolution in accordance with the provisions of Section 15.6.

15.5.6 In the event of a Claim against the Contractor, the Owner may, but is not obligated to, notify the surety, if any, of the nature and amount of the Claim. If the Claim relates to a possibility of a Contractor’s default, the Owner may, but is not obligated to, notify the surety and request the surety’s assistance in resolving the controversy.

15.6 DISPUTE RESOLUTION

15.6.1 If a claim is not resolved pursuant to Section 15.5 to the satisfaction of either party, both parties shall attempt to resolve the dispute at the field level through discussions between Contractor’s Representative and Owner’s Representative. If a dispute cannot be resolved through Contractor’s Representative and Owner’s Representative, then the Contractor’s Senior Representative and the Owner’s Senior Representative, upon the request of either party, shall meet as soon as conveniently possible, but in no case later than twenty-one days after such a request is made, to attempt to resolve such dispute. Prior to any meetings between the Senior Representatives, the parties will exchange relevant information that will assist the parties in resolving their dispute. The meetings required by this Section are a condition precedent to resolution pursuant to Section 15.6.2.

15.6.2 If after meeting in accordance with the provisions of Section 15.6.1, the Senior Representatives determine that the dispute cannot be resolved on terms satisfactory to both the Contractor and the Owner, then either party may submit the dispute by written request to South Carolina’s Chief Procurement Officer for Construction (CPOC). Except as otherwise provided in Article 15, all claims, claims, or controversies relating to the Contract shall be resolved exclusively by the appropriate Chief Procurement Officer in accordance with Title 11, Chapter 35, Article 17 of the South Carolina Code of Laws, or in the absence of jurisdiction, only in the Court of Common Pleas for, or in the absence of jurisdiction a federal court located in, Richland County, State of South Carolina. Contractor agrees that any act by the State regarding the Contract is not a waiver of either the State’s sovereign immunity or the State’s immunity under the Eleventh Amendment of the United States’ Constitution.

15.6.3 If any party seeks resolution to a dispute pursuant to Section 15.6.2, the parties shall participate in non-binding mediation to resolve the claim. If the claim is governed by Title 11, Chapter 35, Article 17 of the South Carolina Code of Laws as amended and the amount in controversy is $100,000.00 or less, the CPOC shall appoint a mediator, otherwise, the mediation shall be conducted by an impartial mediator selected by mutual agreement of the parties, or if the parties cannot so agree, a mediator designated by the American Arbitration Association (“AAA”) pursuant to its Construction Industry Mediation Rules. The mediation will be governed by and conducted pursuant to a mediation agreement negotiated by the parties or, if the parties cannot so agree, by procedures established by the mediator.

15.6.4 Without relieving any party from the other requirements of Sections 15.5 and 15.6, either party may initiate proceedings in the appropriate forum prior to initiating or completing the procedures required by Sections 15.5 and 15.6 if such action is necessary to preserve a claim by avoiding the application of any applicable statutory period of limitation or repose.
15.6.5 SERVICE OF PROCESS

Contractor consents that any papers, notices, or process necessary or proper for the initiation or continuation of any claims, claims, or controversies relating to the Contract; for any court action in connection therewith; or for the entry of judgment on any award made, may be served on Contractor by certified mail (return receipt requested) addressed to Contractor at the address provided for the Contractor’s Senior Representative or by personal service or by any other manner that is permitted by law, in or outside South Carolina. Notice by certified mail is deemed duly given upon deposit in the United States mail.

3.133 Add the following Article 16:

ARTICLE 16 PROJECT-SPECIFIC REQUIREMENTS AND INFORMATION

16.1. Inspection Requirements: (Indicate the inspection services required by the Contract)

☐ Special Inspections are required and are not part of the Contract Sum. (see section 01400)
☐ Building Inspections are required and are not part of the Contract Sum. (see section 01400)

The inspections required for this Work are:

(Indicate which services are required and the provider)

☐ Civil: __
☐ Structural: ___
☐ Mechanical: __
☐ Plumbing: __
☐ Electrical: __
☐ Gas: __
☐ Other (list): __

Remarks: Owner to provide

16.1.1 Contractor shall schedule and request inspections in an orderly and efficient manner and shall notify the Owner whenever the Contractor schedules an inspection in accordance with the requirements of Section 16.1. Contractor shall be responsible for the cost of inspections scheduled and conducted without the Owner’s knowledge and for any increase in the cost of inspections resulting from the inefficient scheduling of inspections.

16.2 List Cash Allowances, if any. (Refer to attachments as needed. If none, enter NONE)

$0

16.3. Requirements for Record Drawings, if any. (Refer to attachments as needed. If none, enter NONE)

Refer to Technical Specifications

16.4. Requirements for Shop Drawings and other submittals, if any, including number, procedure for submission, list of materials to be submitted, etc. (Refer to attachments as needed. If none, enter NONE)

Refer to Technical Specifications

16.5. Requirements for signage, on-site office or trailer, utilities, restrooms, etc., in addition to the Contract, if any. (Refer to attachments as needed. If none, enter NONE)

Refer to Technical Specifications

16.6. Requirements for Project Cleanup in addition to the Contract, if any. (Refer to attachments as needed. If none, enter NONE)

Refer to Technical Specifications

16.7. List all attachments that modify these General Conditions. (If none, enter NONE)

Refer to Technical Specifications
PERFORMANCE BOND

KNOW ALL MEN BY THESE PRESENTS, that (Insert full name or legal title and address of Contractor)

Name: ________________________________
Address: ________________________________

hereinafter referred to as “Contractor”, and (Insert full name and address of principal place of business of Surety)

Name: ________________________________
Address: ________________________________

hereinafter called the “surety”, are jointly and severally held and firmly bound unto (Insert full name and address of Agency)

Name: ________________________________
Address: ________________________________

hereinafter referred to as “Agency”, or its successors or assigns, the sum of ____________________ ($ ___________), being the sum of the Bond to which payment to be well and truly made, the Contractor and Surety bind themselves, their heirs, executors, administrators, successors and assigns, jointly and severally, firmly by these presents.

WHEREAS, Contractor has by written agreement dated ____________ entered into a contract with Agency to construct

State Project Name: Animal Care Facility
State Project Number: H59-6101-PD
Brief Description of Awarded Work, as found on the SE-330 or SE-332, Bid Form: ________________________________
in accordance with Drawings and Specifications prepared by (Insert full name and address of A-E)

Name: ________________________________
Address: ________________________________

which agreement is by reference made a part hereof, and is hereinafter referred to as the Contract.

IN WITNESS WHEREOF, Surety and Contractor, intending to be legally bound hereby, subject to the terms stated herein, do each cause this Performance Bond to be duly executed on its behalf by its authorized officer, agent or representative.

DATED this ____________ day of ____________, 2__________ BOND NUMBER ________________________________

shall be no earlier than Date of Contract)

CONTRACTOR

By: ________________________________ (Seal)
Print Name: ________________________________
Print Title: ________________________________
Witness: ________________________________

SURETY

By: ________________________________ (Seal)
Print Name: ________________________________
Print Title: ________________________________
Witness: ________________________________

(Attach Power of Attorney)

(Additional Signatures, if any, appear on attached page)
NOW, THEREFORE, THE CONDITION OF THIS OBLIGATION IS SUCH THAT:

1. The Contractor and the Surety, jointly and severally, bind themselves, their heirs, executors, administrators, successors and assigns to the Agency for the full and faithful performance of the contract, which is incorporated herein by reference.

2. If the Contractor performs the contract, the Surety and the Contractor have no obligation under this Bond, except to participate in conferences as provided in paragraph 3.1.

3. The Surety's obligation under this Bond shall arise after:
 3.1 The Agency has notified the Contractor and the Surety at the address described in paragraph 10 below, that the Agency is considering declaring a Contractor Default and has requested and attempted to arrange a conference with the Contractor and the Surety to be held not later than 15 days after receipt of such notice to discuss methods of performing the Contract. If the Agency, the Contractor and the Surety agree, the Contractor shall be allowed a reasonable time to perform the Contract, but such an agreement shall not waive the Agency's right, if any, subsequently to declare a Contractor Default; or
 3.2 The Agency has declared a Contractor Default and formally terminated the Contractor's right to complete the Contract.

4. The Surety shall, within 15 days after receipt of notice of the Agency's declaration of a Contractor Default, and at the Surety's sole expense, take one of the following actions:
 4.1 Arrange for the Contractor, with consent of the Agency, to perform and complete the Contract; or
 4.2 Undertake to perform and complete the Contract itself, through its agents or through independent contractors; or
 4.3 Obtain bids or negotiated proposals from qualified contractors acceptable to the Agency for a contract for performance and completion of the Contract, arrange for a contract to be prepared for execution by the Agency and the contractor selected with the Agency's concurrence, to be secured with performance and payment bonds executed by a qualified surety equivalent to the Bonds issued on the Contract, and pay to the Agency the amount of damages as described in paragraph 7 in excess of the Balance of the Contract Sum incurred by the Agency resulting from the Contractor Default; or
 4.4 Waive its right to perform and complete, arrange for completion, or obtain a new contractor, and:
 4.4.1 After investigation, determine the amount for which it may be liable to the Agency and, within 60 days of waiving its rights under this paragraph, tender payment thereof to the Agency; or
 4.4.2 Deny liability in whole or in part and notify the Agency, citing the reasons therefore.

5. Provided Surety has proceeded under paragraphs 4.1, 4.2, or 4.3, the Agency shall pay the Balance of the Contract Sum to either:
 5.1 Surety in accordance with the terms of the Contract; or
 5.2 Another contractor selected pursuant to paragraph 4.3 to perform the Contract.

6. The balance of the Contract Sum due either the Surety or another contractor shall be reduced by the amount of damages as described in paragraph 7.

6.1 If the Surety does not proceed as provided in paragraph 4 with reasonable promptness, the Surety shall be deemed to be in default on this Bond 15 days after receipt of written notice from the Agency to the Surety demanding that the Surety perform its obligations under this Bond, and the Agency shall be entitled to enforce any remedy available to the Agency.

6.2 Any dispute, suit, action or proceeding arising out of or relating to this Bond shall be governed by the Dispute Resolution process defined in the Contract Documents and the laws of the State of South Carolina.

7. After the Agency has terminated the Contractor's right to complete the Contract, and if the Surety elects to act under paragraph 4.1, 4.2, or 4.3 above, then the responsibilities of the Surety to the Agency shall be those of the Contractor under the Contract, and the responsibilities of the Agency to the Surety shall those of the Agency under the Contract. To a limit of the amount of this Bond, but subject to commitment by the Agency of the Balance of the Contract Sum to mitigation of costs and damages on the Contract, the Surety is obligated to the Agency without duplication for:
 7.1 The responsibilities of the Contractor for correction of defective Work and completion of the Contract; and
 7.2 Additional legal, design professional and delay costs resulting from the Contractor's Default, and resulting from the actions or failure to act of the Surety under paragraph 4; and
 7.3 Damages awarded pursuant to the Dispute Resolution Provisions of the Contract. Surety may join in any Dispute Resolution proceeding brought under the Contract and shall be bound by the results thereof; and
 7.4 Liquidated Damages, or if no Liquidated Damages are specified in the Contract, actual damages caused by delayed performance or non-performance of the Contractor.

8. The Surety shall not be liable to the Agency or others for obligations of the Contractor that are unrelated to the Contract, and the Balance of the Contract Sum shall not be reduced or set-off on account of any such unrelated obligations. No right of action shall accrue on this Bond to any person or entity other than the Agency or its heirs, executors, administrators, or successors.

9. The Surety hereby waives notice of any change, including changes of time, to the contract or to related subcontracts, purchase orders and other obligations.

10. Notice to the Surety, the Agency or the Contractor shall be mailed or delivered to the address shown on the signature page.

11. Definitions

11.1 Balance of the Contract Sum: The total amount payable by the Agency to the Contractor under the Contract after all proper adjustments have been made, including allowance to the Contractor of any amounts to be received by the Agency in settlement of insurance or other Claims for damages to which the Contractor is entitled, reduced by all valid and proper payments made to or on behalf of the Contractor under the Contract.

11.2 Contractor Default: Failure of the Contractor, which has neither been remedied nor waived, to perform the Contract or otherwise to comply with the terms of the Contract.
LABOR & MATERIAL PAYMENT BOND

KNOW ALL MEN BY THESE PRESENTS, that (Insert full name or legal title and address of Contractor)

Name: ____________________________
Address: ____________________________

hereinafter referred to as “Contractor”, and (Insert full name and address of principal place of business of Surety)

Name: ____________________________
Address: ____________________________

hereinafter called the “surety”, are jointly and severally held and firmly bound unto (Insert full name and address of Agency)

Name: ____________________________
Address: ____________________________

hereinafter referred to as “Agency”, or its successors or assigns, the sum of ____________________________ ($_________). being the sum of the Bond to which payment to be well and truly made, the Contractor and Surety bind themselves, their heirs, executors, administrators, successors and assigns, jointly and severally, firmly by these presents.

WHEREAS, Contractor has by written agreement dated __________ entered into a contract with Agency to construct

State Project Name: Animal Care Facility
State Project Number: H59-6101-PD
Brief Description of Awarded Work, as found on the SE-330 or SE-332, Bid Form: __
in accordance with Drawings and Specifications prepared by (Insert full name and address of A-E)

Name: ____________________________
Address: ____________________________

which agreement is by reference made a part hereof, and is hereinafter referred to as the Contract.

IN WITNESS WHEREOF, Surety and Contractor, intending to be legally bound hereby, subject to the terms stated herein, do each cause this Labor and Material Payment Bond to be duly executed on its behalf by its authorized officer, agent or representative.

DATED this ______ day of __________, 2 ______ BOND NUMBER ________________________________

(shall be no earlier than Date of Contract)

CONTRACTOR

By: ____________________________ (Seal)
Print Name: ____________________________
Print Title: ____________________________
Witness: ____________________________

SURETY

By: ____________________________ (Seal)
Print Name: ____________________________
Print Title: ____________________________
(Watch: ____________________________
(Attach Power of Attorney)

(Additional Signatures, if any, appear on attached page)
NOW, THEREFORE, THE CONDITION OF THIS OBLIGATION IS SUCH THAT:

1. The Contractor and the Surety, jointly and severally, bind themselves, their heirs, executors, administrators, successors and assigns to the Agency to pay for all labor, materials and equipment required for use in the performance of the Contract, which is incorporated herein by reference.

2. With respect to the Agency, this obligation shall be null and void if the Contractor:
 2.1 Promptly makes payment, directly or indirectly, for all sums due Claimants; and
 2.2 Defends, indemnifies and holds harmless the Agency from all claims, demands, liens or suits by any person or entity who furnished labor, materials or equipment for use in the performance of the Contract.

3. With respect to Claimants, this obligation shall be null and void if the Contractor promptly makes payment, directly or indirectly, for all sums due.

4. With respect to Claimants, and subject to the provisions of Title 29, Chapter 5 and the provisions of §§11-35-3030(2)(c) of the SC Code of Laws, as amended, the Surety’s obligation under this Bond shall arise as follows:

 4.1 Every person who has furnished labor, material or rental equipment to the Contractor or its subcontractors for the work specified in the Contract, and who has not been paid in full therefore before the expiration of a period of ninety (90) days after the date on which the last of the labor was done or performed by him or material or rental equipment was furnished or supplied by him for which such claim is made, shall have the right to sue on the payment bond for the amount, or the balance thereof, unpaid at the time of institution of such suit and to prosecute such action for the sum or sums justly due him.

 4.2 A remote claimant shall have a right of action on the payment bond upon giving written notice by certified or registered mail to the Contractor within ninety (90) days from the date on which such person did or performed the last of the labor or furnished or supplied the last of the material or rental equipment upon which such claim is made.

 4.3 Every suit instituted upon a payment bond shall be brought in a court of competent jurisdiction for the county or circuit in which the construction contract was to be performed, but no such suit shall be commenced after the expiration of one year after the date on which the last of the labor was performed or material or rental equipment was supplied by the person bringing suit.

5. When the Claimant has satisfied the conditions of paragraph 4, the Surety shall promptly and at the Surety’s expense take the following actions:

 5.1 Send an answer to the Claimant, with a copy to the Agency, within sixty (60) days after receipt of the claim, stating the amounts that are undisputed and the basis for challenging any amounts that are disputed.

 5.2 Pay or arrange for payment of any undisputed amounts.

 5.3 The Surety’s failure to discharge its obligations under this paragraph 5 shall not be deemed to constitute a waiver of defenses the Surety or Contractor may have or acquire as to a claim. However, if the Surety fails to discharge its obligations under this paragraph 5, the Surety shall indemnify the Claimant for the reasonable attorney’s fees the Claimant incurs to recover any sums found to be due and owing to the Claimant.

6. Amounts owed by the Agency to the Contractor under the Contract shall be used for the performance of the Contract and to satisfy claims, if any, under any Performance Bond. By the Contractor furnishing and the Agency accepting this Bond, they agree that all funds earned by the contractor in the performance of the Contract are dedicated to satisfy obligations of the Contractor and the Surety under this Bond, subject to the Agency’s prior right to use the funds for the completion of the Work.

7. The Surety shall not be liable to the Agency, Claimants or others for obligations of the Contractor that are unrelated to the Contract. The Agency shall not be liable for payment of any costs or expenses of any claimant under this bond, and shall have under this Bond no obligations to make payments to, give notices on behalf of, or otherwise have obligations to Claimants under this Bond.

8. The Surety hereby waives notice of any change, including changes of time, to the Contract or to related Subcontracts, purchase orders and other obligations.

9. Notice to the Surety, the Agency or the Contractor shall be mailed or delivered to the addresses shown on the signature page. Actual receipt of notice by Surety, the Agency or the contractor, however accomplished, shall be sufficient compliance as of the date received at the address shown on the signature page.

10. By the Contractor furnishing and the Agency accepting this Bond, they agree that this Bond has been furnished to comply with the statutory requirements of the South Carolina Code of Laws, as amended, and further, that any provision in this Bond conflicting with said statutory requirements shall be deemed deleted herefrom and provisions conforming to such statutory or other legal requirement shall be deemed incorporated herein. The intent is that this Bond shall be construed as a statutory Bond and not as a common law bond.

11. Upon request of any person or entity appearing to be a potential beneficiary of this bond, the Contractor shall promptly furnish a copy of this Bond or shall permit a copy to be made.

12. Any dispute, suit, action or proceeding arising out of or relating to this Bond shall be governed by the laws of the State of South Carolina.

13. DEFINITIONS

13.1 Claimant: An individual or entity having a direct contract with the Contractor or with a Subcontractor of the Contractor to furnish labor, materials, or equipment for use in the performance of the Contract. The intent of this Bond shall be to include without limitation in the terms “labor, materials or equipment” that part of water, gas, power, light, heat, oil, gasoline, telephone service or rental equipment used in the Contract, architectural and engineering services required for performance of the Work of the Contractor and the Contractor’s Subcontractors, and all other items for which a mechanic’s lien might otherwise be asserted.

13.2 Remote Claimant: A person having a direct contractual relationship with a subcontractor of the Contractor or subcontractor, but no contractual relationship expressed or implied with the Contractor.

13.3 Contract: The agreement between the Agency and the Contractor identified on the signature page, including all Contract Documents and changes thereto.

14. The Contractor and the Surety, jointly and severally, bind themselves, their heirs, executors, administrators, successors and assigns to the Agency to pay for all labor, materials and equipment required for use in the performance of the Contract, which is incorporated herein by reference.
CHANGE ORDER NO.:_____

CHANGE ORDER TO CONSTRUCTION CONTRACT

AGENCY: Tri-County Technical College

PROJECT NAME: Tri-County Technical College - Animal Care Facility

PROJECT NUMBER: H59-6101-PD

This Contract is changed as follows: (Insert description of change in space provided below)

<table>
<thead>
<tr>
<th>ADJUSTMENTS IN THE CONTRACT SUM:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Original Contract Sum:</td>
<td>$</td>
</tr>
<tr>
<td>2. Change in Contract Sum by previously approved Change Orders:</td>
<td></td>
</tr>
<tr>
<td>3. Contract Sum prior to this Change Order:</td>
<td>$ 0.00</td>
</tr>
<tr>
<td>4. Amount of this Change Order:</td>
<td></td>
</tr>
<tr>
<td>5. New Contract Sum, including this Change Order:</td>
<td>$ 0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADJUSTMENTS IN THE CONTRACT TIME:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Original Substantial Completion Date:</td>
<td></td>
</tr>
<tr>
<td>2. Sum of previously approved increases and decreases in Days:</td>
<td>Days</td>
</tr>
<tr>
<td>3. Change in Days for this Change Order</td>
<td>Days</td>
</tr>
<tr>
<td>4. New Substantial Completion Date:</td>
<td></td>
</tr>
</tbody>
</table>

CONTRACTOR ACCEPTANCE:

BY: ____________________________ Date:__________________________

(Signature of Representative)

Print Name:________________________

ARCHITECT RECOMMENDATION FOR ACCEPTANCE:

BY: ____________________________ Date:__________________________

(Signature of Representative)

Print Name:________________________

AGENCY ACCEPTANCE AND CERTIFICATION:

BY: ____________________________ Date:__________________________

(Signature of Representative)

Print Name:________________________

☐ Change is within Agency Construction Contract Change Order Certification of: $_________

☐ Change is not within Agency Construction Contract Change Order Certification of: $_________

Office of the State Engineer Authorization for change exceeding Agency Construction Contract Change Order1234 Certification:

AUTHORIZED BY: ____________________________ DATE: ____________________________

(OSE Project Manager)
SECTION 011000 - SUMMARY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Project information.
 2. Work covered by Contract Documents.
 3. Access to site.
 4. Coordination with occupants.
 5. Work restrictions.

B. Related Requirements:
 1. Division 01 Section "Temporary Facilities and Controls" for limitations and procedures governing temporary use of Owner’s facilities.

1.2 PROJECT INFORMATION

A. Project Identification: Tri-County Technical College – Halbert Hall Kennel Addition.
 1. Project Location: 7900 Highway 76, Pendleton, SC.

B. Owner: Tri-County Technical College, 7900 Highway 76, Pendleton, SC.
 1. Owner’s Representative: Mr. Ken Kopera, Director of Facilities, Tri-County Technical College. Tel: (864) 646-1770.

 1. Contact: Project Architect – Luke Sims, Associate AIA, CDT.: lukesims@ls3p.com

1.3 WORK COVERED BY CONTRACT DOCUMENTS

A. The Work of Project is defined by the Contract Documents and consists of the following:
 1. Base Bid Work: The project is a pre-engineered metal building construction with insulated metal panel exterior walls, over a slab-on-grade foundation It will house 33 dog runs, laundry room, cat ward, bathing, and storage areas. The new building will be built behind the existing Halbert Hall building on Tri-County Technical College’s Pendleton Campus.
 2. Add Alternates:
 a. Add Alt #1 – Provide conduit & backup generator pad as seen in electrical drawings. Installation of natural gas line included.
 b. Add Alt #2 – Provide & install backup generator & related wiring as seen in electrical drawings.
 c. Add Alt #3 – N/A

B. Type of Contract: Project will be constructed under a single prime contract.
1.4 ACCESS TO SITE

A. General: Contractor shall have full use of Project site for construction operations during construction period. Contractor's use of Project site is limited only by Owner's right to perform work or to retain other contractors on portions of Project.

B. Use of Site: Limit use of Project site to areas within the Contract limits indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.
 1. Limits: Confine construction operations to areas as indicated on the documents.
 2. Limits: Limit site disturbance, including earthwork and clearing of vegetation, to 40 feet beyond building perimeter; 10 feet beyond surface walkways, patios, surface parking, and utilities less than 12 inches in diameter; 15 feet beyond primary roadway curbs and main utility branch trenches; and 25 feet beyond constructed areas with permeable surfaces (such as pervious paving areas, stormwater detention facilities, and playing fields) that require additional staging areas in order to limit compaction in the constructed area.
 3. Driveways, Walkways and Entrances: Keep driveways parking garage, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.
 a. Schedule deliveries to minimize use of driveways and entrances by construction operations.
 b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.
 c. Vehicles for contractor’s forces, including subcontractors, vendors and delivery vehicles, shall park on the construction site or in adjacent areas (not in the parking garage) as directed by the Owner.

1.5 COORDINATION WITH OCCUPANTS

A. Owner Limited Occupancy of Completed Areas of Construction: Owner reserves the right to occupy and to place and install equipment in completed portions of the Work, prior to Substantial Completion of the Work, provided such occupancy does not interfere with completion of the Work. Such placement of equipment and limited occupancy shall not constitute acceptance of the total Work.
 1. Architect will prepare a Certificate of Substantial Completion for each specific portion of the Work to be occupied prior to Owner acceptance of the completed Work.
 2. Obtain a Certificate of Occupancy from authorities having jurisdiction before limited Owner occupancy.
 3. Before limited Owner occupancy, mechanical and electrical systems shall be fully operational, and required tests and inspections shall be successfully completed. On occupancy, Owner will operate and maintain mechanical and electrical systems serving occupied portions of Work.
 4. On occupancy, Owner will assume responsibility for maintenance and custodial service for occupied portions of Work.

1.6 WORK RESTRICTIONS

A. Work Restrictions, General: Comply with restrictions on construction operations.
 1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.

B. On-Site Work Hours: Limit work to normal business working hours of 7:00 a.m. to 6:00 p.m., Monday through Friday, unless otherwise indicated.
 1. Concrete pours and other weather sensitive construction may be conducted at alternate times if previously arranged with owner at least 72 hours prior to conducting operations.
C. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:

1. Notify Owner not less than seven days in advance of proposed utility interruptions.

D. Noise, Vibration, and Odors: Coordinate operations that may result in high levels of noise and vibration, odors, or other disruption to Owner occupancy with Owner.

1. Notify Owner not less than seven days in advance of proposed disruptive operations.

E. Nonsmoking Building: Smoking is not permitted within the building or within 25 feet of entrances, operable windows, or outdoor-air intakes.

F. Controlled Substances: Use of tobacco products and other controlled substances on Project site is not permitted.

1.7 SPECIFICATION AND DRAWING CONVENTIONS

A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:

1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.

2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.

B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

C. Drawing Coordination: Requirements for materials and products identified on Drawings are described in detail in the Specifications. One or more of the following are used on Drawings to identify materials and products:

1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.

2. Abbreviations: Materials and products are identified by abbreviations scheduled on Drawings.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 011000
SECTION 012300 – ADD ALTERNATES

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes administrative and procedural requirements for alternates.

1.2 DEFINITIONS
A. Alternate: An amount proposed by bidders and stated on the Bid Form for certain work defined in the Bidding Requirements that may be added to or deducted from the base bid amount if Owner decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.

1. Alternates described in this Section are part of the Work only if enumerated in the Agreement.
2. The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate alternate into the Work. No other adjustments are made to the Contract Sum.
3. The Alternates are not in precise order of acceptance and may be accepted, rejected, or deferred in any order.

1.3 PROCEDURES
A. Coordination: Modify or adjust affected adjacent work as necessary to completely integrate work of the alternate into Project.

1. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate.

B. Notification: Immediately following award of the Contract, notify each party involved, in writing, of the status of each alternate. Indicate if alternates have been Accepted, Rejected, or Deferred for later consideration. Include a complete description of negotiated modifications to alternates, if any.

C. Execute accepted alternates under the same conditions as other work of the Contract.

D. Alternate prices may be held 90-days beyond contract acceptance. Alternate prices listed below shall be good for ninety (90) days beyond the date of contract acceptance. The Owner may accept or reject any or all alternates within the above stated time frame.

E. Schedule: A schedule of alternates is included at the end of this Section. The related Specification Sections contain requirements for materials necessary to achieve the work described under each alternate.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 SCHEDULE OF ALTERNATES:

Alternate No. 1: Provide conduit & backup generator pad as seen in electrical drawings.

Alternate No. 2: Provide & install backup generator & related wiring as seen in electrical drawings.

Alternate No. 3: N/A

END OF SECTION 012300
SECTION 012500 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for substitutions.

B. Related Requirements: Division 01 Section "Product Requirements" for requirements for submitting comparable product submittals for products by listed manufacturers.

1.2 DEFINITIONS

A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.

1.3 ACTION SUBMITTALS

A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

1. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
 b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors that will be necessary to accommodate proposed substitution.
 c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
 d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
 e. Samples, where applicable or requested.
 f. Certificates and qualification data, where applicable or requested.
 g. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
 h. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
 i. Research reports evidencing compliance with building code in effect for Project, from ICC-ES.
 j. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
 k. Cost information, including a proposal of change, if any, in the Contract Sum.
 l. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.
m. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.

3. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within seven days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

 b. Use product specified if Architect does not issue a decision on use of a proposed substitution within time allocated.

1.4 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 15 days prior to time required for preparation and review of related submittals.

 1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied:
 a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 b. Requested substitution will not adversely affect Contractor's construction schedule.
 c. Requested substitution has received necessary approvals of authorities having jurisdiction.
 d. Requested substitution is compatible with other portions of the Work.
 e. Requested substitution has been coordinated with other portions of the Work.
 f. Requested substitution provides specified warranty.
 g. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

B. Substitutions for Convenience: Not allowed unless otherwise indicated.

C. Substitutions for Convenience: Architect will consider requests for substitution if received within 60 days after the Notice of Award.

 1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied:
 a. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
 b. Requested substitution does not require extensive revisions to the Contract Documents.
 c. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 d. Requested substitution will not adversely affect Contractor's construction schedule.
 e. Requested substitution has received necessary approvals of authorities having jurisdiction.
 f. Requested substitution is compatible with other portions of the Work.
 g. Requested substitution has been coordinated with other portions of the Work.
h. Requested substitution provides specified warranty.

i. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

PART 3 - EXECUTION (Not Used)

END OF SECTION 012500
SECTION 012600 - CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for handling and processing Contract modifications.

1.2 MINOR CHANGES IN THE WORK

A. Architect will issue supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time, on AIA Document G710, "Architect's Supplemental Instructions."

1.3 PROPOSAL REQUESTS

A. Owner-Initiated Proposal Requests: Architect will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.

1. Work Change Proposal Requests issued by Architect are not instructions either to stop work in progress or to execute the proposed change.

2. Within time specified in Proposal Request or 10 days after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.
 a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 c. Include costs of labor and supervision directly attributable to the change.
 d. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
 e. Quotation Form: Use forms acceptable to Architect.

B. Contractor-Initiated Work Change Proposals: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Architect.

1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.

2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.

3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.

4. Include costs of labor and supervision directly attributable to the change.

5. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.

6. Comply with requirements in Division 01 Section "Substitution Procedures" if the proposed change requires substitution of one product or system for product or system specified.

1.4 CHANGE ORDER PROCEDURES

1.5 CONSTRUCTION CHANGE DIRECTIVE

1. Construction Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum or the Contract Time.

B. Documentation: Maintain detailed records on a time and material basis of work required by the Construction Change Directive.

1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 012600
SECTION 012900 - PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements necessary to prepare and process Applications for Payment.

B. Related Requirements:
 1. Division 01 Section "Contract Modification Procedures" for administrative procedures for handling changes to the Contract.
 2. Division 01 Section "Construction Progress Documentation" for administrative requirements governing the preparation and submittal of the Contractor's construction schedule.

1.2 SCHEDULE OF VALUES

A. Coordination: Coordinate preparation of the schedule of values with preparation of Contractor's construction schedule. Cost-loaded Critical Path Method Schedule may serve to satisfy requirements for the schedule of values.

 1. Coordinate line items in the schedule of values with other required administrative forms and schedules, including the following:
 a. Application for Payment forms with continuation sheets.
 b. Submittal schedule.
 c. Items required to be indicated as separate activities in Contractor's construction schedule.
 2. Submit the schedule of values to Architect at earliest possible date but no later than seven days before the date scheduled for submittal of initial Applications for Payment.
 3. Subschedules for Phased Work: Where the Work is separated into phases requiring separately phased payments, provide subschedules showing values coordinated with each phase of payment.

B. Format and Content: Use Project Manual table of contents as a guide to establish line items for the schedule of values. Provide at least one line item for each Specification Section.

 1. Identification: Include the following Project identification on the schedule of values:
 a. Project name and location.
 b. Name of Architect.
 c. Architect's project number.
 d. Contractor's name and address.
 e. Date of submittal.
 2. Arrange schedule of values consistent with format of AIA Document G703.
 a. Include separate line items under Contractor and principal subcontracts for LEED documentation and other Project closeout requirements in an amount totaling five percent of the Contract Sum and subcontract amount.
 4. Round amounts to nearest whole dollar; total shall equal the Contract Sum.
 5. Provide a separate line item in the schedule of values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
6. Provide separate line items in the schedule of values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.

7. Allowances: Provide a separate line item in the schedule of values for each allowance. Show line-item value of unit-cost allowances, as a product of the unit cost, multiplied by measured quantity. Use information indicated in the Contract Documents to determine quantities.

8. Each item in the schedule of values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.
 a. Temporary facilities and other major cost items that are not direct cost of actual work-in-place may be shown either as separate line items in the schedule of values or distributed as general overhead expense, at Contractor's option.

9. Schedule Updating: Update and resubmit the schedule of values before the next Applications for Payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.

1.3 APPLICATIONS FOR PAYMENT

A. Each Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.
 1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.

B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.

C. Application for Payment Forms: Use AIA Document G702 and AIA Document G703 as form for Applications for Payment.

D. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect will return incomplete applications without action.
 1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.
 2. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.

E. Transmittal: Submit three signed and notarized original copies of each Application for Payment to Architect by a method ensuring receipt within 24 hours. One copy shall include waivers of lien and similar attachments if required.
 1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.

F. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's lien from entities lawfully entitled to file a mechanic's lien arising out of the Contract and related to the Work covered by the payment.
 1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
 2. When an application shows completion of an item, submit conditional final or full waivers.
 3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
 4. Waiver Forms: Submit executed waivers of lien on forms acceptable to Owner.

G. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:
1. List of subcontractors.
2. Schedule of values.
3. Contractor's construction schedule (preliminary if not final).
4. Schedule of unit prices.
5. Submittal schedule (preliminary if not final).
6. List of Contractor's staff assignments.
7. List of Contractor's principal consultants.
10. Initial progress report.
12. Certificates of insurance and insurance policies.

H. Application for Payment at Substantial Completion: After Architect issues the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.

1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
2. This application shall reflect Certificates of Partial Substantial Completion issued previously for Owner occupancy of designated portions of the Work.

I. Final Payment Application: After completing Project closeout requirements, submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited to, the following:

1. Evidence of completion of Project closeout requirements.
2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
3. Updated final statement, accounting for final changes to the Contract Sum.
7. Evidence that claims have been settled.
8. Final meter readings for utilities, a measured record of stored fuel, and similar data as of date of Substantial Completion or when Owner took possession of and assumed responsibility for corresponding elements of the Work.
SECTION 013100 - PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:
 1. Coordination drawings.
 2. Requests for Information (RFIs).
 3. Project meetings.

B. Related Requirements:
 1. Division 01 Section "Execution" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points.

1.2 DEFINITIONS

A. RFI: Request from Owner, Architect, or Contractor seeking information required by or clarifications of the Contract Documents.

1.3 INFORMATIONAL SUBMITTALS

A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:
 1. Name, address, and telephone number of entity performing subcontract or supplying products.
 2. Number and title of related Specification Section(s) covered by subcontract.
 3. Drawing number and detail references, as appropriate, covered by subcontract.

1.4 GENERAL COORDINATION PROCEDURES

A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations, included in different Sections that depend on each other for proper installation, connection, and operation.
 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
 3. Make adequate provisions to accommodate items scheduled for later installation.

B. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.
 1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.

C. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
1. Preparation of Contractor's construction schedule.
2. Preparation of the schedule of values.
3. Installation and removal of temporary facilities and controls.
4. Delivery and processing of submittals.
5. Progress meetings.
6. Preinstallation conferences.
7. Project closeout activities.
8. Startup and adjustment of systems.

1.5 COORDINATION DRAWINGS

A. Coordination Drawings, General: Prepare coordination drawings according to requirements in individual Sections, where installation is not completely shown on Shop Drawings, where limited space availability necessitates coordination, or if coordination is required to facilitate integration of products and materials fabricated or installed by more than one entity.

1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:
 a. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.
 b. Indicate dimensions shown on the Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternate sketches to Architect indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.

B. Coordination Drawing Organization: Organize coordination drawings as follows:

1. Floor Plans and Reflected Ceiling Plans: Show architectural and structural elements, and mechanical, plumbing, fire-protection, fire-alarm, and electrical Work. Show locations of visible ceiling-mounted devices relative to acoustical ceiling grid.
2. Plenum Space: Indicate subframing for support of ceiling and wall systems, mechanical and electrical equipment, and related Work. Locate components within ceiling plenum to accommodate layout of light fixtures indicated on Drawings.
3. Mechanical Rooms: Provide coordination drawings for mechanical rooms showing plans and elevations of mechanical, plumbing, fire-protection, fire-alarm, and electrical equipment.
4. Structural Penetrations: Indicate penetrations and openings required for all disciplines.
5. Slab Edge and Embedded Items: Indicate slab edge locations and sizes and locations of embedded items for metal fabrications, sleeves, anchor bolts, bearing plates, angles, door floor closers, slab depressions for floor finishes, curbs and housekeeping pads, and similar items.
6. Review: Architect will review coordination drawings to confirm that the Work is being coordinated, but not for the details of the coordination, which are Contractor's responsibility.

1.6 REQUESTS FOR INFORMATION (RFIs)

A. General: Immediately on discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.

1. Architect will return RFIs submitted to Architect by other entities controlled by Contractor with no response.
2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.

B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:

1. Project name.
2. Project number.
3. Date.
4. Name of Contractor.
5. Name of Architect.
6. RFI number, numbered sequentially.
7. RFI subject.
8. Specification Section number and title and related paragraphs, as appropriate.
9. Drawing number and detail references, as appropriate.
10. Field dimensions and conditions, as appropriate.
11. Contractor's suggested resolution. If Contractor's solution(s) impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
12. Contractor's signature.
13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.

C. RFI Forms: Software-generated form with substantially the same content as indicated above, acceptable to Architect.

D. Architect's Action: Architect will review each RFI, determine action required, and respond. Allow seven working days for Architect's response for each RFI. RFIs received by Architect after 1:00 p.m. will be considered as received the following working day.

1. The following RFIs will be returned without action:
 a. Requests for approval of submittals.
 b. Requests for approval of substitutions.
 c. Requests for coordination information already indicated in the Contract Documents.
 d. Requests for adjustments in the Contract Time or the Contract Sum.
 e. Requests for interpretation of Architect's actions on submittals.
 f. Incomplete RFIs or inaccurately prepared RFIs.

2. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt of additional information.

3. Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Division 01 Section "Contract Modification Procedures."
 a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect in writing within 10 days of receipt of the RFI response.

E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log monthly. Include the following:

1. Project name.
2. Name and address of Contractor.
3. Name and address of Architect.
4. RFI number including RFIs that were dropped and not submitted.
5. RFI description.
6. Date the RFI was submitted.
7. Date Architect's response was received.

F. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven days if Contractor disagrees with response.

1. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.
1.7 PROJECT MEETINGS

A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.

1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times.
2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
3. Minutes: Entity responsible for conducting meeting will record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner and Architect, within three days of the meeting.

B. Preconstruction Conference: Architect will schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than 15 days after execution of the Agreement.

1. Attendees: Authorized representatives of Owner, Owner's Commissioning Authority, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
2. All sub-contractors intending to bid on or who are awarded work on the project are required to attend pre-bid and pre-construction meetings respectively. The purpose of these meetings is to review all air plenum specifications and details including but not limited to pre-construction mock-ups and plenum sealing requirements.
3. Agenda: Discuss items of significance that could affect progress, including the following:
 a. Tentative construction schedule.
 b. Critical work sequencing and long-lead items.
 c. Designation of key personnel and their duties.
 d. Procedures for processing field decisions and Change Orders.
 e. Procedures for RFIs.
 f. Procedures for testing and inspecting.
 g. Procedures for processing Applications for Payment.
 h. Distribution of the Contract Documents.
 i. Submittal procedures.
 j. Preparation of record documents.
 k. Use of the premises.
 l. Work restrictions.
 m. Working hours.
 n. Owner's occupancy requirements.
 o. Responsibility for temporary facilities and controls.
 p. Procedures for moisture and mold control.
 q. Procedures for disruptions and shutdowns.
 r. Construction waste management and recycling.
 s. Parking availability.
 t. Office, work, and storage areas.
 u. Equipment deliveries and priorities.
 v. First aid.
 w. Security.
 x. Progress cleaning.
4. Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.

C. Preinstallation Conferences: Contractor shall conduct a preinstallation conference at Project site before each construction activity that requires coordination with other construction.

1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that
have preceded or will follow, shall attend the meeting. Advise Architect of scheduled meeting dates.

2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:
 b. Options.
 c. Related RFIs.
 d. Related Change Orders.
 e. Purchases.
 f. Deliveries.
 g. Submittals.
 h. Review of mockups.
 i. Possible conflicts.
 j. Compatibility problems.
 k. Time schedules.
 l. Weather limitations.
 m. Manufacturer's written instructions.
 n. Warranty requirements.
 o. Compatibility of materials.
 p. Acceptability of substrates.
 q. Temporary facilities and controls.
 r. Space and access limitations.
 s. Regulations of authorities having jurisdiction.
 t. Testing and inspecting requirements.
 u. Installation procedures.
 v. Coordination with other work.
 w. Required performance results.
 x. Protection of adjacent work.
 y. Protection of construction and personnel.

3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.

4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.

5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.

D. Progress Meetings: Contractor shall conduct progress meetings at biweekly intervals, or as required by stage of construction or request of Owner.

1. Attendees: In addition to representatives of Owner, Owner's Commissioning Authority and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.

2. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 1) Review schedule for next period.
 b. Review present and future needs of each entity present, including the following:
1) Interface requirements.
2) Sequence of operations.
3) Status of submittals.
4) Deliveries.
5) Off-site fabrication.
6) Access.
7) Site utilization.
8) Temporary facilities and controls.
9) Progress cleaning.
10) Quality and work standards.
11) Status of correction of deficient items.
12) Field observations.
13) Status of RFIs.
14) Status of proposal requests.
15) Pending changes.
16) Status of Change Orders.
17) Pending claims and disputes.
18) Documentation of information for payment requests.

3. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.
 a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013100
SECTIOn 013200 - CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:
 1. Contractor's construction schedule.
 2. Construction schedule updating reports.
 3. Daily construction reports.
 4. Site condition reports.

1.2 DEFINITIONS

A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction project. Activities included in a construction schedule consume time and resources.
 1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
 2. Predecessor Activity: An activity that precedes another activity in the network.
 3. Successor Activity: An activity that follows another activity in the network.

B. CPM: Critical path method, which is a method of planning and scheduling a construction project where activities are arranged based on activity relationships. Network calculations determine when activities can be performed and the critical path of Project.

C. Critical Path: The longest connected chain of interdependent activities through the network schedule that establishes the minimum overall Project duration and contains no float.

D. Float: The measure of leeway in starting and completing an activity.
 1. Float time is not for the exclusive use or benefit of either Owner or Contractor, but is a jointly owned, expiring Project resource available to both parties as needed to meet schedule milestones and Contract completion date.

1.3 INFORMATIONAL SUBMITTALS

A. Format for Submittals: Submit required submittals in the following format:
 1. Working electronic copy of schedule file, where indicated.
 2. PDF electronic file.

B. Startup Network Diagram: Of size required to display entire network for entire construction period. Show logic ties for activities.

C. Contractor's Construction Schedule: Initial schedule, of size required to display entire schedule for entire construction period.

D. CPM Reports: Concurrent with CPM schedule, submit each of the following reports. Format for each activity in reports shall contain activity number, activity description, original duration, remaining duration, early start date, early finish date, late start date, late finish date, and total float in calendar days.
1. Activity Report: List of all activities sorted by activity number and then early start date, or actual start date if known.
2. Logic Report: List of preceding and succeeding activities for all activities, sorted in ascending order by activity number and then early start date, or actual start date if known.
3. Total Float Report: List of all activities sorted in ascending order of total float.

E. Construction Schedule Updating Reports: Submit with Applications for Payment.

F. Daily Construction Reports: Submit at monthly intervals.

G. Site Condition Reports: Submit at time of discovery of differing conditions.

1.4 COORDINATION

A. Coordinate preparation and processing of schedules and reports with performance of construction activities and with scheduling and reporting of separate contractors.

B. Coordinate Contractor's construction schedule with the schedule of values, list of subcontracts, submittal schedule, progress reports, payment requests, and other required schedules and reports.
 1. Secure time commitments for performing critical elements of the Work from entities involved.
 2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

PART 2 - PRODUCTS

2.1 CONTRACTOR'S CONSTRUCTION SCHEDULE, GENERAL

A. Time Frame: Extend schedule from date established for commencement of the Work to date of Substantial Completion.
 1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date, unless specifically authorized by Change Order.

B. Activities: Treat each story or separate area as a separate numbered activity for each main element of the Work. Comply with the following:
 1. Activity Duration: Define activities so no activity is longer than 20 days, unless specifically allowed by Architect.
 2. Procurement Activities: Include procurement process activities for the following long lead items and major items, requiring a cycle of more than 60 days, as separate activities in schedule. Procurement cycle activities include, but are not limited to, submittals, approvals, purchasing, fabrication, and delivery.
 3. Submittal Review Time: Include review and resubmittal times indicated in Division 01 Section "Submittal Procedures" in schedule. Coordinate submittal review times in Contractor's construction schedule with submittal schedule.
 4. Startup and Testing Time: Include no fewer than 15 days for startup and testing.
 5. Substantial Completion: Indicate completion in advance of date established for Substantial Completion, and allow time for Architect's administrative procedures necessary for certification of Substantial Completion.
 6. Punch List and Final Completion: Include not more than 30 days for completion of punch list items and final completion.

C. Constraints: Include constraints and work restrictions indicated in the Contract Documents and as follows in schedule, and show how the sequence of the Work is affected.
1. Work by Owner: Include a separate activity for each portion of the Work performed by Owner.

2. Work Restrictions: Show the effect of the following items on the schedule:
 a. Coordination with existing construction.
 b. Uninterruptible services.
 c. Partial occupancy before Substantial Completion.
 d. Use of premises restrictions.
 e. Environmental control.

3. Work Stages: Indicate important stages of construction for each major portion of the Work.

D. Milestones: Include milestones indicated in the Contract Documents in schedule, including, but not limited to, the Notice to Proceed, Substantial Completion, and Final Completion.

E. Upcoming Work Summary: Prepare summary report indicating activities scheduled to occur or commence prior to submittal of next schedule update. Summarize the following issues:
 1. Unresolved issues.
 2. Unanswered Requests for Information.
 3. Rejected or unreturned submittals.
 4. Notations on returned submittals.

F. Recovery Schedule: When periodic update indicates the Work is 14 or more calendar days behind the current approved schedule, submit a separate recovery schedule indicating means by which Contractor intends to regain compliance with the schedule.

G. Computer Scheduling Software: Prepare schedules using current version of a program that has been developed specifically to manage construction schedules.

2.2 CONTRACTOR'S CONSTRUCTION SCHEDULE (CPM SCHEDULE)

A. General: Prepare network diagrams using AON (activity-on-node) format.

B. Startup Network Diagram: Submit diagram within 14 days of date established for the Notice of Award. Outline significant construction activities for the first 90 days of construction. Include skeleton diagram for the remainder of the Work and a cash requirement prediction based on indicated activities.

C. CPM Schedule: Prepare Contractor's construction schedule using a time-scaled CPM network analysis diagram for the Work.
 1. Develop network diagram in sufficient time to submit CPM schedule so it can be accepted for use no later than 60 days after date established for the Notice of Award.
 a. Failure to include any work item required for performance of this Contract shall not excuse Contractor from completing all work within applicable completion dates, regardless of Architect's approval of the schedule.
 2. Establish procedures for monitoring and updating CPM schedule and for reporting progress. Coordinate procedures with progress meeting and payment request dates.
 3. Use "one workday" as the unit of time for individual activities. Indicate nonworking days and holidays incorporated into the schedule in order to coordinate with the Contract Time.

D. CPM Schedule Preparation: Prepare a list of all activities required to complete the Work. Using the startup network diagram, prepare a skeleton network to identify probable critical paths.
 1. Activities: Indicate the estimated time duration, sequence requirements, and relationship of each activity in relation to other activities. Include estimated time frames for the following activities:
 a. Preparation and processing of submittals.
 b. Mobilization and demobilization.
 c. Purchase of materials.
d. Delivery.
e. Fabrication.
f. Utility interruptions.
g. Installation.
h. Work by Owner that may affect or be affected by Contractor's activities.
i. Testing and commissioning.
j. Punch list and final completion.
k. Activities occurring following final completion.

2. Critical Path Activities: Identify critical path activities, including those for interim completion dates. Scheduled start and completion dates shall be consistent with Contract milestone dates.

3. Processing: Process data to produce output data on a computer-drawn, time-scaled network. Revise data, reorganize activity sequences, and reproduce as often as necessary to produce the CPM schedule within the limitations of the Contract Time.

4. Format: Mark the critical path. Locate the critical path near center of network; locate paths with most float near the edges.
 a. Subnetworks on separate sheets are permissible for activities clearly off the critical path.

E. Contract Modifications: For each proposed contract modification and concurrent with its submission, prepare a time-impact analysis using a network fragment to demonstrate the effect of the proposed change on the overall project schedule.

F. Initial Issue of Schedule: Prepare initial network diagram from a sorted activity list indicating straight "early start-total float." Identify critical activities. Prepare tabulated reports showing the following:
 1. Contractor or subcontractor and the Work or activity.
 2. Description of activity.
 3. Main events of activity.
 4. Immediate preceding and succeeding activities.
 5. Early and late start dates.
 6. Early and late finish dates.
 7. Activity duration in workdays.
 8. Total float or slack time.
 10. Dollar value of activity (coordinated with the schedule of values).

G. Schedule Updating: Concurrent with making revisions to schedule, prepare tabulated reports showing the following:
 1. Identification of activities that have changed.
 2. Changes in early and late start dates.
 3. Changes in early and late finish dates.
 5. Changes in the critical path.
 6. Changes in total float or slack time.

2.3 REPORTS

A. Daily Construction Reports: Prepare a daily construction report recording the following information concerning events at Project site:
 1. List of subcontractors at Project site.
 2. List of separate contractors at Project site.
 3. Approximate count of personnel at Project site.
 4. Equipment at Project site.
 5. Material deliveries.
 6. High and low temperatures and general weather conditions, including presence of rain or snow.
7. Accidents.
8. Meetings and significant decisions.
9. Unusual events.
10. Stoppages, delays, shortages, and losses.
11. Meter readings and similar recordings.
13. Orders and requests of authorities having jurisdiction.
14. Change Orders received and implemented.
15. Construction Change Directives received and implemented.
16. Services connected and disconnected.
17. Equipment or system tests and startups.
18. Partial completions and occupancies.
19. Substantial Completions authorized.

B. Site Condition Reports: Immediately on discovery of a difference between site conditions and the Contract Documents, prepare and submit a detailed report. Submit with a Request for Information. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.

PART 3 - EXECUTION

3.1 CONTRACTOR'S CONSTRUCTION SCHEDULE

A. Contractor's Construction Schedule Updating: At monthly intervals, update schedule to reflect actual construction progress and activities. Issue schedule one week before each regularly scheduled progress meeting.
 1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting.
 2. Include a report with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations.
 3. As the Work progresses, indicate final completion percentage for each activity.

B. Distribution: Distribute copies of approved schedule to Architect Owner, separate contractors, testing and inspecting agencies, and other parties identified by Contractor with a need-to-know schedule responsibility.
 1. Post copies in Project meeting rooms and temporary field offices.
 2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

END OF SECTION 013200
SECTION 013300 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.

B. Related Requirements:
1. Division 01 Section "Construction Progress Documentation" for submitting schedules and reports, including Contractor's construction schedule.
2. Division 01 Section "Operation and Maintenance Data" for submitting operation and maintenance manuals.
3. Division 01 Section "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.
4. Division 01 Section "Demonstration and Training" for submitting video recordings of demonstration of equipment and training of Owner's personnel.

1.2 DEFINITIONS

A. Action Submittals: Written and graphic information and physical samples that require Architect's responsive action.

B. Informational Submittals: Written and graphic information and physical samples that do not require Architect's responsive action. Submittals may be rejected for not complying with requirements.

1.3 ACTION SUBMITTALS

A. Submittal Schedule: Submit a schedule of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Architect and additional time for handling and reviewing submittals required by those corrections.

1.4 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

A. Architect's Digital Data Files: Electronic copies of digital data files of the Contract Drawings will be provided by Architect for Contractor's use in preparing submittals.

 a. Architect makes no representations as to the accuracy or completeness of digital data drawing files as they relate to the Contract Drawings.
 b. Contractor shall execute a data licensing agreement in the form of Agreement included in Project Manual.

B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.

1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
2. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.

C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.

1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.

2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.

3. Resubmittal Review: Allow 15 days for review of each resubmittal.

D. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:

1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.

2. Name file with submittal number or other unique identifier, including revision identifier.
 a. File name shall use project identifier and Specification Section number followed by a decimal point and then a sequential number (e.g., LNHS-061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., LNHS-061000.01.A).

3. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Architect.

4. Transmittal Form for Electronic Submittals: Use software-generated form from electronic project management software acceptable to Owner, containing the following information:
 a. Project name.
 b. Date.
 c. Name and address of Architect.
 d. Name of Construction Manager.
 e. Name of Contractor.
 f. Name of firm or entity that prepared submittal.
 g. Names of subcontractor, manufacturer, and supplier.
 h. Category and type of submittal.
 i. Submittal purpose and description.
 j. Specification Section number and title.
 k. Specification paragraph number or drawing designation and generic name for each of multiple items.
 l. Drawing number and detail references, as appropriate.
 m. Location(s) where product is to be installed, as appropriate.
 n. Related physical samples submitted directly.
 o. Indication of full or partial submittal.
 p. Transmittal number, numbered consecutively.
 q. Submittal and transmittal distribution record.
 r. Other necessary identification.
 s. Remarks.

5. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 a. Project name.
 b. Number and title of appropriate Specification Section.
 c. Manufacturer name.
 d. Product name.

E. Options: Identify options requiring selection by Architect.
F. Deviations: Identify deviations from the Contract Documents on submittals.

G. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 1. Note date and content of previous submittal.
 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 3. Resubmit submittals until they are marked with approval notation from Architect's action stamp.

H. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

I. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Architect's action stamp.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

A. General Submittal Procedure Requirements:
 1. Submit electronic submittals via email as PDF electronic files.
 2. Certificates and Certifications Submittals: Provide a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity.
 a. Provide a digital signature with digital certificate on electronically-submitted certificates and certifications where indicated.

B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
 2. Mark each copy of each submittal to show which products and options are applicable.
 3. Include the following information, as applicable:
 a. Manufacturer's catalog cuts.
 b. Manufacturer's product specifications.
 c. Standard color charts.
 d. Statement of compliance with specified referenced standards.
 e. Testing by recognized testing agency.
 f. Application of testing agency labels and seals.
 g. Notation of coordination requirements.
 h. Availability and delivery time information.
 4. For equipment, include the following in addition to the above, as applicable:
 a. Wiring diagrams showing factory-installed wiring.
 b. Printed performance curves.
 c. Operational range diagrams.
 d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
 5. Submit Product Data before or concurrent with Samples.
 6. Submit Product Data in the following format:
 a. PDF electronic file.
C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data, unless submittal based on Architect's digital data drawing files is otherwise permitted.

1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 a. Identification of products.
 b. Schedules.
 c. Compliance with specified standards.
 d. Notation of coordination requirements.
 e. Notation of dimensions established by field measurement.
 f. Relationship and attachment to adjoining construction clearly indicated.
 g. Seal and signature of professional engineer if specified.

2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches, but no larger than 30 by 42 inches.

3. Submit Shop Drawings in the following format:
 a. PDF electronic file.

D. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other elements and for a comparison of these characteristics between submittal and actual component as delivered and installed.

1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.

2. Identification: Attach label on unexposed side of Samples that includes the following:
 a. Generic description of Sample.
 b. Product name and name of manufacturer.
 c. Sample source.
 d. Number and title of applicable Specification Section.

3. For projects where electronic submittals are required, provide corresponding electronic submittal of Sample transmittal, digital image file illustrating Sample characteristics, and identification information for record.

4. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
 b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.

5. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 a. Number of Samples: Submit two full set(s) of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Architect will return submittal with options selected.

6. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 a. Number of Samples: Submit two sets of Samples. Architect will retain one Sample sets; remainder will be returned.
 1) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations.
E. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:
 1. Submit product schedule in the following format: PDF electronic file.

F. Coordination Drawings Submittals: Comply with requirements specified in Division 01 Section "Project Management and Coordination."

G. Contractor's Construction Schedule: Comply with requirements specified in Division 01 Section "Construction Progress Documentation."

H. Application for Payment and Schedule of Values: Comply with requirements specified in Division 01 Section "Payment Procedures."

I. Test and Inspection Reports and Schedule of Tests and Inspections Submittals: Comply with requirements specified in Division 01 Section "Quality Requirements."

J. Closeout Submittals and Maintenance Material Submittals: Comply with requirements specified in Division 01 Section "Closeout Procedures."

K. Maintenance Data: Comply with requirements specified in Division 01 Section "Operation and Maintenance Data."

L. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.

M. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.

N. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.

O. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.

P. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.

Q. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.

R. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.

S. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.
T. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project.

U. Schedule of Tests and Inspections: Comply with requirements specified in Division 01 Section "Quality Requirements."

V. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.

W. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.

X. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

Y. Design Data: Prepare and submit written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

2.2 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.

 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.

B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit digitally signed PDF electronic file and paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.

 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.

B. Project Closeout and Maintenance Material Submittals: See requirements in Division 01 Section "Closeout Procedures."

C. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.
3.2 ARCHITECT'S ACTION

A. General: Architect will not review submittals that do not bear Contractor's approval stamp and will return them without action.

B. Action Submittals: Architect will review each submittal, make marks to indicate corrections or revisions required, and return it. Architect will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action, as follows:
 1. Reviewed: Contractor may proceed.
 2. Revise as Noted: Contractor may proceed in accordance with notations provided.
 3. Revise and Resubmit: Revise submittal and resubmit prior to proceeding.
 4. Rejected: Submittal not acceptable

C. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.

D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.

E. Submittals not required by the Contract Documents may not be reviewed and may be discarded.

END OF SECTION 013300
DIGITAL DATA LETTER OF AGREEMENT

An Agreement Between the Architect and _____________ (the “Transferee,” either Original or Third Party, as the case may be) for Transfer of Digital Data

Architect: LS3P
110 West North Street, Suite 300
Greenville, South Carolina 29601
Contact:

Transferee:
Original
3rd Party

Contract No.:
Project No.: 3202–130970
Location: Pendleton, South Carolina
Date:

The Architect will provide the following Digital Data, dated as of the particular transmission, to the Transferee for information purposes only:

Digital Data was prepared using the following:

Software: Revit (.rvt) Version:

Digital Data to be delivered via the following media: Newforma Website posting

Transferee shall pay the Architect a service fee of $1.00 and other good and valuable consideration.

TERMS AND CONDITIONS

1. The Architect and its consultants make no representation as to the compatibility of the Digital Data with any hardware or software. The Transferee shall notify the Architect within five (5) business days of any problems associated with accessing and/or using the Digital Data.

2. The Transferee acknowledges and agrees that the Digital Data can be modified unintentionally or otherwise. The Transferee acknowledges and agrees that the Architect and its consultants may remove all indications of ownership from the Digital Data prior to transmission.

3. All Digital Data shall be considered the property of the Architect and/or its consultants and shall not be used for other Projects, for additions to this Project, or for completion of this Project without the prior written permission of the Architect and/or its consultants. Digital Data shall not be re-transmitted by the Original Transferee to a Third Party Transferee without prior execution of an agreement identical to this Agreement between the Architect, the Original Transferee, and the Third Party Transferee. Under no circumstances shall the transmission of the Digital Data be considered a sale of goods or a sale of copyrights.

4. THE ARCHITECT AND THE ARCHITECT’S CONSULTANTS HEREBY EXPRESSLY DISCLAIM ANY AND ALL WARRANTIES, BOTH EXPRESS AND IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY AND THE IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE AS WELL AS ANY WARRANTY OF ACCURACY, COMPLETENESS, AND/OR PERMANENCE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTION ON THE FACE HEREOF. Addenda information and/or revisions made to the most current Digital Data after any date of transmission may not have been incorporated into the transmitted Digital Data. The Architect may
update the Digital Data and give notice to authorized parties (or not) as is consistent with the Architect’s professional skill and care and the orderly progress of the Work. In the event of a conflict between the Architect’s printed instruments of service (whether sealed or not) and the Digital Data, the printed instruments of service shall govern. The Transferee acknowledges and agrees that the duty to determine the existence of any and all conflicts between the Digital Data and any other information upon which the Transferee relies rests solely upon the Transferee. The Digital Data shall not be considered Contract Documents or Construction Documents as defined by any General Conditions of Contract for Construction. The Digital Data is being provided on a strictly “AS IS” basis.

5. The use and/or provision of the Digital Data prepared by the Architect and/or its consultants shall not in any way reduce or obviate the Transferee’s duty to check and coordinate dimensions, details, and quantities of materials as required to facilitate construction of the Project. Confirmation of existing conditions is the sole responsibility of the Transferee.

6. The Transferee agrees to the extent permitted by applicable law, to indemnify, hold harmless, release, and defend the Architect and/or its consultants, their officers, shareholders, employees, and sub-consultants from any and all injuries, claims, demands, expenses, suits, liabilities, losses, damages, costs, disputes, other matters in question, third party claims, pass-through claims, subrogated claims, and/or claim expenses related to the Digital Data, including but not limited to, attorneys’ fees, expert witness fees, and court costs arising out of or in any way related to or connected with any negligent act and/or omission in the generation, provision, and/or use of the Digital Data by the Transferee and/or any of its subcontractors, suppliers, and/or consultants and waive any and all rights to such claims and causes of action.

7. The Transferee waives damages against the Architect for any and all injuries, claims, losses, expenses, damages, disputes, other matters in question, and/or claim expenses arising out of or relating to this Agreement and/or generation, provision, and/or use of the Digital Data, including, but not limited to, consequential damages and reasonable attorneys’ fees and defense costs.

8. The Architect’s and/or the Architect’s consultants’ liability to the Transferee and/or any of its subcontractors, suppliers, and/or consultants for any and all injuries, claims, losses, expenses, damages, disputes, other matters in question, third party claims, pass-through claims, subrogated claims, and/or claim expenses arising out of or relating to this Agreement and/or the Digital Data, including, but not limited to, reasonable attorneys’ fees and defense costs, regardless of the nature of the claim or damage, shall not exceed, either individually or in the aggregate, the total amount of $1,000.00. Such causes include, but are not limited to, the Architect’s and/or the Architect’s consultants’ negligence, errors, omissions, strict liability, breach of contract, and/or breach of warranty.

9. Upon information and belief, there are no licensing or copyright fees due to others based on the transmission of the Digital Data, but to the extent that such unknown fees do exist, the Transferee agrees to pay the required fees and hold the Architect and/or its consultants harmless from any associated costs or penalties.

10. Upon execution of this Agreement, the Architect grants to the Transferee a non-exclusive, non-transferable (except as set forth herein) license to use the Digital Data solely and exclusively for informational purposes only, provided that the Transferee substantially performs its obligations, including prompt payment of all sums when due, under this Agreement.

11. Any purchase order number provided by the Transferee is for the Transferee’s accounting purposes only. The Transferee acknowledges and agrees that purchase order terms and conditions are null, void, and inapplicable to this Agreement.

12. Payment of the service fee set forth herein is due prior to transmission of the Digital Data.

13. This Agreement constitutes the entire agreement between the parties relative to the Digital Data and shall be governed by the laws of the State of South Carolina.
AUTHORIZED ACCEPTANCE

by Architect:
LS3P ASSOCIATES LTD.

Signature

Print Name and Title

Date

by Original Transferee:

Signature

Print Name and Title

Date

by Third Party Transferee:

Signature

Print Name and Title

Date
SECTION 014000 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for quality assurance and quality control.

B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 1. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.
 2. Requirements for Contractor to provide quality-assurance and -control services required by Architect, Owner, Commissioning Authority, or authorities having jurisdiction (AHJ) are not limited by provisions of this Section.

C. Related Requirements: Divisions 02 through 33 Sections for specific test and inspection requirements.

1.2 DEFINITIONS

A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and to substantiate that proposed construction will comply with requirements.

B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect.

C. Mockups: Full-size physical assemblies that are constructed on-site. Mockups are constructed to verify selections made under Sample submittals; to demonstrate aesthetic effects and, where indicated, qualities of materials and execution; to review coordination, testing, or operation; to show interface between dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work will be judged.

D. Preconstruction Testing: Tests and inspections performed specifically for Project before products and materials are incorporated into the Work, to verify performance or compliance with specified criteria.

E. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.

F. Source Quality-Control Testing: Tests and inspections that are performed at the source, e.g., plant, mill, factory, or shop.

G. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.

H. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
I. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.

1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).

J. Experienced: When used with an entity or individual, "experienced" means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.3 CONFLICTING REQUIREMENTS

A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for a decision before proceeding.

B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.4 INFORMATIONAL SUBMITTALS

A. Contractor's Statement of Responsibility: When required by authorities having jurisdiction, submit copy of written statement of responsibility sent to authorities having jurisdiction before starting work on the following systems:

1. Seismic-force-resisting system, designated seismic system, or component listed in the designated seismic system quality-assurance plan prepared by Architect.

B. Testing Agency Qualifications: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.

1.5 REPORTS AND DOCUMENTS

A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:

1. Date of issue.
2. Project title and number.
3. Name, address, and telephone number of testing agency.
4. Dates and locations of samples and tests or inspections.
5. Names of individuals making tests and inspections.
6. Description of the Work and test and inspection method.
8. Complete test or inspection data.
9. Test and inspection results and an interpretation of test results.
10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
12. Name and signature of laboratory inspector.
13. Recommendations on retesting and reinspecting.

B. Manufacturer's Field Reports: Prepare written information documenting tests and inspections specified in other Sections. Include the following:
 1. Name, address, and telephone number of representative making report.
 2. Statement on condition of substrates and their acceptability for installation of product.
 3. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
 4. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 5. Other required items indicated in individual Specification Sections.

C. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.6 QUALITY ASSURANCE

A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.

B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.

E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or products that are similar in material, design, and extent to those indicated for this Project.

F. Specialists: Certain Specification Sections require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.
 1. Requirements of authorities having jurisdiction shall supersede requirements for specialists.

G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 329; and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.
 1. NRTL: A nationally recognized testing laboratory according to 29 CFR 1910.7.
 2. NVLAP: A testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program.
H. Manufacturer's Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

I. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:

1. Contractor responsibilities include the following:
 a. Provide test specimens representative of proposed products and construction.
 b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 c. Build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work.
 d. When testing is complete, remove test specimens, assemblies, and mockups; do not reuse products on Project.

2. Testing Agency Responsibilities: Submit a certified written report of each test, inspection, and similar quality-assurance service to Architect, with copy to Contractor. Interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.

J. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:

1. Build mockups in location and of size indicated or, if not indicated, as directed by Architect.
2. Notify Architect seven days in advance of dates and times when mockups will be constructed.
3. Demonstrate the proposed range of aesthetic effects and workmanship.
4. Obtain Architect's approval of mockups before starting work, fabrication, or construction.
 a. Allow seven days for initial review and each re-review of each mockup.
5. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
6. Demolish and remove mockups when directed unless otherwise indicated.

K. Plenum Mock-up Testing: All subcontractors responsible for constructing or penetrating the under floor plenum must participate in the construction of an on-site plenum mockup consisting of all planned plenum components, penetrations, seams and openings. The mock-up plenum is to be inspected and tested by an independent commissioning agent for air leakage to verify that it was constructed and sealed in accordance with specifications and drawings including meeting the air leakage requirements.

1.7 QUALITY CONTROL

A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.

1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspecting they are engaged to perform.
2. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor, and the Contract Sum will be adjusted by Change Order.

B. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities required to verify that the Work complies with requirements, whether specified or not.

1. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services.
 a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
2. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspecting will be performed.

3. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.

4. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.

5. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.

C. Manufacturer's Field Services: Where indicated, engage a manufacturer's representative to observe and inspect the Work. Manufacturer's representative's services include examination of substrates and conditions, verification of materials, inspection of completed portions of the Work, and submittal of written reports.

D. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.

1. Notify Architect and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.

2. Determine the location from which test samples will be taken and in which in-situ tests are conducted.

3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.

4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.

5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.

6. Do not perform any duties of Contractor.

F. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:

1. Access to the Work.

2. Incidental labor and facilities necessary to facilitate tests and inspections.

3. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.

4. Facilities for storage and field curing of test samples.

5. Delivery of samples to testing agencies.

6. Preliminary design mix proposed for use for material mixes that require control by testing agency.

7. Security and protection for samples and for testing and inspecting equipment at Project site.

G. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.

1. Schedule times for tests, inspections, obtaining samples, and similar activities.

1.8 SPECIAL TESTS AND INSPECTIONS

A. Special Tests and Inspections: Owner will engage a qualified testing agency to conduct special tests and inspections required by authorities having jurisdiction as the responsibility of Owner, as indicated in Statement of Special Inspections attached to this Section, and as follows:
1. Verifying that manufacturer maintains detailed fabrication and quality-control procedures and reviews the completeness and adequacy of those procedures to perform the Work.

2. Notifying Architect and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services.

3. Submitting a certified written report of each test, inspection, and similar quality-control service to Architect with copy to Contractor and to authorities having jurisdiction.

4. Submitting a final report of special tests and inspections at Substantial Completion, which includes a list of unresolved deficiencies.

5. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents.

6. Retesting and reinspecting corrected work.

B. Air Plenum Testing: Special inspections must be conducted by an independent quality auditor or commissioning agent to ensure that plenum sealing work is performed by all subcontractors in compliance with specifications and drawings. Inspections shall occur as work progresses and whenever possible in the presence of a representative from the general contractor. Reports of inspections will be submitted to the general contractor.

1. The constructed plenum is to be inspected and tested by an independent commissioning agent for air leakage to verify that it was constructed and sealed in accordance with specifications and drawings including meeting the air leakage requirements.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:

1. Date test or inspection was conducted.
2. Description of the Work tested or inspected.
3. Date test or inspection results were transmitted to Architect.
4. Identification of testing agency or special inspector conducting test or inspection.

B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Architect's, Commissioning Authority's, reference during normal working hours.

3.2 REPAIR AND PROTECTION

A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.

1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Division 01 Section "Execution."

B. Protect construction exposed by or for quality-control service activities.

C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.
TABLE 5-15 STATEMENT OF SPECIAL INSPECTIONS

STATEMENT OF SPECIAL INSPECTIONS

1. **Section 1704 – Special Inspections**
 a. **1704.2.4 Report Requirements**
 i. Special Inspection Reports shall be emailed to the Contractor within one week of performing Tests and/or Inspections.
 ii. Non-conforming items shall be immediately brought to the attention of the contractor for correction.
 iii. If non-conforming items are not corrected, the items shall be brought to the attention of the building official and the Design Professional in Responsible Charge prior to completion of that portion of the work and prior to that work being covered.
 iv. All Inspection Reports shall be compiled by the Contractor and submitted to the Design Professional in Responsible Charge.
 v. At the Project’s completion, the Special Inspection’s Coordinator shall issue a final report documenting special inspections were performed per this Statement of Special Inspections and Deficiencies were corrected.
 b. **1704.2.5 – Inspection of Fabricators**
 i. Metal Building System (MBS) Fabricator shall provide current International Accreditation Service certification to the special inspector.
 c. **1705.2 – Steel Construction**
 i. **1705.2.2.1 Welding.**
 1. Review field welds to ensure welds conform with AWS D1.1.
 ii. **1705.2.2.3 Details.**
 1. Inspect anchor rods for all MBS columns to ensure proper washer and nut installation.
 2. Inspect all horizontal and vertical rod bracing to ensure proper tension and nut/bolt installation.
 3. Inspect all purlin and girt bolted connections to ensure snug tight condition.
 iii. **1705.2.2.4 High-Strength bolts.**
 1. Test 10% of high strength bolted connections of the MBS.
 2. Obtain Certificate of Compliance for bolts, nuts, and washers for all types used.
 d. **1705.3 – Concrete Construction**
 i. Inspect reinforcing steel for each set of foundations and foundation walls to be placed. Size, spacing, laps, and special details are to be reviewed.
 ii. Verify mix design conforms with the approved mix designs.
 iii. Inspect anchor rods for the MBS to ensure embedments and end plate anchorages meet approved shop drawing requirements.
 iv. As concrete additives are being placed, specifically ensure micro fiber content is per the approved mix designs.
 v. Sample concrete as follows for first load of each day, first load of any different type concrete, first load of any different structure, and for each 100 cubic yards placed.
 Provide the following tests:
 2. Slump, ASTM C143.
 3. Air content by pressure method, ASTM C231.
 4. Concrete Temperature.
 5. Air temperature and weather (cloudy, windy, etc.) at placement time.
 vi. Observe Curing Techniques and time of sawcut installation following finishing for all slabs on grade.
 vii. Inspection to include walls, slabs, and footings.
 e. **1705.6 – Soils**
 i. See geotechnical engineer’s requirements for testing of fill and stone base.
Two sets of special inspection reports shall be submitted to Arrowood & Arrowood, PC and LS3P Architecture following each of the items listed above. The special inspection reports shall be compiled and submitted to the Building Code Office prior to application request for Certificate of Occupancy.
SECTION 014200 - REFERENCES

PART 1 - GENERAL

1.1 DEFINITIONS

A. General: Basic Contract definitions are included in the Conditions of the Contract.

B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.

C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."

D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."

E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.

F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.

G. "Install": Operations at Project site including unloading, temporarily storing, unpacking, assembling, erecting, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations.

H. "Provide": Furnish and install, complete and ready for the intended use.

I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.

1.2 INDUSTRY STANDARDS

A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.

B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.

C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.

1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

1.3 ABBREVIATIONS AND ACRONYMS
A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities indicated in Thomson Gale's "Encyclopedia of Associations" or in Columbia Books' "National Trade & Professional Associations of the U.S."

B. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list.
 - IAPMO International Association of Plumbing and Mechanical Officials
 - ICC International Code Council

C. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list.
 - COE Army Corps of Engineers
 - CPSC Consumer Product Safety Commission
 - DOC Department of Commerce
 - DOD Department of Defense
 - DOE Department of Energy
 - EPA Environmental Protection Agency
 - FAA Federal Aviation Administration
 - FCC Federal Communications Commission
 - FDA Food and Drug Administration
 - GSA General Services Administration
 - HUD Department of Housing and Urban Development
 - NIST National Institute of Standards and Technology
 - OSHA Occupational Safety & Health Administration
 - PBS Public Buildings Service
 (See GSA)
 - PHS Office of Public Health and Science
 - RUS Rural Utilities Service
 (See USDA)
 - SD State Department
 - TRB Transportation Research Board
 - USDA Department of Agriculture
 - USPS Postal Service

D. Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the standards and regulations in the following list.
 - ADAAG Americans with Disabilities Act (ADA)
 - CFR Code of Federal Regulations
 Available from Government Printing Office
 - FED-STD Federal Standard
 (See FS)
 - FTMS Federal Test Method Standard
 (See FS)
 - UFAS Uniform Federal Accessibility Standards
 Available from Access Board

PART 2 - PRODUCTS (Not Used)
PART 3 - EXECUTION (Not Used)
END OF SECTION 014200
SECTION 015000 - TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes requirements for temporary utilities, support facilities, and security and protection facilities.

B. Related Requirements: Division 01 Section "Summary" for work restrictions and limitations on utility interruptions.

1.2 USE CHARGES

A. General: Installation and removal of and use charges for temporary facilities shall be included in the Contract Sum unless otherwise indicated. Allow other entities to use temporary services and facilities without cost, including, but not limited to, Architect, occupants of Project, testing agencies, and authorities having jurisdiction.

1.3 INFORMATIONAL SUBMITTALS

A. Site Plan: Show temporary facilities, utility hookups, staging areas, and parking areas for construction personnel.

B. Erosion- and Sedimentation-Control Plan: Show compliance with requirements of EPA Construction General Permit or authorities having jurisdiction, whichever is more stringent.

C. Fire-Safety Program: Show compliance with requirements of NFPA 241 and authorities having jurisdiction. Indicate Contractor personnel responsible for management of fire prevention program.

1.4 QUALITY ASSURANCE

A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.

B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.

1.5 PROJECT CONDITIONS

A. Temporary Use of Permanent Facilities: Engage Installer of each permanent service to assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before Owner's acceptance, regardless of previously assigned responsibilities.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Chain-Link Fencing: Minimum 2-inch, 0.148-inch-thick, galvanized-steel, chain-link fabric fencing; minimum 6 feet high with galvanized-steel pipe posts; minimum 2-3/8-inch-OD line posts and 2-7/8-inch-OD corner and pull posts, with 1-5/8-inch-OD top rails.
B. Portable Chain-Link Fencing: Minimum 2-inch, 0.148-inch-thick, galvanized-steel, chain-link fabric fencing; minimum 6 feet high with galvanized-steel pipe posts; minimum 2-3/8-inch OD line posts and 2-7/8-inch OD corner and pull posts, with 1-5/8-inch OD top and bottom rails. Provide galvanized-steel bases for supporting posts.

C. Privacy Screening at Perimeter Site Fencing: Provide 70% heat-sealed vinyl coated woven polyester mesh, with reinforced grommet border, brass grommets for attachment, internal grommet strip, and half moon wind vents.

1. 3.0 ounce/sq yd base material w/ 6.0 ounce per square yard coating of dark poly vinyl chloride coating for a total weight of 9.0 ounces per square yard.

2.2 TEMPORARY FACILITIES

A. Field Offices, General: Are not required, Contractor may use space within the building for construction project management.

B. Common-Use Field Office space within the building: Of sufficient size to accommodate needs of Owner, Architect, and construction personnel office activities and to accommodate Project meetings specified in other Division 01 Sections. Keep area clean and orderly.

C. Storage and Fabrication Sheds: Provide sheds sized, furnished, and equipped to accommodate materials and equipment for construction operations.

2.3 EQUIPMENT

A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.

B. HVAC Equipment: Owner authorizes use of permanent HVAC system.

1. Use of permanent HVAC system for temporary use during construction, provide filter with MERV of 8 at each return-air grille in system and remove at end of construction and clean HVAC system as required in Division 01 Section "Closeout Procedures."

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.

1. Locate facilities to limit site disturbance as specified in Division 01 Section "Summary."

B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.2 TEMPORARY UTILITY INSTALLATION

A. General: Connect to and extend existing service as needed.

B. Sewers and Drainage: Connect sewers to municipal system as directed by authorities having jurisdiction.

C. Water Service: Install water service and distribution piping in sizes and pressures adequate for construction.
D. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use of construction personnel. Comply with requirements of authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities.

E. Heating: Provide temporary heating required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed.

F. Ventilation and Humidity Control: Provide temporary ventilation required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed. Coordinate ventilation requirements to produce ambient condition required and minimize energy consumption.

G. Electric Power Service: Use Owner’s existing system, provide by-passes and extend temporary power as needed.

H. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions.
 1. Install and operate temporary lighting that fulfills security and protection requirements without operating entire system.

I. Telephone Service: Provide temporary telephone service in common-use facilities for use by all construction personnel. Install one telephone line(s) for each field office.
 1. Provide additional telephone lines for the following:
 a. A dedicated telephone line for each facsimile machine in each field office.
 2. At each telephone, post a list of important telephone numbers.
 a. Police and fire departments.
 b. Ambulance service.
 c. Contractor's home office.
 d. Contractor's emergency after-hours telephone number.
 e. Architect's office.
 f. Engineers' offices.
 g. Owner's office.
 h. Principal subcontractors' field and home offices.
 3. Provide superintendent with cellular telephone or portable two-way radio for use when away from field office.

3.3 SUPPORT FACILITIES INSTALLATION

A. Electronic Communication Service: Provide a desktop computer in the primary field office adequate for use by Architect and Owner to access project electronic documents and maintain electronic communications.

B. General: Comply with the following:
 1. Provide construction for temporary offices, shops, and sheds located within construction area or within 30 feet of building lines that is noncombustible according to ASTM E 136. Comply with NFPA 241.
 2. Maintain support facilities until Architect schedules Substantial Completion inspection. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.
C. Temporary Roads and Paved Areas: Construct and maintain temporary roads and paved areas adequate for construction operations. Locate temporary roads and paved areas within construction limits indicated on Drawings.
 1. Provide dust-control treatment that is nonpolluting and nontracking. Reapply treatment as required to minimize dust.

D. Temporary Use of Permanent Roads and Paved Areas: Locate temporary roads and paved areas in same location as permanent roads and paved areas. Construct and maintain temporary roads and paved areas adequate for construction operations. Extend temporary roads and paved areas, within construction limits indicated, as necessary for construction operations.
 1. Coordinate elevations of temporary roads and paved areas with permanent roads and paved areas.
 2. Prepare subgrade and install subbase and base for temporary roads and paved areas according to Division 31 Section "Earth Moving."
 3. Recondition base after temporary use, including removing contaminated material, regrading, proofrolling, compacting, and testing.
 4. Delay installation of final course of permanent hot-mix asphalt pavement until immediately before Substantial Completion. Repair hot-mix asphalt base-course pavement before installation of final course according to Division 32 Section "Asphalt Paving."

E. Traffic Controls: Comply with requirements of authorities having jurisdiction.
 1. Protect existing site improvements to remain including curbs, pavement, and utilities.
 2. Maintain access for fire-fighting equipment and access to fire hydrants.

F. Parking: Use areas designated by Owner for parking areas for construction personnel. Do not park in adjacent garage.

G. Waste Disposal Facilities: Comply with requirements specified in Division 01 Section "Construction Waste Management and Disposal."

H. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel.
 1. Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities.

3.4 SECURITY AND PROTECTION FACILITIES INSTALLATION

A. Protection of Existing Facilities: Protect existing vegetation, equipment, structures, utilities, and other improvements at Project site and on adjacent properties, except those indicated to be removed or altered. Repair damage to existing facilities.

B. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction as required to comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.

C. Temporary Erosion and Sedimentation Control: Comply with requirements of 2003 EPA Construction General Permit or authorities having jurisdiction, whichever is more stringent and requirements specified in Division 31 Section "Site Clearing."

D. Stormwater Control: Comply with requirements of authorities having jurisdiction. Provide barriers in and around excavations and subgrade construction to prevent flooding by runoff of stormwater from heavy rains.
E. Tree and Plant Protection: Install temporary fencing located as indicated or outside the drip line of trees to protect vegetation from damage from construction operations. Protect tree root systems from damage, flooding, and erosion.

F. Pest Control: Engage pest-control service to recommend practices to minimize attraction and harboring of rodents, roaches, and other pests and to perform extermination and control procedures at regular intervals so Project will be free of pests and their residues at Substantial Completion. Perform control operations lawfully, using environmentally safe materials.

G. Site Enclosure Fence: Before construction operations begin, furnish and install site enclosure fence in a manner that will prevent people and animals from easily entering site except by entrance gates.
 1. Extent of Fence: As required to enclose entire Project site or portion determined sufficient to accommodate construction operations.
 2. Maintain security by limiting number of keys and restricting distribution to authorized personnel.

H. Security Enclosure and Lockup: Install temporary enclosure around partially completed areas of construction. Provide lockable entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security. Lock entrances at end of each work day.

I. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.

J. Temporary Egress: Maintain temporary egress from existing occupied facilities as indicated and as required by authorities having jurisdiction.

K. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities. Provide temporary weathertight enclosure for building exterior.
 1. Where heating or cooling is needed and permanent enclosure is not complete, insulate temporary enclosures.

L. Temporary Fire Protection: Install and maintain temporary fire-protection facilities of types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 241; manage fire prevention program.
 1. Prohibit smoking in construction areas.
 2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.
 3. Develop and supervise an overall fire-prevention and -protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.
 4. Provide temporary standpipes and hoses for fire protection. Hang hoses with a warning sign stating that hoses are for fire-protection purposes only and are not to be removed. Match hose size with outlet size and equip with suitable nozzles.

3.5 MOISTURE AND MOLD CONTROL

B. Exposed Construction Phase: Before installation of weather barriers, when materials are subject to wetting and exposure and to airborne mold spores, protect materials from water damage and keep porous and organic materials from coming into prolonged contact with concrete.
C. Partially Enclosed Construction Phase: After installation of weather barriers but before full enclosure and conditioning of building, when installed materials are still subject to infiltration of moisture and ambient mold spores, protect as follows:

1. Do not load or install drywall or other porous materials or components, or items with high organic content, into partially enclosed building.
2. Keep interior spaces reasonably clean and protected from water damage.
3. Discard or replace water-damaged and wet material.
4. Discard, replace, or clean stored or installed material that begins to grow mold.
5. Perform work in a sequence that allows any wet materials adequate time to dry before enclosing the material in drywall or other interior finishes.

D. Controlled Construction Phase of Construction: After completing and sealing of the building enclosure but prior to the full operation of permanent HVAC systems, maintain as follows:

1. Control moisture and humidity inside building by maintaining effective dry-in conditions.
2. Remove materials that cannot be completely restored to their manufactured moisture level within 48 hours.

3.6 OPERATION, TERMINATION, AND REMOVAL

A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.

B. Maintenance: Maintain facilities in good operating condition until removal.

1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.

C. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.

D. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.

1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.
2. At Substantial Completion, repair, renovate, and clean permanent facilities used during construction period. Comply with final cleaning requirements specified in Division 01 Section "Closeout Procedures."

END OF SECTION 015000
SECTION 016000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers’ standard warranties on products; special warranties; and comparable products.

B. Related Requirements: Division 01 Section "Substitution Procedures" for requests for substitutions.

1.2 DEFINITIONS

A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.

1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature that is current as of date of the Contract Documents.

2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.

3. Comparable Product: Product that is demonstrated and approved through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.

B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.3 ACTION SUBMITTALS

A. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

1. Architect's Action: If necessary, architect will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

 a. Form of Approval: As specified in Division 01 Section "Submittal Procedures."

 b. Use product specified if architect does not issue a decision on use of a comparable product request within time allocated.

B. Basis-of-Design Product Specification Submittal: Comply with requirements in Division 01 Section "Submittal Procedures." Show compliance with requirements.

1.4 QUALITY ASSURANCE
A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

B. Delivery and Handling:
 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:
 1. Store products to allow for inspection and measurement of quantity or counting of units.
 2. Store materials in a manner that will not endanger Project structure.
 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
 6. Protect stored products from damage and liquids from freezing.

1.6 PRODUCT WARRANTIES

A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.

B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.
 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 3. Refer to Divisions 02 through 33. Sections for specific content requirements and particular requirements for submitting special warranties.

C. Submittal Time: Comply with requirements in Division 01 Section "Closeout Procedures."
PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.

1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
4. Where products are accompanied by the term "as selected," Architect will make selection.

B. Product Selection Procedures:

1. Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
3. Products:
 a. Restricted List: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will be considered unless otherwise indicated.
 b. Nonrestricted List: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product.
4. Manufacturers:
 a. Restricted List: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will be considered unless otherwise indicated.
 b. Nonrestricted List: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed manufacturer's product.
5. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.

C. Visual Matching Specification: Where Specifications require "match Architect's sample", provide a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.
1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Division 01 Section "Substitution Procedures" for proposal of product.

D. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect from manufacturer's full range" or similar phrase, select a product that complies with requirements. Architect will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 IRAN DIVESTMENT ACT

A. Comply with the requirements of the Iran Divestment Act of 2014, SC Code Ann. 11-57-10.

1. For contracts for goods and services over $1000, do not contract with entities listed by the Executive Director of the Budget and Control Board as ineligible to contract with the State of South Carolina or any Political Subdivision, as posted on line at http://procurement.sc.gov/PS/20150105_SC_IDA_List-Final.pdf.

2. Where specifications do not list products or manufacturers by name, but by description, performance, referenced standards or by such phrases as “acceptable to manufacturer” of primary material, select products compliant with the Act and that meet the specification.

2.3 COMPARABLE PRODUCTS

A. Conditions for Consideration: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect may return requests without action, except to record noncompliance with these requirements:

1. Evidence that the proposed product does not require revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.

2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.

3. Evidence that proposed product provides specified warranty.

4. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.

5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 016000
SECTION 017300 - EXECUTION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:

2. Field engineering and surveying.
3. Installation of the Work.
4. Cutting and patching.
5. Coordination of Owner-installed products.
6. Progress cleaning.
7. Starting and adjusting.
8. Protection of installed construction.

B. Related Requirements:

1. Division 01 Section "Summary" for limits on use of Project site.
2. Division 01 Section "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, and final cleaning.
3. Division 07 Section "Penetration Firestopping" for patching penetrations in fire-rated construction.

1.2 INFORMATIONAL SUBMITTALS

A. Certificates: Submit certificate signed by land surveyor certifying that location and elevation of improvements comply with requirements.

B. Landfill Receipts: Submit copy of receipts issued by a landfill facility, licensed to accept hazardous materials, for hazardous waste disposal.

C. Certified Surveys: Submit two copies signed by land surveyor.

D. Final Property Survey: Submit 2 copies showing the Work performed and record survey data.

1.3 QUALITY ASSURANCE

A. Land Surveyor Qualifications: A professional land surveyor who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing land-surveying services of the kind indicated.

B. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.

1. Structural Elements: When cutting and patching structural elements, notify Architect of locations and details of cutting and await directions from Architect before proceeding. Shore, brace, and support structural element during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.

2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that result in increased maintenance or decreased operational life or safety.
3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.

4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Comply with requirements specified in other Sections.

1. For projects requiring compliance with sustainable design and construction practices and procedures, use products for patching that comply with requirements of Division 01 sustainable design requirements Section.

B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.

1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.

1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities.

2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.

B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.

1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.

2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.

3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

C. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.
3.2 PREPARATION

A. Existing Utility Information: Furnish information to local utility that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.

B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Architect according to requirements in Division 01 Section "Project Management and Coordination."

3.3 CONSTRUCTION LAYOUT

A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Architect promptly.

B. General: Engage a land surveyor to lay out the Work using accepted surveying practices.
 1. Establish benchmarks and control points to set lines and levels at each story of construction and elsewhere as needed to locate each element of Project.
 2. Establish limits on use of Project site.
 3. Establish dimensions within tolerances indicated. Do not scale Drawings to obtain required dimensions.
 4. Inform installers of lines and levels to which they must comply.
 5. Check the location, level and plumb, of every major element as the Work progresses.
 6. Notify Architect when deviations from required lines and levels exceed allowable tolerances.
 7. Close site surveys with an error of closure equal to or less than the standard established by authorities having jurisdiction.

C. Site Improvements: Locate and lay out site improvements, including pavements, grading, fill and topsoil placement, utility slopes, and rim and invert elevations.

D. Building Lines and Levels: Locate and lay out control lines and levels for structures, building foundations, column grids, and floor levels, including those required for mechanical and electrical work. Transfer survey markings and elevations for use with control lines and levels. Level foundations and piers from two or more locations.

E. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Architect.

3.4 FIELD ENGINEERING

A. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.
B. Benchmarks: Establish and maintain a minimum of two permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark.
 1. Record benchmark locations, with horizontal and vertical data, on Project Record Documents.

C. Certified Survey: On completion of foundation walls, major site improvements, and other work requiring field-engineering services, prepare a certified survey showing dimensions, locations, angles, and elevations of construction and sitework.

D. Final Property Survey: Engage a land surveyor to prepare a final property survey showing significant features (real property) for Project. Include on the survey a certification, signed by land surveyor, that principal metes, bounds, lines, and levels of Project are accurately positioned as shown on the survey.
 1. Recording: At Substantial Completion, have the final property survey recorded by or with authorities having jurisdiction as the official "property survey."

3.5 INSTALLATION

A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 1. Make vertical work plumb and make horizontal work level.
 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.

F. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.

G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
 2. Allow for building movement, including thermal expansion and contraction.
 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.

J. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.6 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.

2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.
3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.

1. Remove liquid spills promptly.
2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.

G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways.

H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

J. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.7 STARTING AND ADJUSTING

A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.
B. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Manufacturer's Field Service: Comply with qualification requirements in Division 01 Section "Quality Requirements."

3.8 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION 017300
SECTION 017700 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 1. Substantial Completion procedures.
 2. Final completion procedures.
 3. Warranties.
 4. Final cleaning.
 5. Repair of the Work.

B. Related Requirements:
 1. Division 01 Section "Operation and Maintenance Data" for operation and maintenance manual requirements.
 2. Division 01 Section "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.
 3. Division 01 Section "Demonstration and Training" for requirements for instructing Owner's personnel.
 4. Divisions 02 through 33 Sections for specific closeout and special cleaning requirements for the Work in those Sections.

1.2 ACTION SUBMITTALS

A. Product Data: For cleaning agents.

B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.

C. Certified List of Incomplete Items: Final submittal at Final Completion.

1.3 CLOSEOUT SUBMITTALS

A. Certificates of Release: From authorities having jurisdiction.

B. Certificate of Insurance: For continuing coverage.

C. Field Report: For pest control inspection.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

1.5 SUBSTANTIAL COMPLETION PROCEDURES

A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.
B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, final completion construction photographic documentation, damage or settlement surveys, property surveys, and similar final record information.
3. Submit closeout submittals specified in individual Divisions 02 through 33 Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
4. Submit maintenance material submittals specified in individual Divisions 02 through 33 Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Architect. Label with manufacturer's name and model number where applicable.
 a. Schedule of Maintenance Material Items: Prepare and submit schedule of maintenance material submittal items, including name and quantity of each item and name and number of related Specification Section. Obtain Architect's signature for receipt of submittals.
5. Submit test/adjust/balance records.
6. Submit sustainable design submittals required in Division 01 sustainable design requirements Section and in individual Division 02 through 33 Sections.
7. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Advise Owner of pending insurance changeover requirements.
2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
3. Complete startup and testing of systems and equipment.
4. Perform preventive maintenance on equipment used prior to Substantial Completion.
5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings specified in Division 01 Section "Demonstration and Training."
6. Advise Owner of changeover in heat and other utilities.
7. Participate with Owner in conducting inspection and walkthrough with local emergency responders.
8. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
9. Complete final cleaning requirements, including touchup painting.
10. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.

D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.

1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.
2. Results of completed inspection will form the basis of requirements for final completion.
1.6 FINAL COMPLETION PROCEDURES

A. Preliminary Procedures: Before requesting final inspection for determining final completion, complete the following:

1. Submit a final Application for Payment according to Division 01 Section "Payment Procedures."
2. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
4. Submit pest-control final inspection report and warranty.
5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems.

B. Inspection: Submit a written request for final inspection to determine acceptance. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.7 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.

1. Organize list of spaces in sequential order, starting with exterior areas first and proceeding from lowest floor to highest floor.
2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
3. Submit list of incomplete items in the following format:
 a. MS Excel electronic file. Architect will return annotated copy.

1.8 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated, or when delay in submittal of warranties might limit Owner's rights under warranty.

B. Organize warranty documents into an orderly sequence based on the table of contents of the Project Manual.

1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.
2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.
3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.
4. Warranty Electronic File: Scan warranties and bonds and assemble complete warranty and bond submittal package into a single indexed electronic PDF file with links enabling navigation to each item. Provide bookmarked table of contents at beginning of document.
C. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.
 1. Use cleaning products that comply with Green Seal's GS-37, or if GS-37 is not applicable, use products that comply with the California Code of Regulations maximum allowable VOC levels.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 e. Remove snow and ice to provide safe access to building.
 f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 h. Sweep concrete floors broom clean in unoccupied spaces.
 i. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
 j. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Replace chipped or broken glass and other damaged transparent materials. Polish mirrors and glass, taking care not to scratch surfaces.
 k. Remove labels that are not permanent.
 l. Wipe surfaces of mechanical and electrical equipment, elevator equipment, and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
 m. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
 n. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
CLOSEOUT PROCEDURES

Animal Care Facility

o. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
p. Leave Project clean and ready for occupancy.

C. Pest Control: Comply with pest control requirements in Division 01 Section “Temporary Facilities and Controls.” Prepare written report.

3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.

B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.

1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.

2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that already show evidence of repair or restoration.
 a. Do not paint over “UL” and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.

3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.

4. Replace burned-out bulbs, bulbs noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

END OF SECTION 017700
SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 1. Operation and maintenance documentation directory.
 2. Emergency manuals.
 3. Operation manuals for systems, subsystems, and equipment.
 4. Product maintenance manuals.
 5. Systems and equipment maintenance manuals.

B. Related Requirements:
 1. Divisions 02 through 33 Sections for specific operation and maintenance manual requirements for the Work in those Sections.

1.2 CLOSEOUT SUBMITTALS

A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 1. Architect will comment on whether content of operations and maintenance submittals are acceptable.
 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.

B. Format: Submit operations and maintenance manuals in the following format:
 a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
 b. Enable inserted reviewer comments on draft submittals.
 2. Three paper copies. Include a complete operation and maintenance directory. Enclose title pages and directories in clear plastic sleeves. Architect will return two copies.

C. Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect will return copy with comments.
 1. Correct or revise each manual to comply with Architect's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information.
B. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:

1. Title page.
2. Table of contents.

C. Title Page: Include the following information:

1. Subject matter included in manual.
2. Name and address of Project.
3. Name and address of Owner.
4. Date of submittal.
5. Name and contact information for Contractor.
6. Name and contact information for Architect.
7. Name and contact information for Commissioning Authority.
8. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
9. Cross-reference to related systems in other operation and maintenance manuals.

D. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

E. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

F. Manuals, Paper Copy: Submit manuals in the form of hard copy, bound and labeled volumes.

1. Binders: Heavy-duty, three-ring, vinyl-covered, post-type binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 a. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents, and indicate Specification Section number on bottom of spine. Indicate volume number for multiple-volume sets.

2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.

4. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.2 OPERATION MANUALS

A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:

2. Performance and design criteria if Contractor is delegated design responsibility.
3. Operating standards.
4. Operating procedures.
5. Operating logs.
6. Wiring diagrams.
7. Control diagrams.
8. Piped system diagrams.
9. Precautions against improper use.
10. License requirements including inspection and renewal dates.

B. Descriptions: Include the following:
1. Product name and model number. Use designations for products indicated on Contract Documents.
2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

C. Operating Procedures: Include the following, as applicable:
1. Startup procedures.
2. Equipment or system break-in procedures.
3. Routine and normal operating instructions.
4. Regulation and control procedures.
5. Instructions on stopping.
7. Seasonal and weekend operating instructions.
8. Required sequences for electric or electronic systems.
9. Special operating instructions and procedures.

D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.3 PRODUCT MAINTENANCE MANUALS
A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

C. Product Information: Include the following, as applicable:
1. Product name and model number.
2. Manufacturer's name.
3. Color, pattern, and texture.
5. Reordering information for specially manufactured products.
D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 1. Inspection procedures.
 2. Types of cleaning agents to be used and methods of cleaning.
 3. List of cleaning agents and methods of cleaning detrimental to product.
 4. Schedule for routine cleaning and maintenance.
 5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

2.4 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 1. Standard maintenance instructions and bulletins.
 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 3. Identification and nomenclature of parts and components.
 4. List of items recommended to be stocked as spare parts.

D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 1. Test and inspection instructions.
 2. Troubleshooting guide.
 3. Precautions against improper maintenance.
 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 5. Aligning, adjusting, and checking instructions.
 6. Demonstration and training video recording, if available.

E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

B. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

C. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.

D. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

E. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 1. Do not use original project record documents as part of operation and maintenance manuals.

F. Comply with Division 01 Section "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 017823
SECTION 017839 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for project record documents, including the following:

1. Record Drawings.
2. Record Specifications.
3. Record Product Data.

B. Related Requirements:

1. Division 01 Section "Operation and Maintenance Data" for operation and maintenance manual requirements.
2. Divisions 02 through 33 Sections for specific requirements for project record documents of the Work in those Sections.

1.2 CLOSEOUT SUBMITTALS

A. Record Drawings: Comply with the following:

1. Number of Copies: Submit copies of record Drawings as follows:
 a. Initial Submittal:
 1) Submit PDF electronic files of scanned record prints and one set of file prints.
 2) Architect will indicate whether general scope of changes, additional information recorded, and quality of drafting are acceptable.
 b. Final Submittal:
 1) Submit PDF electronic files of scanned record prints and one set of prints.
 2) Print each drawing, whether or not changes and additional information were recorded.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised Drawings as modifications are issued.

1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.

 a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 b. Record data as soon as possible after obtaining it.
 c. Record and check the markup before enclosing concealed installations.

2. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.

3. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
4. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

B. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

1. Record Prints: Organize record prints and newly prepared record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.

2. Format: Annotated PDF electronic file with comment function enabled.

3. Record Digital Data Files: Organize digital data information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each digital data file.

4. Identification: As follows:
 a. Project name.
 b. Date.
 c. Designation "PROJECT RECORD DRAWINGS."
 d. Name of Architect.
 e. Name of Contractor.

2.2 MISCELLANEOUS RECORD SUBMITTALS

A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.

B. Format: Submit miscellaneous record submittals as PDF electronic file.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.

B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect's reference during normal working hours.

END OF SECTION 017839
SECTION 017900 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:
 1. Demonstration of operation of systems, subsystems, and equipment.
 2. Training in operation and maintenance of systems, subsystems, and equipment.

1.2 INFORMATIONAL SUBMITTALS

A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.
 1. Indicate proposed training modules using manufacturer-produced demonstration and training video recordings for systems, equipment, and products in lieu of video recording of live instructional module.

1.3 QUALITY ASSURANCE

A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.

B. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.

C. Preinstruction Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to demonstration and training.

1.4 COORDINATION

A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations and to ensure availability of Owner's personnel.

B. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Architect.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections.
B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following as applicable to the system, equipment, or component:

1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 a. System, subsystem, and equipment descriptions.
 b. Performance and design criteria if Contractor is delegated design responsibility.
 c. Operating standards.
 d. Regulatory requirements.
 e. Equipment function.
 f. Operating characteristics.
 g. Limiting conditions.
 h. Performance curves.

2. Documentation: Review the following items in detail:
 a. Emergency manuals.
 b. Operations manuals.
 c. Maintenance manuals.
 d. Project record documents.
 e. Identification systems.
 f. Warranties and bonds.
 g. Maintenance service agreements and similar continuing commitments.

3. Emergencies: Include the following, as applicable:
 a. Instructions on meaning of warnings, trouble indications, and error messages.
 b. Instructions on stopping.
 c. Shutdown instructions for each type of emergency.
 d. Operating instructions for conditions outside of normal operating limits.
 e. Sequences for electric or electronic systems.
 f. Special operating instructions and procedures.

4. Operations: Include the following, as applicable:
 a. Startup procedures.
 b. Equipment or system break-in procedures.
 c. Routine and normal operating instructions.
 d. Regulation and control procedures.
 e. Control sequences.
 f. Safety procedures.
 g. Instructions on stopping.
 h. Normal shutdown instructions.
 i. Operating procedures for emergencies.
 j. Operating procedures for system, subsystem, or equipment failure.
 k. Seasonal and weekend operating instructions.
 l. Required sequences for electric or electronic systems.
 m. Special operating instructions and procedures.

5. Adjustments: Include the following:
 a. Alignments.
 b. Checking adjustments.
 c. Noise and vibration adjustments.
 d. Economy and efficiency adjustments.

6. Troubleshooting: Include the following:
 a. Diagnostic instructions.
 b. Test and inspection procedures.

7. Maintenance: Include the following:
 a. Inspection procedures.
 b. Types of cleaning agents to be used and methods of cleaning.
 c. List of cleaning agents and methods of cleaning detrimental to product.
 d. Procedures for routine cleaning
 e. Procedures for preventive maintenance.
f. Procedures for routine maintenance.
g. Instruction on use of special tools.

8. Repairs: Include the following:
a. Diagnosis instructions.
b. Repair instructions.
c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
d. Instructions for identifying parts and components.
e. Review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 PREPARATION

A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Division 01 Section "Operations and Maintenance Data."

3.2 INSTRUCTION

A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location.

B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.

1. Owner will furnish Contractor with names and positions of participants.

C. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.

1. Schedule training with Owner with at least seven days’ advance notice.

D. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.

END OF SECTION 017900
SECTION 024116 - STRUCTURE DEMOLITION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Demolition and removal of buildings and site improvements.
 2. Removing below-grade construction.
 3. Disconnecting, capping or sealing, and removing site utilities.

1.2 MATERIALS OWNERSHIP

A. Unless otherwise indicated, demolition waste becomes property of Contractor.

1.3 PREINSTALLATION MEETINGS

A. Predemolition Conference: Conduct conference at Project site.

B. Contractor to contact DHEC a minimum of 7 calendar days before start of demolition for further instruction.

1.4 INFORMATIONAL SUBMITTALS

B. Proposed Protection Measures: Submit report, including Drawings, that indicates the measures proposed for protecting individuals and property, for environmental protection, for dust control and for noise control. Indicate proposed locations and construction of barriers.
 1. Adjacent Buildings: Detail special measures proposed to protect adjacent buildings to remain including means of egress from those buildings.

C. Schedule of building demolition activities with starting and ending dates for each activity.

D. Predemolition photographs.

E. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician.

1.5 CLOSEOUT SUBMITTALS

A. Inventory of items that have been removed and salvaged.

1.6 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by EPA-approved certification program.

1.7 FIELD CONDITIONS

A. Buildings to be demolished will be vacated and their use discontinued before start of the Work.

B. Buildings immediately adjacent to demolition area will be occupied. Conduct building demolition so operations of occupied buildings will not be disrupted.
1. Provide not less than 72 hours' notice of activities that will affect operations of adjacent occupied buildings.
2. Maintain access to existing walkways, exits, and other facilities used by occupants of adjacent buildings.
 a. Do not close or obstruct walkways, exits, or other facilities used by occupants of adjacent buildings without written permission from authorities having jurisdiction.

C. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
 1. Before building demolition, Owner will remove items to be salvaged.

D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 1. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.

E. On-site storage or sale of removed items or materials is not permitted.

F. Arrange demolition schedule so as not to interfere with Owner's on-site operations and operations of adjacent occupied buildings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

B. Standards: Comply with ASSE A10.6 and NFPA 241.

2.2 SOIL MATERIALS

A. Satisfactory Soils: Comply with requirements in Section 312000 "Earth Moving."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that utilities have been disconnected and capped before starting demolition operations.

B. Perform an engineering survey of condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during building demolition operations.

3.2 PREPARATION

A. Refrigerant: Before starting demolition, remove refrigerant from mechanical equipment according to 40 CFR 82 and regulations of authorities having jurisdiction.
3.3 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Utilities to be Disconnected: Locate, identify, disconnect, and seal or cap off utilities serving buildings and structures to be demolished.

1. Owner will arrange to shut off utilities when requested by Contractor.
2. Arrange to shut off utilities with utility companies.
3. If removal, relocation, or abandonment of utility services will affect adjacent occupied buildings, then provide temporary utilities that bypass buildings and structures to be demolished and that maintain continuity of service to other buildings and structures.
4. Cut off pipe or conduit a minimum of 24 inches below grade. Cap, valve, or plug and seal remaining portion of pipe or conduit after bypassing according to requirements of authorities having jurisdiction.
5. Do not start demolition work until utility disconnecting and sealing have been completed and verified in writing.

3.4 PROTECTION

A. Existing Facilities: Protect adjacent walkways, loading docks, building entries, and other building facilities during demolition operations. Maintain exits from existing buildings.

B. Temporary Shoring: Provide and maintain interior and exterior shoring, bracing, or structural support to preserve stability and prevent unexpected movement or collapse of construction being demolished.

C. Existing Utilities to Remain: Maintain utility services to remain and protect from damage during demolition operations. Do not interrupt existing utilities serving adjacent occupied or operating facilities unless authorized in writing by Owner and authorities having jurisdiction.

D. Temporary Protection: Erect temporary protection, such as walks, fences, railings, canopies, and covered passageways, where required by authorities having jurisdiction and as indicated. Comply with requirements in Section 015000 "Temporary Facilities and Controls."

1. Protect adjacent buildings and facilities from damage due to demolition activities.
2. Protect existing site improvements, appurtenances, and landscaping to remain.
3. Erect a plainly visible fence around drip line of individual trees or around perimeter drip line of groups of trees to remain.
4. Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
5. Provide protection to ensure safe passage of people around building demolition area and to and from occupied portions of adjacent buildings and structures.
6. Protect walls, windows, roofs, and other adjacent exterior construction that are to remain and that are exposed to building demolition operations.
7. Erect and maintain dustproof partitions and temporary enclosures to limit dust, noise, and dirt migration to occupied portions of adjacent buildings.

E. Remove temporary barriers and protections where hazards no longer exist. Where open excavations or other hazardous conditions remain, leave temporary barriers and protections in place.

3.5 DEMOLITION

A. General: Demolish indicated buildings and site improvements completely. Use methods required to complete the Work within limitations of governing regulations and as follows:

1. Do not use cutting torches until work area is cleared of flammable materials. Maintain portable fire-suppression devices during flame-cutting operations.
2. Maintain fire watch during and for at least 8 hours after flame-cutting operations.
3. Maintain adequate ventilation when using cutting torches.
4. Locate building demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.

B. Site Access and Temporary Controls: Conduct building demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 1. Do not close or obstruct streets, walks, walkways, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed trafficways if required by authorities having jurisdiction.
 2. Use water mist and other suitable methods to limit spread of dust and dirt. Comply with governing environmental-protection regulations.

C. Explosives: Use of explosives is not permitted.

D. Proceed with demolition of structural framing members systematically, from higher to lower level. Complete building demolition operations above each floor or tier before disturbing supporting members on the next lower level.

E. Remove debris from elevated portions of the building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.

F. Demolish foundation walls and other below-grade construction.
 1. Remove below-grade construction, including basements, foundation walls, and footings, completely.

G. Existing Utilities: Demolish existing utilities and below-grade utility structures that are within 5 feet outside footprint indicated for new construction. Abandon utilities outside this area.

H. Below-Grade Areas: Completely fill below-grade areas and voids resulting from building demolition operations with satisfactory soil materials according to backfill requirements in Section 312000 "Earth Moving."

I. Site Grading: Uniformly rough grade area of demolished construction to a smooth surface, free from irregular surface changes. Provide a smooth transition between adjacent existing grades and new grades.

J. Promptly repair damage to adjacent buildings caused by demolition operations.

3.6 CLEANING

A. Remove demolition waste materials from Project site and dispose of them in an EPA-approved construction and demolition waste landfill acceptable to authorities having jurisdiction.

B. Do not burn demolished materials.

C. Clean adjacent structures and improvements of dust, dirt, and debris caused by building demolition operations. Return adjacent areas to condition existing before building demolition operations began.

END OF SECTION 024116
SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section specifies cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes, for the following:

1. Footings.
2. Slabs-on-grade.

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans; subject to compliance with requirements.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1. Indicate amounts of mixing water to be withheld for later addition at Project site.
C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.
D. Samples: For vapor retarder.
E. Welding certificates.
F. Material Certificates: For each of the following, signed by manufacturers:

1. Cementitious materials.
2. Admixtures.
3. Steel reinforcement and accessories.
4. Fiber reinforcement.
5. Curing compounds.
6. Floor and slab treatments.
8. Vapor retarders.

G. Floor surface flatness and levelness measurements to determine compliance with specified tolerances.

H. Field quality-control test and inspection reports.

I. Minutes of preinstallation conference.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."

B. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from one source, and obtain admixtures through one source from a single manufacturer.

C. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 1. ACI 301, "Specification for Structural Concrete," Sections 1 through 5.
 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

D. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.

E. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination."
 1. Before submitting design mixtures, review concrete design mixture and examine procedures for ensuring quality of concrete materials. Require representatives of each entity directly concerned with cast-in-place concrete to attend, including the following:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Ready-mix concrete manufacturer.
 d. Concrete subcontractor.
 2. Review special inspection and testing and inspecting agency procedures for field quality control, concrete finishes and finishing, cold- and hot-weather concreting procedures, curing procedures, construction contraction and isolation joints, and joint-filler strips, semirigid joint fillers, forms and form removal limitations, shoring and reshoring procedures, vapor-retarder installation, anchor rod and anchorage device installation tolerances, steel reinforcement tolerances, and slab flatness and levelness measurement, concrete repair procedures, and concrete protection.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, products specified.
2. Products: Subject to compliance with requirements, provide one of the products specified.
3. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
4. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 FORM-FACING MATERIALS

A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 1. Plywood, metal, or other approved panel materials.

B. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch (19 by 19 mm), minimum.

C. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.

D. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 1. Furnish units that will leave no corrodible metal closer than 1 inch (25 mm) to the plane of exposed concrete surface.
 2. Furnish ties that, when removed, will leave holes no larger than 1 inch (25 mm) in diameter in concrete surface.

2.3 STEEL REINFORCEMENT

A. Recycled Content of Steel Products: Provide products with an average recycled content of steel products so postconsumer recycled content plus one-half of preconsumer recycled content is not less than 60 percent.

B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.

2.4 REINFORCEMENT ACCESSORIES

A. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), plain-steel bars, cut bars true to length with ends square and free of burrs.
B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:

1. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.

2.5 CONCRETE MATERIALS

A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:

1. Portland Cement: ASTM C 150, Type I or II, Supplement with the following:
 a. Fly Ash: ASTM C 618, Class F.

2. Blended Hydraulic Cement: ASTM C 595, Type [IS, portland blast-furnace slag] [IP, portland-pozzolan] [I (PM), pozzolan-modified portland] [I (SM), slag-modified portland] cement.

B. Normal-Weight Aggregates: ASTM C 33, Class 3S coarse aggregate or better, graded. Provide aggregates from a single source.

1. Maximum Coarse Aggregate Size: 1 inch (25 mm) nominal.
2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

2.6 ADMIXTURES

B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.

1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
2. Retarding Admixture: ASTM C 494/C 494M, Type B.
3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

C. Non-Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, non-set-accelerating, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete.

1. Products:
 a. Axim Concrete Technologies; Catexol 1000CI.
 c. Grace Construction Products, W. R. Grace & Co.; DCI-S.
 d. Master Builders, Inc.; Rheocrete 222+
2.7 FIBER REINFORCEMENT

A. Synthetic Fiber: Monofilament polypropylene fibers engineered and designed for use in concrete pavement, complying with ASTM C 1116, Type III, 1/2 to 1-1/2 inches (13 to 38 mm) long.

1. Available Products:
 a. Monofilament Fibers:
 1) Axim Concrete Technologies; Fibrasol IIP.
 2) Euclid Chemical Company (The); Fiberstrand 100.
 3) FORTA Corporation; Forta Mono.
 5) Metalcrete Industries; Polystrand 1000.
 6) SI Concrete Systems; Fibermix Stealth.

2.8 VAPOR RETARDERS

A. Plastic Vapor Retarder: ASTM E 1745, Class C, or polyethylene sheet, ASTM D 4397, not less than 15 mils (0.25 mm) thick. Include manufacturer's recommended adhesive or pressure-sensitive joint tape.

2.9 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) when dry.

B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

C. Water: Potable.

2.10 RELATED MATERIALS

A. Semirigid Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 per ASTM D 2240.

B. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

2.11 REPAIR MATERIALS

A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch (3.2 mm) and that can be feathered at edges to match adjacent floor elevations.

1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.

2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.

3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3.2 to 6 mm) or coarse sand as recommended by underlayment manufacturer.
4. Compressive Strength: Not less than [4100 psi (29 MPa)] <Insert strength> at 28 days when tested according to ASTM C 109/C 109M.

B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch (3.2 mm) and that can be feathered at edges to match adjacent floor elevations.

1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3.2 to 6 mm) or coarse sand as recommended by topping manufacturer.
4. Compressive Strength: Not less than [5000 psi (34.5 MPa)] <Insert strength> at 28 days when tested according to ASTM C 109/C 109M.

2.12 CONCRETE MIXTURES, GENERAL

A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.

1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.

B. Cementitious Materials: Use fly ash. Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:

1. Fly Ash: 20 percent.

C. Admixtures: Use admixtures according to manufacturer's written instructions.

1. Use water-reducing, high-range water-reducing, or plasticizing admixture in concrete, as required, for placement and workability.
2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50.
4. Use corrosion-inhibiting admixture in concrete mixtures where indicated.

2.13 CONCRETE MIXTURES FOR BUILDING ELEMENTS

A. Footings: Proportion normal-weight concrete mixture as follows:

1. Minimum Compressive Strength: 3000 psi (20.7 MPa) at 28 days.
2. Maximum Water-Cementitious Materials Ratio: 0.50.
3. Slump Limit: 8 inches (200 mm) for concrete with verified slump of 2 to 4 inches (50 to 100 mm) before adding high-range water-reducing admixture or plasticizing admixture, plus or minus 1 inch (25 mm).
4. Air Content: 5-1/2 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size.

B. Slabs-on-Grade and Piers: Proportion normal-weight concrete mixture as follows:

1. Minimum Compressive Strength: 4000 psi (27.6 MPa) at 28 days.
2. Minimum Cementitious Materials Content: 470 lb/cu. yd. (279 kg/cu. m)
3. Slump Limit: 4 inches (100 mm) plus or minus 1 inch (25 mm).
4. Air Content: [5-1/2] \(<\text{Insert number}>\) percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size.
5. Air Content: Do not allow air content of troweled finished floors to exceed 3 percent.
6. rate, but not less than 1.5 lb/cu. yd. (0.90 kg/cu. m).

2.14 FABRICATING REINFORCEMENT
A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.15 CONCRETE MIXING
A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M and ASTM C 1116, and furnish batch ticket information.

1. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 FORMWORK
A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.

B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.

C. Limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows:

1. Class A, 1/8 inch (3.2 mm) for smooth-formed finished surfaces.

D. Construct forms tight enough to prevent loss of concrete mortar.

E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.

1. Install keyways, reglets, recesses, and the like, for easy removal.
2. Do not use rust-stained steel form-facing material.

F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.

G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
H. Chamfer exterior corners and edges of permanently exposed concrete.

I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.

K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AIS C's "Code of Standard Practice for Steel Buildings and Bridges."

2. Install reglets to receive waterproofing and to receive through-wall flashings in outer face of concrete frame at exterior walls, where flashing is shown at lintels, shelf angles, and other conditions.

3.3 REMOVING AND REUSING FORMS

A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F (10 deg C) for 24 hours after placing concrete, if concrete is hard enough to not be damaged by form-removal operations and curing and protection operations are maintained.

B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.

C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 VAPOR RETARDERS

A. Plastic Vapor Retarders: Place, protect, and repair vapor retarders according to ASTM E 1643 and manufacturer's written instructions.

1. Lap joints 6 inches (150 mm) and seal with manufacturer's recommended tape.

3.5 STEEL REINFORCEMENT

A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.

C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.

D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

3.6 JOINTS

A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.

B. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:

1. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch (3.2-mm-) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks. Install within 8 hours of placement of concrete.

C. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface, unless otherwise indicated.
2. Terminate full-width joint-filler strips not less than 1/2 inch (13 mm) or more than 1 inch (25 mm) below finished concrete surface where joint sealants, specified in Division 07 Section "Joint Sealants," are indicated.
3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.

D. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.7 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.

B. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect.

C. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.

1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
CAST-IN-PLACE CONCRETE

3.8 FINISHING FORMED SURFACES

A. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.

1. Apply to concrete surfaces to receive a rubbed finish.
B. Rubbed Finish: Apply the following to smooth-formed finished as-cast concrete where indicated:

1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.

C. Related Uniformed Surfaces: At tops of walls, horizontal offsets, and similar uniformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent uniformed surfaces, unless otherwise indicated.

3.9 FINISHING FLOORS AND SLABS

A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.

1. Apply float finish to surfaces [indicated] [to receive trowel finish] [and] [to be covered with fluid-applied or sheet waterproofing, built-up or membrane roofing, or sand-bed terrazzo] <Insert locations>.

C. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.

1. Apply a trowel finish to surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin-film-finish coating system

2. Finish surfaces to the following tolerances, according to ASTM E 1155 (ASTM E 1155M), for a randomly trafficked floor surface:

 a. Specified overall values of flatness, F(F) 35; and of levelness, F(L) 25; with minimum local values of flatness, F(F) 24; and of levelness, F(L) 17; for slabs-on-grade.

3. Finish and measure surface so gap at any point between concrete surface and an unleveled, freestanding, 10-foot- (3.05-m-) long straightedge resting on 2 high spots and placed anywhere on the surface does not exceed 3/16 inch (4.8 mm).

D. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, kennel runs, and ramps, and elsewhere as indicated.

1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application.
3.10 MISCELLANEOUS CONCRETE ITEMS

A. Filling In: Fill in holes and openings left in concrete structures, unless otherwise indicated, after work of other trades is in place. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.

B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

3.11 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.

D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.

E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:

1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 b. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.

3.12 JOINT FILLING

A. Prepare, clean, and install joint filler according to manufacturer's written instructions.
1. Defer joint filling until concrete has aged at least one month(s). Do not fill joints until construction traffic has permanently ceased.

B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.

C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches (50 mm) deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.13 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect’s approval.

B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and one-half parts fine aggregate passing a No. 16 (1.18-mm) sieve, using only enough water for handling and placing.

C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.

1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch (13 mm) in any dimension in solid concrete, but not less than 1 inch (25 mm) in depth. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.

2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.

3. Repair defects on concealed formed surfaces that affect concrete’s durability and structural performance as determined by Architect.

D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.

1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch (0.25 mm) wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.

2. After concrete has cured at least 14 days, correct high areas by grinding.

3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.

4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer’s written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.

5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch (6 mm) to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer’s written instructions to produce a smooth, uniform, plane, and level surface.
6. Repair defective areas, except random cracks and single holes 1 inch (25 mm) or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch (19-mm) clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.

7. Repair random cracks and single holes 1 inch (25 mm) or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.

E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.

F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.14 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage a special inspector and qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. Testing and Inspecting: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.

C. Inspections:
 1. Steel reinforcement placement.
 2. Steel reinforcement welding.
 3. Headed bolts and studs.
 4. Verification of use of required design mixture.
 5. Concrete placement, including conveying and depositing.
 6. Curing procedures and maintenance of curing temperature.
 7. Verification of concrete strength before removal of shores and forms from beams and slabs.

D. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:

 1. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. (76 cu. m) or fraction thereof of each concrete mixture placed each day.
 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.

 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

 3. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and when 80 deg F (27 deg C) and above, and one test for each composite sample.
4. Unit Weight: ASTM C 567, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

5. Compression Test Specimens: ASTM C 31/C 31M.
 a. Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.

6. Compressive-Strength Tests: ASTM C 39/C 39M; test one set of two laboratory-cured specimens at 7 days and one set of two specimens at 28 days.
 a. Test one set of two field-cured specimens at 7 days and one set of two specimens at 28 days.
 b. A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.

7. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.

8. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).

9. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

10. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

11. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42/C 42M or by other methods as directed by Architect.

12. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

13. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.

END OF SECTION 033000
SECTION 051200 - STRUCTURAL STEEL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Structural steel.
2. Grout.

B. Related Sections include the following:

1. Division 1 Section "Quality Requirements" for independent testing agency procedures and administrative requirements.

1.3 DEFINITIONS

A. Structural Steel: Elements of structural-steel frame, as classified by AISC's "Code of Standard Practice for Steel Buildings and Bridges," that support design loads.

1.4 PERFORMANCE REQUIREMENTS

A. Connections: Provide details of simple shear connections required by the Contract Documents to be selected or completed by structural-steel fabricator to withstand ASD-service loads indicated and comply with other information and restrictions indicated.

B. Construction: Type 1, rigid frame and 2, simple framing depending on location.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication of structural-steel components.

1. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
2. Include embedment drawings.
3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld.
4. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical high-strength bolted connections.
5. For structural-steel connections indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

C. Welding certificates.

D. Qualification Data: For Installer, fabricator, professional engineer and testing agency.

E. Mill Test Reports: Signed by manufacturers certifying that the following products comply with requirements:
 1. Structural steel including chemical and physical properties.
 2. Bolts, nuts, and washers including mechanical properties and chemical analysis.
 3. Shear stud connectors.

F. Source quality-control test reports.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who participates in the AISC Quality Certification Program and is designated an AISC-Certified Erector, Category CSE.

B. Fabricator Qualifications: A qualified fabricator who participates in the AISC Quality Certification Program and is designated an AISC-Certified Plant, Category Sbd.

C. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel."

D. Comply with applicable provisions of the following specifications and documents:
 1. AISC's "Code of Standard Practice for Steel Buildings and Bridges."
 3. AISC's "Specification for the Design of Steel Hollow Structural Sections."
 5. RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

E. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination."

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from erosion and deterioration.
 1. Store fasteners in a protected place. Clean and relubricate bolts and nuts that become dry or rusty before use.
 2. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed.

1.8 COORDINATION
A. Furnish anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation.

PART 2 - PRODUCTS

2.1 STRUCTURAL-STEEL MATERIALS

B. Plate and Bar: ASTM A 36/A 36M.
C. Cold-Formed Hollow Structural Sections: ASTM A 500, Grade B, structural tubing.
D. Welding Electrodes: Comply with AWS requirements.

2.2 BOLTS, CONNECTORS, AND ANCHORS

A. High-Strength Bolts, Nuts, and Washers: ASTM A 325 (ASTM A 325M), Type 1, heavy hex steel structural bolts.
 1. Finish: Mechanically deposited zinc coating, ASTM B 695, Class 50.
B. Shear Connectors: ASTM A 108, Grades 1015 through 1020, headed-stud type, cold-finished carbon steel; AWS D1.1, Type B.
C. Unheaded Anchor Rods: ASTM F 1554, Grade 36.
 5. Finish: Mechanically deposited zinc coating, ASTM B 695, Class 50.
D. Threaded Rods: ASTM A 36/A 36M.

2.3 GROUT
A. Cement Grout: Portland cement, ASTM C 150, Type I; and clean, natural sand, ASTM C 404, Size No. 2. Mix at ratio of 1 part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration.

B. Metallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, metallic aggregate grout, mixed with water to consistency suitable for application and a 30-minute working time.

C. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.4 FABRICATION

1. Camber structural-steel members where indicated.
2. Identify high-strength structural steel according to ASTM A 6/ A 6M and maintain markings until structural steel has been erected.
3. Mark and match-mark materials for field assembly.
4. Complete structural-steel assemblies, including welding of units, before starting shop-priming operations.

B. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.

1. Plane thermally cut edges to be welded to comply with requirements in AWS D1.1.

C. Bolt Holes: Cut, drill, or punch standard bolt holes perpendicular to metal surfaces.

D. Finishing: Accurately finish ends of columns and other members transmitting bearing loads.

E. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1 and manufacturer's written instructions.

F. Holes: Provide holes required for securing other work to structural steel and for passage of other work through steel framing members.

1. Cut, drill, or punch holes perpendicular to steel surfaces.
2. Base-Plate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces.
3. Weld threaded nuts to framing and other specialty items indicated to receive other work.

2.5 SHOP CONNECTIONS

A. High-Strength Bolts: Shop install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.

1. Joint Type: Slip critical or as detailed.
B. Weld Connections: Comply with AWS D1.1 for welding procedure specifications, tolerances, appearance, and quality of welds and for methods used in correcting welding work.

1. Remove backing bars or runoff tabs, back gouge, and grind steel smooth.
2. Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances.
 a. Grind butt welds flush.
 b. Grind or fill exposed fillet welds to smooth profile. Dress exposed welds.

2.6 GALVANIZING

A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel according to ASTM A 123/ A 123M.

1. Fill vent holes and grind smooth after galvanizing.
2. Galvanize all structural steel unless noted otherwise.

2.7 SOURCE QUALITY CONTROL

A. Owner will engage an independent testing and inspecting agency to perform shop tests and inspections and prepare test reports.

1. Provide testing agency with access to places where structural-steel work is being fabricated or produced to perform tests and inspections.

B. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.

C. Bolted Connections: Shop-bolted connections will be inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

D. Welded Connections: In addition to visual inspection, shop-welded connections will be tested and inspected according to AWS D1.1 and the following inspection procedures, at testing agency's option:

1. Liquid Penetrant Inspection: ASTM E 165.

E. In addition to visual inspection, shop-welded shear connectors will be tested and inspected according to requirements in AWS D1.1 for stud welding and as follows:

1. Bend tests will be performed if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments, with steel erector present, for compliance with requirements.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place, unless otherwise indicated.

3.3 ERECTION

1. Set base plates for structural members on wedges, shims, or setting nuts as required.
2. Weld plate washers to top of base plate.
3. Snug-tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of base plate before packing with grout.
4. Promptly pack grout solidly between bearing surfaces and base plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure.

C. Maintain erection tolerances of structural steel within AISC's "Code of Standard Practice for Steel Buildings and Bridges."

D. Align and adjust various members forming part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.

1. Level and plumb individual members of structure.
2. Make allowances for difference between temperature at time of erection and mean temperature when structure is completed and in service.

E. Splice members only where indicated.

F. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts.

3.4 FIELD CONNECTIONS

A. High-Strength Bolts: Shop install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.

1. Joint Type: Slip critical or as detailed.
B. Weld Connections: Comply with AWS D1.1 for welding procedure specifications, tolerances, appearance, and quality of welds and for methods used in correcting welding work.

2. Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances.
 a. Grind butt welds flush.
 b. Grind or fill exposed fillet welds to smooth profile. Dress exposed welds.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to inspect field welds and high-strength bolted connections.

B. Bolted Connections: Shop-bolted connections will be inspected according to RCSC’s "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

C. Welded Connections: Field welds will be visually inspected according to AWS D1.1.

 1. In addition to visual inspection, field welds will be tested according to AWS D1.1 and the following inspection procedures, at testing agency's option:
 a. Liquid Penetrant Inspection: ASTM E 165.

D. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.

3.6 REPAIRS AND PROTECTION

A. Repair damaged galvanized coatings on galvanized items with galvanized repair paint according to ASTM A 780 and manufacturer's written instructions.

END OF SECTION 05120

©Copyright 2015. All rights reserved. No part of this document may be reproduced in any form or by any means without permission from Walker Parking Consultants/Engineers, Inc.
SECTION 055000 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Miscellaneous steel framing and supports.
 2. Miscellaneous steel trim.
 3. Loose bearing and leveling plates.

B. Products furnished, but not installed, under this Section:
 1. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design ladders, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance of Aluminum Ladders: Aluminum ladders shall withstand the effects of loads and stresses within limits and under conditions specified in ANSI A14.3.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on exterior metal fabrications by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

1.3 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Paint products.
 2. Grout.

B. Shop Drawings: Show fabrication and installation details for metal fabrications.
 1. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items.

C. Delegated-Design Submittal: For installed products indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

PART 2 - PRODUCTS

2.1 METALS, GENERAL

A. Metal Surfaces, General: Provide materials with smooth, flat surfaces without blemishes.
2.2 FERROUS METALS
 A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
 B. Rolled-Steel Floor Plate: ASTM A 786/A 786M, rolled from plate complying with ASTM A 36/A 36M or ASTM A 283/A 283M, Grade C or D.
 C. Rolled-Stainless-Steel Floor Plate: ASTM A 793.
 D. Steel Tubing: ASTM A 500, cold-formed steel tubing.
 E. Steel Pipe: ASTM A 53/A 53M, standard weight (Schedule 40) unless otherwise indicated.
 F. Slotted Channel Framing: Cold-formed metal box channels (struts) complying with MFMA-4.
 2. Material: Galvanized steel, ASTM A 653/A 653M, commercial steel, Type B, with G90 coating; 0.108-inch nominal thickness.
 3. Material: Cold-rolled steel, ASTM A 1008/A 1008M, commercial steel, Type B; 0.0966-inch minimum thickness; coated with rust-inhibitive, baked-on, acrylic enamel.
 G. Cast Iron: Either gray iron, ASTM A 48/A 48M, or malleable iron, ASTM A 47/A 47M.

2.3 NONFERROUS METALS
 A. Aluminum Extrusions: ASTM B 221, Alloy 6063-T6.

2.4 FASTENERS
 A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, at exterior walls.
 1. Provide stainless-steel fasteners for fastening aluminum.
 2. Provide stainless-steel fasteners for fastening stainless steel.
 B. Cast-in-Place Anchors in Concrete: Either threaded type or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F 2329.
 C. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors.
 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, unless otherwise indicated.
 D. Slotted-Channel Inserts: Cold-formed, hot-dip galvanized-steel box channels (struts) complying with MFMA-4, 1-5/8 by 7/8 inches by length indicated with anchor straps or studs not less than 3 inches long at not more than 8 inches o.c. Provide with temporary filler and tee-head bolts, complete with washers and nuts, all zinc-plated to comply with ASTM B 633, Class Fe/Zn 5, as needed for fastening to inserts.

2.5 MISCELLANEOUS MATERIALS
 A. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
B. Epoxy Zinc-Rich Primer: Complying with MPI#20 and compatible with topcoat.

C. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.

D. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

F. Concrete: Comply with requirements in Division 03 Section "Cast-in-Place Concrete" for normal-weight, air-entrained, concrete with a minimum 28-day compressive strength of 3000 psi.

2.6 FABRICATION, GENERAL

A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Use connections that maintain structural value of joined pieces.

B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges. Remove sharp or rough areas on exposed surfaces.

C. Weld corners and seams continuously to comply with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended.

D. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Locate joints where least conspicuous.

E. Fabricate seams and other connections that will be exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.

F. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors not less than 24 inches o.c.

2.7 MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.

B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.

2.8 MISCELLANEOUS STEEL TRIM

A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.

B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.
C. Galvanize exterior miscellaneous steel trim.

2.9 LOOSE BEARING AND LEVELING PLATES

A. Provide loose bearing and leveling plates for steel items bearing on masonry or concrete construction. Drill plates to receive anchor bolts and for grouting.

2.10 FINISHES, GENERAL

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Finish metal fabrications after assembly.

2.11 STEEL AND IRON FINISHES

A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.

B. Shop prime iron and steel items not indicated to be galvanized unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.
 1. Shop prime with universal shop primer unless zinc-rich primer is indicated.

C. Preparation for Shop Priming: Prepare surfaces to comply with requirements indicated below:
 3. Items Indicated to Receive Primers Specified in Division 09 Section "High-Performance Coatings": SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 4. Other Items: SSPC-SP 3, "Power Tool Cleaning."

D. Shop Priming: Apply shop primer to comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.

B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.

C. Field Welding: Comply with the following requirements:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended.
D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction.

E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

3.2 INSTALLING BEARING AND LEVELING PLATES

B. Set bearing and leveling plates on wedges, shims, or leveling nuts. After bearing members have been positioned and plumbed, tighten anchor bolts. Do not remove wedges or shims but, if protruding, cut off flush with edge of bearing plate before packing with grout.

C. Pack grout solidly between bearing surfaces and plates to ensure that no voids remain.

3.3 ADJUSTING AND CLEANING

A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

END OF SECTION 055000
SECTION 061053 - MISCELLANEOUS ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Rooftop equipment bases and support curbs.
 2. Wood blocking and nailers.
 3. Wood furring.
 4. Plywood backing panels.

B. Related Requirements:
 1. Section 313116 "Termite Control" for site application of borate treatment to wood framing.

1.3 DEFINITIONS

A. Dimension Lumber: Lumber of 2 inches nominal or greater but less than 5 inches nominal in least dimension.

B. Lumber grading agencies, and the abbreviations used to reference them, include the following:
 3. NLGA: National Lumber Grades Authority.
 5. WCLIB: West Coast Lumber Inspection Bureau.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 3. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D 5664.
 4. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.
 5. Include copies of warranties from chemical treatment manufacturers for each type of treatment.
1.5 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For the following, from ICC-ES:
 1. Preservative-treated wood.
 2. Fire-retardant-treated wood.
 5. Expansion anchors.
 6. Metal framing anchors.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing agency providing classification marking for fire-retardant treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 1. Factory mark each piece of lumber with grade stamp of grading agency.
 2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece.
 3. Where nominal sizes are indicated, provide actual sizes required by DOC PS 20 for moisture content specified. Where actual sizes are indicated, they are minimum dressed sizes for dry lumber.
 4. Provide dressed lumber, S4S, unless otherwise indicated.

B. Maximum Moisture Content of Lumber: 15 percent for 2-inch nominal thickness or less, 19 percent for more than 2-inch nominal thickness unless otherwise indicated.

2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with the ground, Use Category UC3b for exterior construction not in contact with the ground, and Use Category UC4a for items in contact with the ground.
 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.
 2. For exposed items indicated to receive a stained or natural finish, use chemical formulations that do not require incising, contain colorants, bleed through, or otherwise adversely affect finishes.
B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.
 1. For exposed lumber indicated to receive a stained or natural finish, mark end or back of each piece.

D. Application: Treat items indicated on Drawings, and the following:
 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 2. Wood sills, sleepers, blocking, and similar concealed members in contact with masonry or concrete.
 3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
 4. Wood framing members that are less than 18 inches above the ground in crawl spaces or unexcavated areas.
 5. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 FIRE-RETARDANT-TREATED MATERIALS

A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.
 1. Use treatment that does not promote corrosion of metal fasteners.
 2. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated lumber and plywood by pressure process after being subjected to accelerated weathering according to ASTM D 2898. Use for exterior locations and where indicated.
 3. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D 3201 at 92 percent relative humidity. Use where exterior type is not indicated.
 4. Design Value Adjustment Factors: Treated lumber shall be tested according ASTM D 5664, and design value adjustment factors shall be calculated according to ASTM D 6841.

C. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent.

D. Identify fire-retardant-treated wood with appropriate classification marking of testing and inspecting agency acceptable to authorities having jurisdiction.
 1. For exposed lumber indicated to receive a stained or natural finish, mark end or back of each piece.

E. For exposed items indicated to receive a stained or natural finish, use chemical formulations that do not bleed through, contain colorants, or otherwise adversely affect finishes.

F. Application: Treat items indicated on Drawings, and the following:
 1. Plywood backing panels.
2.4 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 1. Blocking.
 2. Nailers.
 3. Rooftop equipment bases and support curbs.
 4. Furring.

B. For items of dimension lumber size, provide Construction or No. 2 grade lumber and any of the following species:
 1. Hem-fir (north); NLGA.
 2. Mixed southern pine; SPIB.
 3. Spruce-pine-fir; NLGA.
 4. Hem-fir; WCLIB or WWPA.
 5. Spruce-pine-fir (south); NeLMA, WCLIB, or WWPA.
 6. Western woods; WCLIB or WWPA.
 7. Northern species; NLGA.
 8. Eastern softwoods; NeLMA.

C. For concealed boards, provide lumber with 15 percent maximum moisture content and any of the following species and grades:
 1. Mixed southern pine, No. 3 grade; SPIB.
 2. Hem-fir or hem-fir (north), Standard or No. 3 Common grade; NLGA, WCLIB, or WWPA.
 3. Spruce-pine-fir (south) or spruce-pine-fir, Standard or No. 3 Common grade; NeLMA, NLGA, WCLIB, or WWPA.
 4. Eastern softwoods, No. 3 Common grade; NeLMA.
 5. Northern species, No. 3 Common grade; NLGA.
 6. Western woods, Standard or No. 3 Common grade; WCLIB or WWPA.

D. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.

E. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

F. For furring strips for installing plywood or hardboard paneling, select boards with no knots capable of producing bent-over nails and damage to paneling.

2.5 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: DOC PS 1, Exterior, AC, fire-retardant treated, in thickness indicated or, if not indicated, not less than 3/4-inch nominal thickness.

2.6 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 1. Where carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners of Type 304 stainless steel.

B. Nails, Brads, and Staples: ASTM F 1667.

D. Wood Screws: ASME B18.6.1.

E. Screws for Fastening to Metal Framing: [ASTM C 1002], length as recommended by screw manufacturer for material being fastened.

F. Lag Bolts: ASME B18.2.1.

G. Bolts: Steel bolts complying with ASTM A 307, Grade A; with ASTM A 563 hex nuts and, where indicated, flat washers.

H. Expansion Anchors: Anchor bolt and sleeve assembly of material indicated below with capability to sustain, without failure, a load equal to 6 times the load imposed when installed in unit masonry assemblies and equal to 4 times the load imposed when installed in concrete as determined by testing per ASTM E 488 conducted by a qualified independent testing and inspecting agency.
 2. Material: Stainless steel with bolts and nuts complying with ASTM F 593 and ASTM F 594, Alloy Group 1 or 2.

2.7 METAL FRAMING ANCHORS

 1. Use for interior locations unless otherwise indicated.

B. Hot-Dip Heavy-Galvanized Steel Sheet: ASTM A 653/A 653M; Structural Steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 coating designation; and not less than 0.036 inch thick.
 1. Use for wood-preservative-treated lumber and where indicated.

C. Stainless-Steel Sheet: ASTM A 666, Type 304.
 1. Use for exterior locations and where indicated.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Set carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit carpentry to other construction; scribe and cope as needed for accurate fit. Locate furring, nailers, blocking, and similar supports to comply with requirements for attaching other construction.

B. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

C. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.

D. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing panels. Install fire-retardant treated plywood backing panels with classification marking of testing agency exposed to view.
E. Metal Framing Anchors: Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.

F. Do not splice structural members between supports unless otherwise indicated.

G. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.
 1. Provide metal clips for fastening gypsum board or lath at corners and intersections where framing or blocking does not provide a surface for fastening edges of panels. Space clips not more than 16 inches o.c.

H. Provide fire blocking in furred spaces, stud spaces, and other concealed cavities as indicated and as follows:
 1. Fire block furred spaces of walls, at each floor level, at ceiling, and at not more than 96 inches o.c. with solid wood blocking or noncombustible materials accurately fitted to close furred spaces.
 2. Fire block concealed spaces of wood-framed walls and partitions at each floor level, at ceiling line of top story, and at not more than 96 inches o.c. Where fire blocking is not inherent in framing system used, provide closely fitted solid wood blocks of same width as framing members and 2-inch nominal thickness.
 3. Fire block concealed spaces between floor sleepers with same material as sleepers to limit concealed spaces to not more than 100 sq. ft. and to solidly fill space below partitions.
 4. Fire block concealed spaces behind combustible cornices and exterior trim at not more than 20 feet o.c.

I. Sort and select lumber so that natural characteristics will not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.

J. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
 1. Use inorganic boron for items that are continuously protected from liquid water.
 2. Use copper naphthenate for items not continuously protected from liquid water.

K. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 1. NES NER-272 for power-driven fasteners.
 3. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings.

L. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 WOOD BLOCKING, AND NAILER INSTALLATION

A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.

B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.
C. Provide permanent grounds of dressed, pressure-preservative-treated, key-beveled lumber not less than 1-1/2 inches wide and of thickness required to bring face of ground to exact thickness of finish material. Remove temporary grounds when no longer required.

3.3 WOOD FURRING INSTALLATION

A. Install level and plumb with closure strips at edges and openings. Shim with wood as required for tolerance of finish work.

B. Furring to Receive Plywood Paneling: Install 1-by-3-inch nominal-size furring horizontally and vertically at 24 inches o.c.

C. Furring to Receive Gypsum Board: Install 1-by-2-inch nominal-size furring vertically at 16 inches o.c.

3.4 PROTECTION

A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

B. Protect miscellaneous rough carpentry from weather. If, despite protection, miscellaneous rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 061053
SECTION 064023 - INTERIOR ARCHITECTURAL WOODWORK

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Plastic-laminate cabinets.
 2. Solid-surface countertops

B. Interior architectural woodwork includes wood furring, blocking, shims, and hanging strips unless concealed within other construction before woodwork installation.

1.2 ACTION SUBMITTALS

A. Product Data: For solid-surfacing material cabinet hardware and accessories and finishing materials and processes.

B. Shop Drawings: Show location of each item, dimensioned plans and elevations, large-scale details, attachment devices, and other components.

C. Samples:
 1. Plastic-laminates, for each type, color, pattern, and surface finish.
 2. Solid-surfacing materials.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: Fabricator of woodwork.

B. Quality Standard: Unless otherwise indicated, comply with AWI's "Architectural Woodwork Quality Standards."

1.4 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install woodwork until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Wood Products:
 1. Medium-Density Fiberboard: ANSI A208.2, Grade MD, made with binder containing no urea formaldehyde.
 3. Thermoset Decorative Panels: Particleboard or medium-density fiberboard finished with thermally fused, melamine-impregnated decorative paper and complying with requirements of NEMA LD 3, Grade VGL, for test methods 3.3, 3.4, 3.6, 3.8, and 3.10.
B. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or, if not indicated, as required by woodwork quality standard.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Abet Laminati Inc.
 b. Formica Corporation.
 c. Lamin-Art, Inc.
 d. Nevamar; a Panolam Industries International, Inc. brand.
 e. Pionite; a Panolam Industries International, Inc. brand.
 f. Wilsonart International Holdings, Inc.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avonite, Inc.
 c. Formica Corporation.
 d. Nevamar Company, LLC; Decorative Products Div.
 e. Transolid, Inc.
 f. Wilsonart International; Div. of Premark International, Inc.

2.2 MISCELLANEOUS MATERIALS

A. Adhesives, General: Adhesives shall not contain urea formaldehyde.

B. VOC Limits for Installation Adhesives: Installation adhesives shall have a VOC content of 30 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 FABRICATION

A. General: Complete fabrication to maximum extent possible before shipment to Project site. Where necessary for fitting at site, provide allowance for scribing, trimming, and fitting.
 1. Interior Woodwork Grade: Custom.
 2. Shop cut openings to maximum extent possible. Sand edges of cutouts to remove splinters and burrs. Seal edges of openings in countertops with a coat of varnish.

B. Plastic-Laminate Cabinets:
 1. AWI Type of Cabinet Construction: As indicated.
 2. Laminate Cladding for Exposed Surfaces: High-pressure decorative laminate as follows:
 a. Horizontal Surfaces Other Than Tops: Grade HGL.
 b. Vertical Surfaces: Grade HGS.
 c. Edges: Grade HGS.
 d. Doors and Drawer fronts: 3mm PVC edge banding
 3. Materials for Semi-exposed Surfaces Other Than Drawer Bodies: High-pressure decorative laminate, Grade VGS.
 4. Colors, Patterns, and Finishes: As selected by Architect from laminate manufacturer's full range of solid colors, patterns, gloss and matte finish.

C. Solid-Surfacing-Material Countertops:
 2. Colors, Patterns, and Finishes: As selected from manufacturer's full range.
3. Fabricate tops in one piece with loose backsplashes for field application. Comply with solid-surfacing-material manufacturer's written recommendations for adhesives, sealers, fabrication, and finishing.

4. Install under mount sink bowls in countertops in field.

D. Core Material at Sinks: Particleboard made with exterior glue medium-density fiberboard made with exterior glue or exterior-grade plywood.

E. Core Thickness: 3/4 inch.
 1. Build up countertop thickness to 1-1/2 inches at front, back, and ends with additional layers of core material laminated to top.

F. Backer Sheet: Provide plastic-laminate backer sheet, NEMA LD 3, Grade BKL, on underside of countertop substrate.

2.4 CABINET HARDWARE AND ACCESSORIES

A. General: Provide cabinet hardware and accessory materials associated with architectural woodwork.

B. Butt Hinges: 2-3/4-inch, 5-knuckle steel hinges made from 0.095-inch-thick metal, and as follows:
 1. Semiconcealed Hinges for Overlay Doors: BHMA A156.9, B01521.

C. Wire Pulls: Back mounted, solid metal, 4 inches long, 5/16 inch in diameter.

D. Catches: Magnetic catches, BHMA A156.9, B03141 or Roller catches, BHMA A156.9, B03071.

E. Drawer Slides: BHMA A156.9, B05091.
 1. Heavy Duty (Grade 1HD-100 and Grade 1HD-200): Side mounted; full-extension type; zinc-plated steel ball-bearing slides.
 2. Box Drawer Slides: Grade 1HD-100; for drawers not more than 6 inches high and 24 inches wide.
 3. File Drawer Slides: Grade 1HD-200; for drawers more than 6 inches high or 24 inches wide.
 4. Pencil Drawer Slides: Grade 1; for drawers not more than 3 inches high and 24 inches wide.

F. Door Locks: BHMA A156.11, E07121.

G. Drawer Locks: BHMA A156.11, E07041.

H. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for BHMA finish number indicated.
 1. Satin Stainless Steel: BHMA 630.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Before installation, condition woodwork to average prevailing humidity conditions in installation areas. Examine shop-fabricated work for completion and complete work as required, including removal of packing and backpriming.
B. Grade: Install woodwork to comply with requirements for the same grade specified in Part 2 for fabrication of type of woodwork involved.

C. Install woodwork level, plumb, true, and straight to a tolerance of 1/8 inch in 96 inches. Shim as required with concealed shims.

D. Scribe and cut woodwork to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.

E. Anchor woodwork to anchors or blocking built in or directly attached to substrates. Secure with countersunk, concealed fasteners and blind nailing as required for complete installation.

F. Cabinets:
 1. Fasten wall cabinets through back, near top and bottom, at ends and not more than 16 inches o.c. with No. 10 wafer-head sheet metal screws through metal backing or metal framing behind wall finish.

G. Countertops: Anchor securely by screwing through corner blocks of base cabinets or other supports into underside of countertop. Calk space between backsplash and wall with sealant specified in Division 07 Section "Joint Sealants."

END OF SECTION 064023
SECTION 066400 - PLASTIC PANELING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes: Plastic sheet paneling.
 B. Related Requirements:
 1. Section 061000 "Rough Carpentry" for wood furring for installing plastic paneling.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Samples: For plastic paneling and trim accessories, in manufacturer's standard sizes.

1.4 QUALITY ASSURANCE
 A. Testing Agency: Acceptable to authorities having jurisdiction.

1.5 PROJECT CONDITIONS
 A. Environmental Limitations: Do not deliver or install plastic paneling until spaces are enclosed and weathertight and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Source Limitations: Obtain plastic paneling and trim accessories from single manufacturer.

2.2 PLASTIC SHEET PANELING
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Composites, Inc.
 b. Glasteel.
 c. Marlite.
 d. Newcourt, Inc.
 e. Nudo Products, Inc.
 f. Parkland Plastics, Inc.
2. Surface-Burning Characteristics: As follows when tested by a qualified testing agency according to ASTM E 84. Identify products with appropriate markings of applicable testing agency.
 a. Flame-Spread Index: 25 or less.
 b. Smoke-Developed Index: 450 or less.
3. Nominal Thickness: Not less than 0.12 inch.
4. Surface Finish: Smooth or Molded pebble texture as selected by Architect.
5. Color: As selected by Architect from manufacturer's full range.

2.3 ACCESSORIES

A. Trim Accessories: Manufacturer's standard one-piece or two-piece, snap-on vinyl extrusions designed to retain and cover edges of panels. Provide division bars, inside corners, outside corners, and caps as needed to conceal edges.
B. Adhesive: As recommended by plastic paneling manufacturer and with a VOC content of 50 g/L or less.
C. Sealant: Mildew-resistant, single-component, neutral-curing silicone sealant recommended by plastic paneling manufacturer and complying with requirements in Section 079200 "Joint Sealants."
 1. Sealant shall have a VOC content of 250 g/L or less.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove materials that might interfere with adhesive bond.
B. Prepare substrate by sanding high spots and filling low spots as needed to provide flat, even surface for panel installation.
C. Clean substrates of substances that could impair adhesive bond, including oil, grease, dirt, and dust.
D. Condition panels by unpacking and placing in installation space before installation according to manufacturer's written recommendations.
E. Lay out paneling before installing. Locate panel joints so that trimmed panels at corners are not less than 12 inches wide.
 1. Mark plumb lines on substrate at trim accessory locations for accurate installation.
 2. Locate trim accessories to allow clearance at panel edges according to manufacturer's written instructions.

3.3 INSTALLATION

A. Install plastic paneling according to manufacturer's written instructions.
B. Install panels in a full spread of adhesive.

C. Install trim accessories with adhesive. Do not fasten through panels.

D. Fill grooves in trim accessories with sealant before installing panels, and bed inside corner trim in a bead of sealant.

E. Maintain uniform space between panels and wall fixtures. Fill space with sealant.

F. Maintain uniform space between adjacent panels and between panels and floors, ceilings, and fixtures. Fill space with sealant.

G. Remove excess sealant and smears as paneling is installed. Clean with solvent recommended by sealant manufacturer and then wipe with clean dry cloths until no residue remains.

END OF SECTION 066400
SECTION 078413 - PENETRATION FIRESTOPPING

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Penetrations in fire-resistance-rated walls.
B. Related Sections:
 1. Section 078446 "Fire-Resistive Joint Systems" for joints in or between fire-resistance-rated construction, at exterior curtain-wall/floor intersections, and in smoke barriers.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For each through-penetration firestop system, show each kind of construction condition penetrated, relationships to adjoining construction, and kind of penetrating item. Include firestop designation of testing and inspecting agency acceptable to authorities having jurisdiction that evidences compliance with requirements for each condition indicated.
 1. Submit documentation, including illustrations, from a qualified testing and inspecting agency that is applicable to each through-penetration firestop system configuration for construction and penetrating items.
 2. Where Project conditions require modification of qualified testing and inspecting agency's illustration to suit a particular through-penetration firestop condition, submit illustration, with modifications marked, approved by through-penetration firestop system manufacturer's fire-protection engineer.
C. Product Schedule: For each penetration firestopping system. Include location and design designation of qualified testing and inspecting agency.
 1. Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping condition, submit illustration, with modifications marked, approved by penetration firestopping manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For firms and persons specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include lists of completed projects with project names and addresses, names and addresses of architects and owners, and other information specified.
B. Installer Certificates: From Installer indicating penetration firestopping has been installed in compliance with requirements and manufacturer's written recommendations.
C. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for penetration firestopping.

1.5 QUALITY ASSURANCE
A. Installation Responsibility: Assign installation of through-penetration firestop systems and fire-resistive joint systems in Project to a single qualified firestop contractor.
B. Source Limitations: Obtain through-penetration firestop systems from a single manufacturer.
C. Contractor Qualifications: An experienced installer who is qualified by having the necessary experience, staff, and training to install manufacturer's products per specified requirements. Firm shall hold current certification by third party attesting to its ability to select and install firestopping in accordance with
performance requirements, have established management system for firestopping and employ trained supervisor (DRI) to maintain oversight of firestopping installation.

1. Certification for firestopping firms: Firm shall be certified by one of the following:
 b. UL Qualified Firestop Contractor.

2. Qualification for Mechanics: Trained individual in accordance with requirements of certification of firm.
 a. Firestop Installers Training (FIT) Level 1 by Specified Technologies, Inc.
 c. Similar training by manufacturers listed in Part 2.

3. A manufacturer’s willingness to sell its through-penetration firestop system products to Contractor or to an installer engaged by Contractor does not in itself confer qualification on buyer.

D. Fire-Test-Response Characteristics: Penetration firestopping shall comply with the following requirements:

1. Penetration firestopping tests are performed by a qualified testing agency acceptable to authorities having jurisdiction.

2. Penetration firestopping is identical to those tested per testing standard referenced in "Penetration Firestopping" Article. Provide rated systems complying with the following requirements:
 a. Penetration firestopping products bear classification marking of qualified testing and inspecting agency.
 b. Classification markings on penetration firestopping correspond to designations listed by the following:
 1) UL in its "Fire Resistance Directory."
 2) Intertek ETL SEMKO in its "Directory of Listed Building Products."
 3) FM Global in its "Building Materials Approval Guide."

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver through-penetration firestop system products to Project site in original, unopened containers or packages with intact and legible manufacturers' labels identifying product and manufacturer; date of manufacture; lot number; shelf life, if applicable; qualified testing and inspecting agency's classification marking applicable to Project; curing time; and mixing instructions for multicomponent materials.

B. Store and handle materials for through-penetration firestop systems to prevent their deterioration or damage due to moisture, temperature changes, contaminants, or other causes.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not install through-penetration firestop systems when ambient or substrate temperatures are outside limits permitted by through-penetration firestop system manufacturers or when substrates are wet due to rain, frost, condensation, or other causes.

B. Ventilate through-penetration firestop systems per manufacturer’s written instructions by natural means or, where this is inadequate, forced-air circulation.

1.8 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that through-penetration firestop systems are installed according to specified requirements.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate through-penetration firestop systems.

C. Notify Owner's inspecting agency at least seven days in advance of through-penetration firestop system installations; confirm dates and times on days preceding each series of installations.

D. Do not cover up through-penetration firestop system installations that will become concealed behind other construction until Owner's inspecting agency and building inspector, if required by authorities having jurisdiction, have examined each installation.
PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hilti Construction Chemicals, Inc.
 2. Specified Technologies Inc.
 3. 3M Fire Protection Products.
 4. Tremco.

2.2 FIRESTOPPING, GENERAL
 A. Provide penetration firestopping that is produced and installed to resist spread of fire according to
 requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance
 rating of construction penetrated. Penetration firestopping systems shall be compatible with one another,
 with the substrates forming openings, and with penetrating items if any.
 B. Penetrations in Fire-Resistance-Rated Walls: Provide penetration firestopping with ratings determined
 per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 1. Fire-resistance-rated walls include fire walls.
 2. F-Rating: Not less than the fire-resistance rating of constructions penetrated.
 C. Exposed Penetration Firestopping: Provide products with flame-spread and smoke-developed indexes of
 less than 25 and 450, respectively, as determined per ASTM E 84.
 D. VOC Content: Penetration firestopping sealants and sealant primers shall comply with the following
 limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 1. Sealants: 250 g/L.
 2. Sealant Primers for Nonporous Substrates: 250 g/L.
 3. Sealant Primers for Porous Substrates: 775 g/L.
 E. Accessories: Provide components for each through-penetration firestop system that are needed to install
 fill materials and to comply with "Performance Requirements" Article. Use only components specified by
 through-penetration firestop system manufacturer and approved by the qualified testing and inspecting
 agency for firestop systems indicated. Accessories include, but are not limited to, the following items:
 1. Permanent forming/damming/backing materials, including the following:
 a. Slag-/rock-wool-fiber insulation.
 b. Sealants used in combination with other forming/damming/backing materials to prevent leakage
 of fill materials in liquid state.
 c. Fire-rated form board.
 2. Temporary forming materials.
 5. Steel sleeves.

2.3 MIXING
 A. For those products requiring mixing before application, comply with through-penetration firestop system
 manufacturer's written instructions for accurate proportioning of materials, water (if required), type of
 mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or
 procedures needed to produce products of uniform quality with optimum performance characteristics for
 application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening
 configurations, penetrating items, substrates, and other conditions affecting performance.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Surface Cleaning: Clean out openings immediately before installing through-penetration firestop systems to comply with written recommendations of firestop system manufacturer and the following requirements:
 1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of through-penetration firestop systems.
 2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with through-penetration firestop systems. Remove loose particles remaining from cleaning operation.
 3. Remove laitance and form-release agents from concrete.

B. Priming: Prime substrates where recommended in writing by through-penetration firestop system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

C. Masking Tape: Use masking tape to prevent through-penetration firestop systems from contacting adjoining surfaces that will remain exposed on completion of Work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestop system materials. Remove tape as soon as possible without disturbing firestop system's seal with substrates.

3.3 THROUGH-PENETRATION FIRESTOP SYSTEM INSTALLATION

A. General: Install through-penetration firestop systems to comply with "Performance Requirements" Article and firestop system manufacturer's written installation instructions and published drawings for products and applications indicated.

B. Install forming/damming/backing materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.
 1. After installing fill materials, remove combustible forming materials and other accessories not indicated as permanent components of firestop systems.

C. Install fill materials for firestop systems by proven techniques to produce the following results:
 1. Fill voids and cavities formed by openings, forming materials, accessories, and penetrating items as required to achieve fire-resistance ratings indicated.
 2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
 3. For fill materials that will remain exposed after completing Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 FIELD QUALITY CONTROL

A. Inspecting Agency: Owner will engage a qualified independent inspecting agency to inspect through-penetration firestop systems in accordance with ASTM E 2174 and to prepare test reports.
 1. Inspecting agency will state in each report whether inspected through-penetration firestop systems comply with or deviate from requirements.

B. Proceed with enclosing through-penetration firestop systems with other construction only after inspection reports are issued.

C. Where deficiencies are found, repair or replace through-penetration firestop systems so they comply with requirements.

3.5 IDENTIFICATION

A. Identify through-penetration firestop systems with preprinted metal or plastic labels or pressure-sensitive, self-adhesive, preprinted vinyl labels. Attach labels permanently to surfaces of penetrated construction on both sides of each firestop system installation where labels will be visible to anyone seeking to remove penetrating items or firestop systems. Include the following information on labels:
 1. The words: "Warning--Through-Penetration Firestop System--Do Not Disturb. Notify Building Management of Any Damage."
2. Through-penetration firestop system designation of applicable testing agency.

3.6 CLEANING AND PROTECTION

A. Clean off excess fill materials adjacent to openings as Work progresses by methods and with cleaning materials that are approved in writing by through-penetration firestop system manufacturers and that do not damage materials in which openings occur.

B. Provide final protection and maintain conditions during and after installation that ensure through-penetration firestop systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated through-penetration firestop systems immediately and install new materials to produce through-penetration firestop systems complying with specified requirements.

END OF SECTION 078413
SECTION 078446 - FIRE-RESISTIVE JOINT SYSTEMS

1.1 SUMMARY
 A. This Section includes fire-resistive joint systems for the following:
 1. Joints in or between fire-resistance-rated constructions.
 B. Related Sections include the following:
 1. Section 078413 "Penetration Firestopping" for penetrations in fire-resistance-rated walls, horizontal assemblies, and smoke barriers.
 2. Section 079500 "Expansion Control" for fire-resistive architectural joint systems.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Product Schedule: For each fire-resistive joint system. Include location and design designation of qualified testing agency.
 1. Where Project conditions require modification to a qualified testing agency’s illustration for a particular fire-resistive joint system condition, submit illustration, with modifications marked, approved by fire-resistive joint system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly.
 C. Shop Drawings: For each fire-resistive joint system, show relationships to adjoining construction. Include firestop design designation of testing and inspecting agency acceptable to authorities having jurisdiction that evidences compliance with requirements for each condition indicated.
 1. Submit documentation, including illustrations, from a qualified testing and inspecting agency that is applicable to each fire-resistive joint system configuration for construction and penetrating items.

1.3 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For qualified Installer.
 B. Installer Certificates: From Installer indicating fire-resistive joint systems have been installed in compliance with requirements and manufacturer's written recommendations.
 C. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for fire-resistive joint systems.
 D. Research/Evaluation Reports: For each type of fire-resistive joint system.

1.4 QUALITY ASSURANCE
 A. Installation Responsibility: Assign installation of through-penetration firestop systems and fire-resistive joint systems in Project to a single qualified firestop contractor.
 B. Source Limitations: Obtain fire-resistive joint systems through one source from a single manufacturer.
 C. Contractor Qualifications: An experienced installer who is qualified by having the necessary experience, staff, and training to install manufacturer's products per specified requirements. Firm shall hold current certification by third party attesting to its ability to select and install firestopping in accordance with performance requirements, have established management system for firestopping and employ trained supervisor (DRI) to maintain oversight of firestopping installation.
 1. Certification for firestopping firms: Firm shall be certified by one of the following:
 b. UL Qualified Firestop Contractor.
 2. Qualification for Mechanics: Trained individual in accordance with requirements of certification of firm.
 a. Firestop Installers Training (FIT) Level 1 by Specified Technologies, Inc.
 c. Similar training by manufacturers listed in Part 2.
3. A manufacturer's willingness to sell its fire-resistant joint system products to Contractor or to an installer engaged by Contractor does not in itself confer qualification on buyer.

D. Fire-Test-Response Characteristics: Fire-resistant joint systems shall comply with the following requirements:

1. Fire-resistant joint system tests are performed by a qualified testing agency acceptable to authorities having jurisdiction.

2. Fire-resistant joint systems are identical to those tested per testing standard referenced in "Fire-Resistive Joint Systems" Article. Provide rated systems complying with the following requirements:
 a. Fire-resistant joint system products bear classification marking of qualified testing agency.
 b. Fire-resistant joint systems correspond to those indicated by reference to designations listed by the following:
 1) UL in its "Fire Resistance Directory."
 2) Intertek ETL SEMKO in its "Directory of Listed Building Products."

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver fire-resistant joint system products to Project site in original, unopened containers or packages with qualified testing and inspecting agency's classification marking applicable to Project and with intact and legible manufacturers' labels identifying product and manufacturer, date of manufacture, lot number, shelf life, curing time, and mixing instructions for multicomponent materials.

B. Store and handle materials for fire-resistant joint systems to prevent their deterioration or damage due to moisture, temperature changes, contaminants, or other causes.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Do not install fire-resistant joint systems when ambient or substrate temperatures are outside limits permitted by fire-resistant joint system manufacturers or when substrates are wet due to rain, frost, condensation, or other causes.

B. Ventilate fire-resistant joint systems per manufacturer's written instructions by natural means or, if this is inadequate, forced-air circulation.

1.7 COORDINATION

A. Coordinate construction of joints to ensure that fire-resistant joint systems are installed according to specified requirements.

B. Coordinate sizing of joints to accommodate fire-resistant joint systems.

C. Notify Owner's inspecting agency at least seven days in advance of fire-resistant joint system installations; confirm dates and times on days preceding each series of installations.

D. Do not cover up fire-resistant joint system installations that will become concealed behind other construction until Owner's inspecting agency and building inspector, if required by authorities having jurisdiction, have examined each installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hilti Construction Chemicals, Inc.
 2. Specified Technologies Inc.
 3. 3M Fire Protection Products.
 4. Tremco.
2.2 FIRE-RESISTIVE JOINT SYSTEMS, GENERAL

A. Provide fire-resistive joint systems that are produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance rating of assemblies in or between which fire-resistive joint systems are installed. Fire-resistive joint systems shall accommodate building movements without impairing their ability to resist the passage of fire and hot gases.

B. Joints in or between Fire-Resistance-Rated Construction: Provide fire-resistive joint systems with ratings determined per ASTM E 1966 or UL 2079:
 1. Joints include those installed in or between fire-resistance-rated walls, floor or floor/ceiling assemblies [and] [roofs or roof/ceiling assemblies].
 2. Fire-Resistance Rating: Equal to or exceeding the fire-resistance rating of construction they will join.

C. Exposed Fire-Resistive Joint Systems: Provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.

D. VOC Content: Fire-resistive joint system sealants shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 1. Architectural Sealants: 250 g/L.
 2. Sealant Primers for Nonporous Substrates: 250 g/L.
 3. Sealant Primers for Porous Substrates: 775 g/L.

E. Accessories: Provide components of fire-resistive joint systems, including primers and forming materials, that are needed to install fill materials and to maintain ratings required. Use only components specified by fire-resistive joint system manufacturer and approved by the qualified testing agency for systems indicated.

F. Compatibility: Provide fire-resistive joint systems that are compatible with joint substrates, under conditions of service and application, as demonstrated by fire-resistive joint system manufacturer based on testing and field experience.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for joint configurations, substrates, and other conditions affecting performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Clean joints immediately before installing fire-resistive joint systems to comply with fire-resistive joint system manufacturer's written instructions and the following requirements:
 1. Remove from surfaces of joint substrates foreign materials that could interfere with adhesion of fill materials.
 2. Clean joint substrates to produce clean, sound surfaces capable of developing optimum bond with fill materials. Remove loose particles remaining from cleaning operation.
 3. Remove laitance and form-release agents from concrete.

B. Priming: Prime substrates where recommended in writing by fire-resistive joint system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

C. Masking Tape: Use masking tape to prevent fill materials of fire-resistive joint system from contacting adjoining surfaces that will remain exposed on completion of Work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from fire-resistive joint system materials. Remove tape as soon as possible without disturbing fire-resistive joint system's seal with substrates.
3.3 IDENTIFICATION
A. Identify fire-resistive joint systems with preprinted metal or plastic labels or self-adhesive vinyl labels. Attach labels permanently to surfaces adjacent to and within 6 inches of joint edge so labels will be visible to anyone seeking to remove or penetrate joint system. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:

3.4 INSTALLATION
A. General: Install fire-resistive joint systems to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.
B. Install forming/packing/backing materials and other accessories of types required to support fill materials during their application and in position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.
 1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of fire-resistive joint system.
C. Install fill materials for fire-resistive joint systems by proven techniques to produce the following results:
 1. Fill voids and cavities formed by openings and forming/packing/backing materials as required to achieve fire-resistance ratings indicated.
 2. Apply fill materials so they contact and adhere to substrates formed by joints.
 3. For fill materials that will remain exposed after completing Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.5 CLEANING AND PROTECTION
A. Clean off excess fill materials adjacent to joints as Work progresses by methods and with cleaning materials that are approved in writing by fire-resistive joint system manufacturers and that do not damage materials in which openings occur.
B. Provide final protection and maintain conditions during and after installation that ensure fire-resistive joint systems are without damage or deterioration at time of Substantial Completion. If damage or deterioration occurs despite such protection, cut out and remove damaged or deteriorated fire-resistive joint systems immediately and install new materials to produce fire-resistive joint systems complying with specified requirements.

END OF SECTION 078446
SELECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes joint sealants for the following applications, including those specified by reference to
 this Section:
 1. Exterior joints in vertical surfaces and horizontal nontraffic surfaces.
 2. Exterior joints in horizontal traffic surfaces.
 3. Interior joints in vertical surfaces and horizontal nontraffic surfaces.
 4. Interior joints in horizontal traffic surfaces.
 B. Related Sections include the following:
 1. Division 08 Section "Glazing" for glazing sealants.

1.2 PERFORMANCE REQUIREMENTS
 A. Provide elastomeric joint sealants that establish and maintain watertight and airtight continuous joint seals
 without staining or deteriorating joint substrates.
 B. Provide joint sealants for interior applications that establish and maintain airtight and water-resistant
 continuous joint seals without staining or deteriorating joint substrates.

1.3 SUBMITTALS
 A. Product Data: For each joint-sealant product indicated.
 B. Samples: For each type and color of joint sealant required, provide Samples with joint sealants in 1/2-inch-
 wide joints formed between two 6-inch-long strips of material matching the appearance of exposed
 surfaces adjacent to joint sealants.
 C. Compatibility and adhesion test reports.
 D. Product certificates. For each kind of joint sealant and accessory, from manufacturer.

1.4 QUALITY ASSURANCE
 A. Preconstruction Compatibility and Adhesion Testing: Submit samples of materials that will contact or
 affect joint sealants to joint-sealant manufacturers for testing according to ASTM C 1087 to determine
 whether priming and other specific joint preparation techniques are required to obtain rapid, optimum
 adhesion of joint sealants to joint substrates.
 B. Mockups: Build mockups incorporating sealant joints, as follows, to verify selections made under sample
 submittals and to demonstrate aesthetic effects and set quality standards for materials and execution:
 1. Joints in mockups of assemblies specified in other Sections that are indicated to receive elastomeric
 joint sealants, which are specified by reference to this Section.

1.5 WARRANTY
 A. Special Installer's Warranty: Installer's standard form in which Installer agrees to repair or replace
 elastomeric joint sealants that do not comply with performance and other requirements specified in this
 Section within specified warranty period.
 1. Warranty Period: Two years from date of Substantial Completion.
 B. Special Manufacturer's Warranty: Manufacturer's standard form in which elastomeric sealant manufacturer
 agrees to furnish elastomeric joint sealants to repair or replace those that do not comply with performance
 and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: 10 years from date of Substantial Completion for exterior elastomeric sealants.
PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Products: Subject to compliance with requirements, provide one of the products listed in other Part 2 Articles.

2.2 MATERIALS, GENERAL
 A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by sealant manufacturer, based on testing and field experience.
 B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer’s full range of available colors including premium colors.
 1. Where color is indicated to “match adjacent substrates” provide either manufacturer’s standard color if matching color is available, or, if not available, provide field tintable custom color.

2.3 ELASTOMERIC JOINT SEALANTS
 A. Elastomeric Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied chemically curing sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates.
 B. Stain-Test-Response Characteristics: Where elastomeric sealants are specified to be nonstaining to porous substrates, provide products that have undergone testing according to ASTM C 1248 and have not stained porous joint substrates indicated for Project.
 C. Suitability for Contact with Food: Where elastomeric sealants are indicated for joints that will come in repeated contact with food, provide products that comply with 21 CFR 177.2600.
 D. Single Component Nonsag Neutral-Curing Silicone Sealant ES-1:
 1. Products:
 a. Dow Corning Corporation; 756.
 b. Pecora Corporation; 890.
 c. Sikasil WS-290
 d. Type and Grade: S (single component) and NS (nonsag).
 e. Class: 100.
 f. Use Related to Exposure: NT (nontraffic).
 g. Uses Related to Joint Substrates: M, G, A, and, as applicable to joint substrates indicated, O.
 h. Non-staining for natural stone substrates.
 i. Field-tintable to match adjacent substrates.
 E. Single-Component Neutral-Curing Silicone Sealant ES-2:
 1. Products:
 a. Dow Corning Corporation; 790.
 b. Pecora Corporation; 864.
 c. Tremco; Spectrum 2.
 d. Sikasil WS-290
 2. Type and Grade: S (single component) and NS (nonsag).
 3. Class: 50.
 4. Use Related to Exposure: NT (nontraffic).
 5. Uses Related to Joint Substrates: M, G, A, and, as applicable to joint substrates indicated, O.
 F. Single-Component Traffic Exposure Neutral-Curing Silicone Sealant ES-3:
 1. Products:
 a. Dow Corning Corporation; 890-SL.
 b. Dow Corning Corporation; 890 (Gun grade).
 c. Dow Corning Corporation; 890-SL.
 d. Pecora Corporation; 300 Pavement Sealant (Self Leveling).
 e. Pecora Corporation; 301 Pavement Sealant (Gun grade).
f. Sikaflex
2. Type and Grade: S (single component) and P (pourable).
3. Class: 100/50.
4. Uses Related to Exposure: NT and T (traffic).
5. Uses Related to Joint Substrates: M, A, and O, as applicable to joint substrates indicated.

G. Single-Component Mildew-Resistant Neutral-Curing Silicone Sealant ES-4:
1. Products:
 a. Dow Corning Corporation; 786.
 b. Pecora Corporation; 898.
 c. Tremco; Tremsil 600 White.
2. Type and Grade: S (single component) and NS (nonsag).
4. Use Related to Exposure: NT (nontraffic).
5. Uses Related to Joint Substrates: M, G, A, and, as applicable to joint substrates indicated, O.

H. Single-Component Nonsag Urethane Sealant ES-5:
1. Products:
 a. Pecora Corporation; Dynatrol I-XL.
 b. Sika Corporation, Inc.; Sikaflex 15LMg
 c. Tremco; DyMonic.
 d. Tremco; Vulkem 921.
2. Type and Grade: S (single component) and NS (nonsag).
4. Use Related to Exposure: NT (nontraffic).
5. Uses Related to Joint Substrates: M, G, A, and, as applicable to joint substrates indicated, O.
6. Paintable.

2.5 LATEX JOINT SEALANTS
A. Latex Sealant LS-1: Comply with ASTM C 834, Type P, Grade NF.
B. Products:
 1. Pecora Corporation; AC-20+.
 2. Tremco; Tremflex 834.

2.6 ACOUSTICAL JOINT SEALANTS
A. Acoustical Sealant for Exposed and Concealed Joints AS-1: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834 that effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
 1. Products:
 a. Pecora Corporation; AC-20 FTR Acoustical and Insulation Sealant.
B. Acoustical Sealant for Concealed Joints AS-2: Manufacturer's standard, nondrying, nonhardening, nonskinning, nonstaining, guggnable, synthetic-rubber sealant recommended for sealing interior concealed joints to reduce airborne sound transmission.
 1. Products:
 a. Pecora Corporation; BA-98.
 b. Tremco; Tremco Acoustical Sealant.

2.7 JOINT SEALANT BACKING
A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), or B (bicellular material with a surface skin), as approved in writing by joint-sealant manufacturer for joint application indicated, and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance. For curtain wall applications, Type O (open-cell material) may be considered; consult the sealant manufacturer to confirm the specific backer material to be used for the specific project and application, and submit to Architect the manufacturer's written recommendations.

C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D 1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 26 deg F. Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and to otherwise contribute to optimum sealant performance.

D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable.

2.8 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants.

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant.
 a. Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air.

2. Remove laitance and form-release agents from concrete.
 a. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.

B. Joint Priming: Prime joint substrates, where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.2 INSTALLATION

A. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

B. Acoustical Sealant Application Standard: Comply with recommendations in ASTM C 919 for use of joint sealants in acoustical applications as applicable to materials, applications, and conditions indicated.

C. Install sealant backings of type recommended by manufacturer to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
1. Do not leave gaps between ends of sealant backings.
2. Do not stretch, twist, puncture, or tear sealant backings.
3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 1. Place sealants so they directly contact and fully wet joint substrates.
 2. Completely fill recesses in each joint configuration.
 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 1. Remove excess sealant from surfaces adjacent to joints.
 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 3. Provide concave joint configuration per Figure 5A in ASTM C 1193, unless otherwise indicated.

G. Installation of Preformed Silicone-Sealant System: Comply with manufacturer’s written instructions.

H. Installation of Preformed Foam Sealants: Install each length of sealant immediately after removing protective wrapping, taking care not to pull or stretch material, producing seal continuity at ends, turns, and intersections of joints. For applications at low ambient temperatures where expansion of sealant requires acceleration to produce seal, apply heat to sealant in compliance with sealant manufacturer's written instructions.

I. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.3 EXTERIOR JOINT-SEALANT SCHEDULE

A. Cast-in-place concrete, vertical construction joints:
 1. ES-2 Single-component neutral-curing silicone sealant.

B. Cast-in-place concrete slabs, horizontal nontraffic and traffic isolation and contraction joints:
 1. ES-3 Single-component pourable neutral-curing silicone sealant.

C. Metal panels, butt joints:
 1. ES-2 Single-component neutral-curing silicone sealant.

D. Exterior vertical joints between different materials listed above:
 1. ES-2 Single-component neutral-curing silicone sealant.

E. Exterior perimeter joints between materials listed above and frames of doors windows and louvers.
 1. ES-2 Single-component neutral-curing silicone sealant.

F. Exterior control and expansion joints in ceilings and other overhead surfaces.
 1. ES-2 Single-component neutral-curing silicone sealant.

G. Other vertical or horizontal non-traffic joints:
 1. ES-2 Single-component neutral-curing silicone sealant.

H. Other exterior horizontal traffic joints:
 1. ES-3 Single-component pourable neutral-curing silicone sealant.
3.4 INTERIOR JOINT SEALANT SCHEDULE

A. Vertical control and expansion joints on exposed interior surfaces of exterior walls.
 1. ES-2 Single-component neutral-curing silicone sealant.

B. Interior perimeter joints of exterior openings.
 1. ES-2 Single-component neutral-curing silicone sealant.

C. Interior tile expansion, control, contraction, and isolation joints in vertical surfaces.
 1. ES-5 Single-component single component non-sag urethane sealant.

D. Interior ceramic tile expansion, control, contraction, and isolation joints in horizontal traffic surfaces.
 1. ES-3 Single-component pourable neutral-curing silicone sealant.

E. Interior joints between plumbing fixtures and adjoining walls, floors, and counters.
 1. ES-4 Single-component mildew-resistant neutral-curing silicone sealant.

F. Perimeter joints between interior wall surfaces and frames of interior doors, windows and elevator entrances.
 1. LS-1 Latex sealant.

G. Other non-dynamic interior joints including between interior wall surfaces and casework.
 1. LS-1 Latex sealant.

H. Acoustical interior joints for exposed joints.
 1. AS-1 Latex sealant.

I. Acoustical interior joints for concealed joints.
 1. AS-2 Latex sealant.

END OF SECTION 079200
SECTION 081110- HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes: Standard hollow metal doors and frames.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include elevations, door edge details, frame profiles, metal thicknesses, preparations for hardware, and other details.

C. Schedule: Prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Amweld Building Products, LLC.
2. Benchmark; a division of Therma-Tru Corporation.
3. Ceco Door Products; an Assa Abloy Group company.
4. Curries Company; an Assa Abloy Group company.
5. Steelcraft; an Ingersoll-Rand company.

2.2 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, CS, Type B; suitable for exposed applications.

B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, CS, Type B.

C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B; with minimum G60 or A60 metallic coating.

D. Frame Anchors: ASTM A 591/A 591M, Commercial Steel (CS), 40Z coating designation; mill phosphatized.

1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.

E. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.

F. Grout: ASTM C 476, except with a maximum slump of 4 inches, as measured according to ASTM C 143/C 143M.

G. Mineral-Fiber Insulation: ASTM C 665, Type I.
H. Glazing: Division 08 Section "Glazing."

I. Bituminous Coating: Cold-applied asphalt mastic, SSPC-Paint 12, compounded for 15-mil dry film thickness per coat.

2.3 STANDARD HOLLOW METAL DOORS

A. General: Comply with ANSI/SDI A250.8.
 1. Design: Flush panel.
 2. Core Construction: Manufacturer's standard polystyrene, polyurethane, polyisocyanurate, mineral-board, or vertical steel-stiffener core.
 4. Top and Bottom Edges: Closed with flush or inverted 0.042-inch- thick, end closures or channels of same material as face sheets.

B. Exterior Doors: Face sheets fabricated from metallic-coated steel sheet. Comply with ANSI/SDI A250.8 for level and model and ANSI/SDI A250.4 for physical performance level:
 1. Level 3 and Physical Performance Level A (Extra Heavy Duty), Model 2 (Seamless).

C. Interior Doors: Face sheets fabricated from cold-rolled steel sheet. Provide doors complying with requirements indicated below by referencing ANSI/SDI A250.8 for level and model and ANSI/SDI A250.4 for physical performance level:
 1. Level 2 and Physical Performance Level B (Heavy Duty), Model 2 (Seamless).

2.4 STANDARD HOLLOW METAL FRAMES

A. General: Comply with ANSI/SDI A250.8.

 1. Fabricate frames with mitered or coped corners.
 2. Fabricate frames as full profile welded unless otherwise indicated.
 3. Frames for Level 3 Steel Doors: 0.053-inch- thick steel sheet.

C. Interior Frames: Fabricated from cold-rolled steel sheet.
 1. Fabricate frames with mitered or coped corners.
 2. Fabricate frames as full profile welded unless otherwise indicated.
 3. Frames for Level 2 Steel Doors: 0.053-inch- thick steel sheet.
 4. Frames for Borrowed Lights: 0.053-inch- thick steel sheet.

2.5 FRAME ANCHORS

A. Jamb Anchors:
 1. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch thick.
 2. Postinstalled Expansion Type for In-Place Concrete: Minimum 3/8-inch- diameter bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.
B. Floor Anchors: Formed from same material as frames, not less than 0.042 inch thick, and as follows:
 1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.

2.6 STOPS AND MOLDINGS

A. Moldings for Glazed Lites in Doors: Minimum 0.032 inch thick, same material as door face sheet.

B. Fixed Frame Moldings: Formed integral with hollow metal frames, a minimum of 5/8 inch high unless otherwise indicated.

C. Loose Stops for Glazed Lites in Frames: Minimum 0.032 inch thick, same material as frames.

2.7 ACCESSORIES

A. Ceiling Struts: Minimum 1/4-inch-thick by 1-inch wide steel.

B. Grout Guards: Formed from same material as frames, not less than 0.016 inch thick.

2.8 FABRICATION

A. Tolerances: Fabricate hollow metal work to tolerances indicated in SDI 117.

B. Hollow Metal Doors:
 1. Exterior Doors: Provide weep-hole openings in bottom of exterior doors. Seal joints in top edges of doors against water penetration.
 2. Glazed Lites: Factory cut openings in doors.
 3. Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated.

C. Hollow Metal Frames: Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.
 1. Welded Frames: Weld flush face joints continuously; grind, fill, dress, and make smooth, flush, and invisible.
 2. Sidelight and Transom Bar Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
 3. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 4. Grout Guards: Weld guards to frame at back of hardware mortises in frames to be grouted.
 5. Floor Anchors: Weld anchors to bottom of jambs and mullions with at least four spot welds per anchor.
 6. Jamb Anchors: Provide number and spacing of anchors as follows:
 a. Masonry Type: Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:
 1) Two anchors per jamb up to 60 inches high.
 2) Three anchors per jamb from 60 to 90 inches high.
 3) Four anchors per jamb from 90 to 120 inches high.
 4) Four anchors per jamb plus 1 additional anchor per jamb for each 24 inches or fraction thereof above 120 inches high.
 b. Stud-Wall Type: Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:
 1) Three anchors per jamb up to 60 inches high.
 2) Four anchors per jamb from 60 to 90 inches high.
 3) Five anchors per jamb from 90 to 96 inches high.
4) Five anchors per jamb plus 1 additional anchor per jamb for each 24 inches or fraction thereof above 96 inches high.
5) Two anchors per head for frames more than 42 inches wide and mounted in metal-stud partitions.
 c. Compression Type: Not less than two anchors in each jamb.
 d. Postinstalled Expansion Type: Locate anchors not more than 6 inches from top and bottom of frame. Space anchors not more than 26 inches o.c.
7. Door Silencers: Except on weather-stripped doors, drill stops to receive door silencers.
 b. Double-Door Frames: Two door silencers.

D. Hardware Preparation: Factory prepare hollow metal work to receive templated mortised hardware according to the Door Hardware Schedule and templates furnished as specified in Division 08 Section "Door Hardware."
 1. Locate hardware as indicated, or if not indicated, according to ANSI/SDIA250.8.
 2. Reinforce doors and frames to receive nontemplated, mortised and surface-mounted door hardware.
 3. Comply with applicable requirements in ANSI/SDIA250.6 and ANSI/DHIA115 Series specifications for preparation of hollow metal work for hardware.
 4. Coordinate locations of conduit and wiring boxes for electrical connections with Division 26 electrical Sections.

E. Stops and Moldings: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with butted or mitered hairline joints.
 1. Single Glazed Lites: Provide fixed stops and moldings welded on secure side of hollow metal work.
 2. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.
 3. Provide loose stops and moldings on inside of hollow metal work.
 4. Coordinate rabbet width between fixed and removable stops with type of glazing and type of installation indicated.

2.9 STEEL FINISHES

A. Prime Finish: Apply manufacturer's standard primer immediately after cleaning and pretreating.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Hollow Metal Frames: Comply with ANSI/SDIA250.11.
 1. Set frames accurately in position, plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 a. At fire-protection-rated openings, install frames according to NFPA 80.
 b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 c. Install frames with removable glazing stops located on secure side of opening.
 d. Install door silencers in frames before grouting.
e. Remove temporary braces necessary for installation only after frames have been properly set and secured.

f. Check plumbness, squareness, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.

g. Field apply bituminous coating to backs of frames that are filled with grout containing antifreezing agents.

2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
 a. Floor anchors may be set with powder-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.

4. Concrete Walls: Solidly fill space between frames and concrete with grout. Take precautions, including bracing frames, to ensure that frames are not deformed or damaged by grout forces.

5. In-Place Concrete Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

6. In-Place Gypsum Board Partitions: Secure frames in place with postinstalled expansion anchors through floor anchors at each jamb. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

7. Ceiling Struts: Extend struts vertically from top of frame at each jamb to overhead structural supports or substrates above frame unless frame is anchored to masonry or to other structural support at each jamb. Bend top of struts to provide flush contact for securing to supporting construction. Provide adjustable wedged or bolted anchorage to frame jamb members.

8. Installation Tolerances: Adjust hollow metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
 a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.

B. Hollow Metal Doors: Fit hollow metal doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Standard Steel Doors:
 a. Jambs and Head: 1/8 inch plus or minus 1/16 inch.
 b. Between Edges of Pairs of Doors: 1/8 inch plus or minus 1/16 inch.
 c. Between Bottom of Door and Top of Threshold: Maximum 3/8 inch.

C. Glazing: Comply with installation requirements in Division 08 Section "Glazing" and with hollow metal manufacturer's written instructions.

1. Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.

3.2 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow metal work that is warped, bowed, or otherwise unacceptable.

B. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.
C. Metallic-Coated Surfaces: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

END OF SECTION 081110
SECTION 083115 - DOG DOORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes dog doors for walls.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Product Schedule: For doors. Use same designations indicated on Drawings.

PART 2 - PRODUCTS

2.1 DOG DOORS

A. Interior Guillotine Doors:
 2. Description: Insulated Guillotine Kennel Doors.
 3. Locations: Wall.
 4. Aluminum Sheet both sides of Door: 18 gauge, over polypropylene air-cell center.
 5. Aluminum extrusions for Door track/guides: Manufacturer’s standard thickness.
 6. Frame Material: Same material, thickness, and finish as door.
 7. Finish Manufacturer’s standard.

B. Vinyl Flap Doors:
 1. Basis of Design: PetSafe Large Model HPA11-11600
 2. White aluminum frame
 3. Transparent, soft vinyl flap provides a weather-tight seal
 4. Sized for 2” thick panel openings.

2.2 MATERIALS

A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.

B. Steel Sheet: Uncoated or electrolytic zinc coated, ASTM A 879/A 879M, with cold-rolled steel sheet substrate complying with ASTM A 1008/A 1008M, Commercial Steel (CS), exposed.

C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B; with minimum G60 or A60 metallic coating.

E. Aluminum Sheet: ASTM B 209, alloy as standard with manufacturer for finish required, with temper as required to suit forming operations and performance required.
 1. Clear Anodic Finish, Coil Coated: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.
F. Stainless-Steel Sheet, Strip, Plate, and Flat Bars: ASTM A 666, Type 304. Remove tool and die marks and stretch lines, or blend into finish.

G. Frame Anchors: Same material as door face.

H. Inserts, Bolts, and Anchor Fasteners: Hot-dip galvanized steel according to ASTM A 153/A 153M or ASTM F 2329.

2.3 FABRICATION

A. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.

B. Doors and Track: Grind exposed welds smooth and flush with adjacent surfaces. Furnish mounting holes, attachment devices and fasteners of type required to secure doors to types of supports indicated.

2.4 FINISHES

A. Painted Finishes: Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.

 1. Factory Finished: Apply manufacturer's standard baked-enamel or powder-coat finish immediately after cleaning and pretreating, with minimum dry-film thickness of 1 mil for topcoat.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with manufacturer's written instructions for installing doors and track.

B. Adjust doors after installation, for proper operation.

END OF SECTION 083115
SECTION 084113 - ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Exterior and interior storefront framing.
 2. Storefront framing for window walls.
 3. Exterior and interior manual-swing entrance doors and door frame units.

1.2 PERFORMANCE REQUIREMENTS

A. General Performance: Aluminum-framed systems shall withstand the effects of the following performance requirements without exceeding performance criteria or failure due to defective manufacture, fabrication, installation, or other defects in construction:
 1. Movements of supporting structure indicated on Drawings including, but not limited to, story drift and deflection from uniformly distributed and concentrated live loads.
 2. Dimensional tolerances of building frame and other adjacent construction.
 3. Failure includes the following:
 a. Deflection exceeding specified limits.
 b. Thermal stresses transferring to building structure.
 c. Framing members transferring stresses, including those caused by thermal and structural movements to glazing.
 d. Noise or vibration created by wind and by thermal and structural movements.
 e. Loosening or weakening of fasteners, attachments, and other components.
 f. Failure of operating units.

B. Delegated Design: Design aluminum-framed systems, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

C. Wind Loads: As indicated on Structural Drawings.

D. Deflection of Framing Members:
 1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane shall not exceed L/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
 2. Deflection Parallel to Glazing Plane: Limited to L/360 of clear span or 1/8 inch, whichever is smaller.

E. Structural-Test Performance: Provide aluminum-framed systems tested according to ASTM E 330 as follows:
 1. When tested at 150 percent of positive and negative wind-load design pressures, systems, including anchorage, do not evidence material failures, structural distress, and permanent deformation of main framing members exceeding percent of span.
 2. Test Durations: 10 seconds.

F. Air Infiltration: Provide aluminum-framed systems with maximum air leakage through fixed glazing and framing areas of 0.06 cfm/sq. ft. of fixed wall area when tested according to ASTM E 283 at a minimum static-air-pressure difference of 1.57 lbf/sq. ft.
G. Water Penetration under Static Pressure: Provide aluminum-framed systems that do not evidence water penetration through fixed glazing and framing areas when tested according to ASTM E 331 at a minimum static-air-pressure difference of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft..

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For aluminum-framed systems. Include plans, elevations, sections, details, and attachments to other work.
 1. Include details of provisions for system expansion and contraction and for drainage of moisture in the system to the exterior.

C. Samples: For each type of exposed finish required.

D. Other Action Submittals:
 1. Entrance Door Hardware Schedule: Prepared by or under the supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams.

E. Delegated-Design Submittal: For aluminum-framed systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Product test reports.

B. Field quality-control reports.

C. Warranties: Sample of special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Testing Agency Qualifications: Qualified according to ASTM E 699 for testing indicated.

C. Engineering Responsibility: Prepare data for aluminum-framed systems, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in systems similar to those indicated for this Project.

D. Product Options: Information on Drawings and in Specifications establishes requirements for systems' aesthetic effects and performance characteristics. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including preconstruction testing, field testing, and in-service performance.

F. Source Limitations for Aluminum-Framed Systems: Obtain from single source from single manufacturer.

G. Preinstallation Conference: Conduct conference at Project site.

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of aluminum-framed systems that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: 10 years from date of Substantial Completion.

B. Special Finish Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components on which finishes do not comply with requirements or that fail in materials or workmanship within specified warranty period. Warranty does not include normal weathering.
 1. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Kawneer Trifab VG 451T Front Glazed (exterior window walls); Kawneer VG Trifab 451 Front Glazed (interior window walls); Kawneer 500 Series Entrance Door (Interior) or comparable product by one of the following:
 1. EFCO Corporation.
 2. TRACO.
 3. Vistawall Architectural Products; The Vistawall Group; a Bluescope Steel company.
 4. YKK AP America Inc.
 5. Tublite

2.2 MATERIALS

A. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 2. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
 4. Structural Profiles: ASTM B 308/B 308M.
 5. Welding Rods and Bare Electrodes: AWS A5.10/A5.10M.

2.3 FRAMING SYSTEMS

A. Framing Members: Manufacturer's standard extruded-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 2. Glazing System: Retained mechanically with gaskets on four sides.

B. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.
C. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 2. Reinforce members as required to receive fastener threads.
 3. Use exposed fasteners with countersunk Phillips screw heads, fabricated from stainless steel.

D. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts, complying with ASTM A 123/A 123M or ASTM A 153/A 153M.

E. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials.

F. Framing System Gaskets and Sealants: Manufacturer's standard, recommended by manufacturer for joint type.
 1. Sealants used inside the weatherproofing system shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 GLAZING SYSTEMS

A. Glazing: As specified in Division 08 Section "Glazing."

B. Glazing Gaskets: Manufacturer's standard compression types; replaceable, molded or extruded, of profile and hardness required to maintain watertight seal.

C. Spacers and Setting Blocks: Manufacturer's standard elastomeric type.

2.5 ENTRANCE DOOR SYSTEMS

A. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing operation.
 1. Door Construction: 1-3/4-inch overall thickness, with minimum 0.125-inch-thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.
 2. Door Design: Wide stile; 5-inch nominal width.
 a. Accessible Doors: Smooth surfaced for width of door in area within 10 inches above floor or ground plane.

2.6 ENTRANCE DOOR HARDWARE

A. General: Provide entrance door hardware for each entrance door to comply with requirements in this Section. Balance of hardware specified in Division 08 Section "Door Hardware."

C. Silencers: BHMA A156.16, Grade 1.

D. Thresholds: BHMA A156.21, raised thresholds beveled with a slope of not more than 1:2, with maximum height of 1/2 inch.
2.7 ACCESSORY MATERIALS

A. Bituminous Paint: Cold-applied, asphalt-mastic paint complying with SSPC-Paint 12 requirements except containing no asbestos; formulated for 30-mil thickness per coat.

2.8 FABRICATION

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Framing Members, General: Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Means to drain water passing joints, condensation within framing members, and moisture migrating within the system to exterior.
 4. Physical and thermal isolation of glazing from framing members.
 5. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 6. Provisions for field replacement of glazing from interior for vision glass and exterior for spandrel glazing or metal panels.
 7. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.

E. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.

F. Entrance Doors: Reinforce doors as required for installing entrance door hardware.

G. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.

H. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.9 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:
 1. Comply with manufacturer's written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
 4. Rigidly secure nonmovement joints.
5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration.
6. Seal joints watertight unless otherwise indicated.

B. Metal Protection:
 1. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or applying sealant or tape, or by installing nonconductive spacers as recommended by manufacturer for this purpose.
 2. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

C. Install components to drain water passing joints, condensation occurring within framing members, and moisture migrating within the system to exterior.

D. Set continuous sill members and flashing in full sealant bed as specified in Division 07 Section "Joint Sealants" to produce weathertight installation.

E. Install components plumb and true in alignment with established lines and grades, and without warp or rack.

F. Install glazing as specified in Division 08 Section "Glazing."

G. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.
 1. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.

END OF SECTION 084113
SECTION 086200 - ACRYLIC DOUBLE DOME SKYLIGHTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 REFERENCE STANDARDS

A. ASTM D 542: Standard Test Method for Index of Refraction of Transparent Organic Plastics
B. ASTM D 632: Standard Specification for Sodium Chloride
C. ASTM D 635: Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position
G. ASTM D 1003: Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics
I. ASTM D 2843: Standard Test Method for Density of Smoke from the Burning or Decomposition of Plastics

1.3 SUMMARY

A. This Section includes the following:
 1. Self—Flashed plastic skylight with integrated curb.
 2. Pre-manufactured insulated roof curb.

B. Related Sections: The following Sections contain requirements that relate to this Section:
 1. Division 6 Section "Rough Carpentry" for wood curbs and nailers.

C. Refer to roofing system Sections for roofing accessories to be built into the roofing system to accommodate Work of this Section.

1.4 PERFORMANCE REQUIREMENTS

A. General: Provide unit skylights capable of withstanding loads indicated without failure. Failure includes the following:
 1. Thermal stresses transferred to the building structure.
 2. Framing members transferring stresses, including those caused by thermal and structural movement, to glazing.
 3. Noise or vibration created by thermal and structural movement and wind.
 4. Loosening or weakening of fasteners, attachments, and other components.
 5. Sealant failure.
1.5 SUBMITTALS

A. Product Data: For each type of skylight specified, including details of construction relative to materials, dimensions of individual components, profiles, finishes, and glazing light transmission and thermal characteristics.

B. Shop Drawings: Show fabrication and installation of skylights, including plans, elevations, sections, details of components, and attachments to other units of Work.

C. Samples for Selection: Manufacturer's color charts showing a full range of colors available for each type of skylight glazing, retainer, frame, and curb indicated.

1.6 DELIVERY, HANDLING, STORAGE

A. Deliver products in manufacturer’s original containers dry, undamaged, seals and labels intact.

B. Store and protect products in accordance with manufacturer’s recommendations.

1.7 QUALITY ASSURANCE

A. Fire-Test-Response Characteristics: Provide plastic sheets identical to those tested for the following fire-test-response characteristics, per ASTM test method indicated below, by UL or other testing and inspecting agencies acceptable to authorities having jurisdiction. Identify plastic sheets with appropriate markings of applicable testing and inspecting organization.

1. Self-Ignition Temperature: 750 deg F (343 deg C) or greater when tested per ASTM D 1929 on plastic sheets in the thickness intended for use.

2. Smoke density of 15% or less when tested per ASTM D 2843 on plastic sheets in the thickness intended for use.

3. Relative-Burning Characteristics: As follows, when tested per ASTM D 635:
 a. Acrylic: Burning rate of 1.18 inch per minute or less when tested on plastic glazing with a nominal thickness of 0.118 inch or the thickness intended for use. Burning rate of 0.71 inch per minute or less when tested on plastic glazing with a nominal thickness of 0.235 inch.

B. Thermal response characteristics: Provide plastic sheet identical to those tested for the following thermal performance test:

1. Heat distortion temperature when tested per ASTM D 648 of at least 203 deg F

1.8 WARRANTY

A. General: Warranties specified in this Section shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and shall be in addition to and run concurrent with other warranties made by the Contractor under requirements of the Contract Documents.

B. Skylight Warranty: Provide written warranty signed by manufacturer, agreeing to repair or replace work that exhibits defects in materials or workmanship and guaranteeing weather tight and leak-free performance. "Defects" is defined as uncontrolled leakage of water and abnormal aging or deterioration.

1. Warranty Period: 5 years from date of Substantial Completion.

C. Plastic Warranty: Provide written warranty signed by manufacturer agreeing to repair or replace work that has or develops defects in the plastic. "Defects" is defined as abnormal aging or deterioration.

1. Warranty Period for Acrylic: 5 years from date of Substantial Completion against yellowing.
D. Finish Warranty: Provide written warranty signed by manufacturer agreeing to repair or replace work with finish defects. "Defects" is defined as peeling, chipping, abnormal aging or deterioration, and failure to perform as required.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following or approved substitute.
 1. VELUX America, Inc. (Basis of Design Model CAP or equal)

B. Substitutions: Manufacturers shall not be considered without prior approval in writing no later than ten (10) calendar days prior to bid. Substitute manufacturers must have been in the custom skylight business for not less than a period of 10 years and must submit to the Architect the following:
 1. List of similar projects successfully completed within the last five years.
 2. Proof of financial capability.
 3. Complete details of proposed skylight.

2.2 MATERIALS

A. Extruded aluminum retaining angle. Extruded aluminum allow 6063-T5 with minimum effective thickness of 0.055 inch. Mitered and welded corner assembly in mill finish.

B. Extruded aluminum inner frame with integral condensation gutter. Extruded aluminum alloy 6063-T5 with minimum effective thickness of 0.055 inch unless noted. Mitered and welded corner assembly in mill finish.

C. Integral Flashing Curbs: Fabricate from 1 ½” 3 lb. insulation double skin of galvanized metal, insulated with 1 inch (25 mm) of polyisocyanurate insulation R-6 / U factor .167). Provide thermal break at top and bottom.
 1. Product: Thybar Corp.; TC-1 with optional linear
 Roof Products Inc.; RPC-3L

D. Double-sided very high bond adhesive closed cell foam tape glazing seal.

E. Plastic Sheets: Monolithic, formable, transparent (colorless or bronze tinted) or translucent (white) sheets with good weather and impact resistance. Glazing seal with back beaded dow silicone.
 1. Acrylic inner and outer dome
 2. ASTM D-1003 light transmittance of 91% for clear acrylic
 3. ASTM D-542: reflective index of 1.49
 4. ASTM D-638: Tensile strength – rupture 10.8 M PSI / Elasticity 427 M PSI
 5. ASTM D-790: Flexural strength: -Rupture 14.9M PSI / Elasticity 427 M PSI
 6. ASTM D-695: Comparative strength – Yield 17.9M PSI / Elasticity 427 M PSI
 7. ASTM D-632: Shear strength: 8.9M PSI
 8. Thermo-formable. Type UVA (formulated with ultraviolet absorber)

F. Fasteners: 8x1 stainless steel – hex washer head, provided by installer. Skylight assembly fasteners zinc electroplated.

G. Thermal-break optional unless otherwise noted. ½” polyurethane thermal break.
2.3 PLASTIC SKYLIGHT UNITS

A. General: Factory-assembled, curb-mounted unit consisting of plastic glazing, gasketing, inner frame that is incorporated into the curb, and integral curb with self-contained roof flashing flanges. The insulated curb height shall be 4” or 9” or 12” as specified and contain 1” thick polyisocyanurate structural foam with fiberglass reinforced faces meeting factory mutual class-1 and Underwriter’s laboratory class A approval. The roof mounting flange shall be 3 inches.

2. Sizes: Skylight A: 60” x 60”

B. Condensation Control: Fabricate skylight units with integral internal gutters and nonclogging weeps to collect and dispose of condensation (optional unless noted).

C. Thermal Break: Fabricate skylight units with thermal barrier separating interior metal framing from materials exposed to outside temperature.

D. Double dome glazing: Thermoformed acrylic.

1. Inner Glazing Color: Colorless, white translucent acrylic.
2. Outer Glazing Color: Clear acrylic.
3. Colors selected from manufacturer’s full line.

2.4 FABRICATION

A. Framing Components: As follows:

1. Factory fit and assemble components.
2. Fabricate components that, when assembled, will have accurately fitted joints with ends coped or mitered to produce hairline joints free of burrs and distortion.
3. Fabricate components to drain water passing joints and to drain condensation and moisture occurring or migrating within skylight system to the exterior.
4. Fabricate components to accommodate expansion, contraction, and field adjustment, and to provide for minimum clearance and shimming at skylight perimeter.
5. Fabricate components to ensure that glazing is thermally and physically isolated from framing members.
6. Form shapes with sharp profiles, straight and free of defects or deformations, before finishing.
7. Fit and secure joints by heliarc welding.

2.5 ALUMINUM FINISHES

A. Mill Finish: Manufacturer’s standard satin mill finish. Unless otherwise noted.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting skylight performance.

1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Metal Protection: As follows:
1. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or by applying sealant or tape recommended by manufacturer for this purpose.
2. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
3. Where aluminum will contact pressure-treated wood, separate dissimilar materials by methods recommended by manufacturer.

3.3 INSTALLATION

A. General: Comply with manufacturer's written instructions for protecting, handling, and installing skylight components.

B. Coordinate with installation of roof deck and other substrates to receive skylight units.

C. Coordinate with installation of vapor barriers, roof insulation, roofing, and flashing as required to assure that each element of the work performs properly and that combined elements are waterproof and weather tight. Anchor units securely to supporting structural substrates, adequate to withstand lateral and thermal stresses as well as inward and outward loading pressures.

3.4 CLEANING AND PROTECTION

A. Clean exposed metal and plastic surfaces according to manufacturer's instructions. Touch up damaged metal coatings.

B. Clean and polish plastic skylight units, inside and out, not more than 5 days prior to date of substantial completion.

END OF SECTION 086200
SECTION 087100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Commercial door hardware. Furnish and install.
 2. Cylinders for doors specified in other Sections.
 3. Electrified door hardware.

B. See Division 8 door sections for astragals and door silencers.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Provide a copy with each hardware schedule submitted. Include details of electrified door hardware, wiring diagrams: Riser, Elevation, and Point-to-point. All diagrams shall include an operational description for each opening with electrified hardware. Differentiate between manufacturer-installed and field-installed wiring.

C. Other Action Submittals:
 1. Door Hardware Sets: Prepared by or under the supervision of Architectural Hardware Consultant, detailing fabrication and assembly of door hardware, as well as procedures and diagrams.
 a. Format: Use same scheduling sequence and format and use same door numbers as in the Contract Documents. Schedule shall be prepared in DHI vertical format.
 b. Content: Include the following information:
 1) Identification number, location, hand, fire rating, and material of each door and frame.
 2) Type, style, function, size, quantity, and finish of each door hardware item. Include description and function of each lockset and exit device.
 3) Complete designations of every item required for each door or opening including name and manufacturer.
 4) Description of each electrified door hardware function, including location, sequence of operation, and interface with other building control systems.
 5) Wiring diagrams: Riser and door elevation; point to point diagrams.
 2. Keying Schedule: Prepared by or under the supervision of Architectural Hardware Consultant, detailing Owner's final keying instructions for locks.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers trained and approved by lock manufacturer.
 1. Installer's responsibilities include supplying and installing door hardware and providing a qualified Architectural Hardware Consultant available during the course of the Work to consult with Contractor, Architect, and Owner about door hardware and keying.

B. Architectural Hardware Consultant Qualifications: A person who is currently certified by DHI as an Architectural Hardware Consultant and who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project.
C. Source Limitations: Provide electrified door hardware from same manufacturer as mechanical door hardware, unless otherwise indicated. Manufacturers that perform electrical modifications and that are listed by a testing and inspecting agency acceptable to authorities having jurisdiction are acceptable.

D. Fire-Rated Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing according to NFPA 252, UL10C Fire Test, and UBC7-2-1997.

E. Keying Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination." Incorporate keying conference decisions into final keying schedule after reviewing door hardware keying system.

F. Pre-installation Conference: Prior to electrical rough-in, the General Contractor, the Hardware Supplier, the Electrical Contractor, the Architect, and the Owner’s representative shall meet to review the operational descriptions, and the wiring diagrams for all openings with electrified hardware. Prior to finish hardware installation, the General Contractor shall request a hardware installation meeting to be held at the project site. This meeting shall convene no later than one month prior to hardware installation. The types of hardware this meeting shall include are: locksets, closers, and exit devices. Manufacturer’s representatives of the above products, in conjunction with the hardware supplier for the project, shall conduct the installation training. All hardware installers shall be required to attend this meeting to received certificate of authorized training. This meeting shall serve as door openings coordination and review of all shop drawings from related trades prior to hardware installation. The hardware supplier shall include any meeting related costs in his proposal.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Deliver keys to manufacturer of key control system for subsequent delivery to Owner.

B. Deliver Grand/Master/Control keys and permanent cores to Owner by registered mail or overnight package service.

1.5 COORDINATION

A. Templates: Distribute door hardware templates for doors, frames, and other work specified to be factory prepared for installing door hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.

1.6 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which the manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Three years from date of Substantial Completion, except as follows:
 a. Locks: Three years from date of Substantial Completion.
 b. Exit Devices: Three years from date of Substantial Completion.
 c. Manual Closers: 10 years from date of Substantial Completion.
 d. Power Supplies, Door Position Switches: 1 year.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

A. General: Provide door hardware for each door to comply with requirements in this Section and door hardware sets indicated in Part 3 "Door Hardware Sets" Article.
1. Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and products equivalent in function and comparable in quality to named products.

B. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of door hardware are indicated in Part 3 "Door Hardware Sets" Article. Products are identified by using door hardware designations, as follows:

1. Named Manufacturers' Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements. Manufacturers' names are abbreviated in Part 3 "Door Hardware Sets" Article.

2.2 HINGES, GENERAL

A. Template Requirements: Except for hinges and pivots to be installed entirely (both leaves) into wood doors and frames, provide only template-produced units.

B. Hinge Base Metal: Unless otherwise indicated, provide the following:

1. Exterior Hinges: Stainless steel, with stainless-steel pin.
2. Interior Hinges: Steel, with stainless-steel pin.
3. Hinges for Fire-Rated Assemblies: Steel, with stainless-steel pin.

C. Non-removable Pins: Provide set screw in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while door is closed; for out-swinging exterior doors.

D. Fasteners: Comply with the following:

2. Wood Screws: For wood doors and frames.
3. Threaded-to-the-Head Wood Screws: For fire-rated wood doors.

2.3 HINGES

A. Butts and Hinges: BHMA A156.1.

B. Template Hinge Dimensions: BHMA A156.7.

C. Manufacturers:

2. Hager Companies (HAG).
3. Ives (IVE), an Ingersoll-Rand Company
4. Stanley Commercial Hardware; Div. of The Stanley Works (STH).

2.4 CONTINUOUS HINGES

A. General: Minimum 0.120-inch-thick, hinge leaves with minimum overall width of 4 inches; fabricated to full height of door and frame and to template screw locations; with components finished after milling and drilling are complete.

1. Fire Pins: Steel pins to hold labeled fire doors in place if required by tested listing.

B. Continuous, Gear-Type Hinges: Extruded-aluminum, pinless, geared hinge leaves; joined by a continuous extruded-aluminum channel cap; with concealed, self-lubricating thrust bearings.

1. Manufacturers:
 a. Ives (IVE), an Ingersoll-Rand Company.
 b. Hager Companies (HAG).
c. Select Products Limited (SEL).

2.5 LOCKS AND LATCHES, GENERAL

A. Accessibility Requirements: Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf.

B. Latches and Locks for Means of Egress Doors: Comply with NFPA 101. Latches shall not require more than 15 lbf to release the latch. Locks shall not require use of a key, tool, or special knowledge for operation.

C. Electrified Locking Devices: BHMA A156.25.

D. Lock Trim:
 1. Levers: 17A by Schlage
 2. Dummy Trim: Match lever lock trim and escutcheons.

E. Lock Throw: Comply with testing requirements for length of bolts required for labeled fire doors.

F. Backset: 2-3/4 inches, unless otherwise indicated.

G. Strikes: Manufacturer's standard strike with strike box for each latchbolt or lock bolt, with curved lip extended to protect frame, finished to match door hardware set.

2.6 MECHANICAL LOCKS AND LATCHES

A. Mortise Locksets and Latchsets:
 1. Provide heavy duty mortise locksets and latchsets that comply to ANSI A156.13, Series 1000, Grade 1 Operational. Functions as listed in Hardware Sets.
 2. Locksets shall have a fully wrapped front heavy gauge steel, 1/8” minimum lock case thickness, containing components of steel with a Zinc dichromate plating for corrosion resistance.
 3. Locksets are to have a standard 2 3/4” backset with a full 3/4” throw. Deadbolt shall be a full 1” throw with a ¾” internal engagement and constructed of stainless steel.
 4. Lock shall be easily handed without opening the lock case.
 5. Lock trim shall be through-bolted to door to assure correct alignment a proper operation.
 6. Locks shall have a “vandal resistant clutch mechanism” allowing the exterior trim to rotate down freely while locked, preventing damage to internal lock components. The Vandlgard feature shall be furnished as specified.
 7. Finish: BHMA #626
 8. Acceptable Manufacturers:
 A. Schlage: L Series with 17A lever design

B. Lock Functions: Function numbers and descriptions indicated in door hardware sets comply with the following:

C. Cylindrical Locksets and Latchsets: Heavy duty
 1. Provide cylindrical locksets and latchsets that comply to ANSI A156.2, Series 4000, Grade 1; tested to exceed 3,000,000 cycles. Functions as listed in Hardware Sets.
 2. Locks shall meet ANSI A117.1, Accessibility Code.
 3. Locks shall meet UL A label; to have a minimum listing for single doors 4’ x 8’.
 4. Locks shall have the ability to incorporate either a rigid or free-wheeling lever when in a locked mode and chassis shall be field changeable.
5. Levers shall be independent and bi-directional.
6. Levers shall be solid. Manufacturers utilizing lever fillers are not acceptable.
7. Levers shall have grooved tactile warnings on the back side of the lever. Manufacturers inserting devices and/or apply warning material will not be acceptable.
8. Lock chassis shall be a one-piece, multifunctional modular assembly that provides for interchange of lock function without disassembly of the lockset.
9. Spindle shall be “Deep-Draw” manufactured for maximum strength. Manufacturers utilizing stamped spindles are not acceptable.
10. Spring Cage shall have double compression springs. Manufacturers utilizing torsion springs are not acceptable.
11. Spindle and spring cage shall be a one piece integrated assembly.
12. Lockset anti-rotation plate shall interlock to the modular chassis. Manufacturers utilizing anti-rotation plates with bit-tabs are not acceptable.
13. Lockset adjustment plate shall be threaded for door thickness adjustment for doors 1 5/8” to 2 1/8” thickness. The adjustment plate shall have visual chassis marking for doors 1 3/4” thick.
14. Locks shall have field reversible handing.
15. Latchbolt to be steel with minimum ½” throw deadlatch on keyed functions; ¾” anti-friction deadlatch on pairs of doors.
16. Strikes to be 16 gage, with 1” deep box construction, curved lip of sufficient length to clear trim and protect clothing.
17. Finish: BHMA #626, or as specified in the Hardware Sets.

D. Offline Electronic Locks and Exit Trim
2. Locks and trim shall be computer programmable with users rights stored on the lock. A hand-held device shall be used in conjunction with the access control software, allowing the user to add or delete credentials and retrieve audits. The electronic lock shall support the proximity card specified. The exit device lever trim shall be non-handed, and field reversible. The exit device trim shall exceed A156.25 Grade 1 Operational Security, ADA compliant, and meet UL10C. The trim shall be powered by four AA batteries. With the option for eight AA batteries. The exit device lever trim shall release the latch bolt for the exit device application specified. Mechanical key override shall be equipped with the cylinder to be keyed into the Owner’s existing Schlage key system. Exit Device electronic trim shall be as manufactured by Schlage Electronics: CO993-R PR SPA

E. Offline Software and Programming
2. Provide Schlage Security Management System: SMS-Express for up to 1000 users and/or 100 access points. The software shall have the following capabilities:
 a. Audits: up to 2000
 b. Holidays: 32
 c. Time Zones: 8
 d. Auto locks: 8
3. Hand Held programming device: HHD capable of initializing lock and accessories using preloaded Schlage Utility Software. HHD shall be used for field configure devices, and shall be furnished with a USB cable.

F. Programming/Training of Offline Access Control: SMS Express Installtion & Training shall include software installation and training to be provided by the manufacturer’s representative and the Hardware Supplier. No wiring or electrical connections are included in this training. The Owner shall provide a PC/Laptop for the Access control software to reside, and shall be ready and available when the software and training is scheduled.

2.7 DOOR BOLTS

A. Bolt Throw: Comply with testing requirements for length of bolts required for labeled fire doors.
DOOR HARDWARE

B. Dustproof Strikes: BHMA A156.16, Grade 1.

C. Surface Bolts: BHMA A156.16, Grade 1 unless Grade 2 is indicated.
 1. Available Manufacturers:
 a. Rockwood (ROC).
 b. Ives Hardware; an Ingersoll-Rand Company (IVE).
 c. Trimco (TRI).

D. Manual Flush Bolts: BHMA A156.16, Grade 1 unless Grade 2 is indicated; designed for mortising into door edge.
 1. Manufacturers:
 a. Rockwood (ROC).
 b. Ives Hardware; an Ingersoll-Rand Company (IVE).
 c. Trimco (TRI)/

E. Auto-Flush Bolts: as manufactured by Adams Rite Architectural Hardware.

2.8 EXIT DEVICES

A. Exit Devices: BHMA A156.3, Grade 1.

B. Accessibility Requirements: Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf.

C. Exit Devices for Means of Egress Doors: Comply with NFPA 101. Exit devices shall not require more than 15 lbf to release the latch. Locks shall not require use of a key, tool, or special knowledge for operation.

D. Panic Exit Devices: Listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for panic protection, based on testing according to UL 305.

E. Fire Exit Devices: Devices complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire and panic protection, based on testing according to UL 305 and NFPA 252.

F. Outside Trim: Lever; material and finish to match locksets, unless otherwise indicated.
 1. Match design for locksets and latchsets, unless otherwise indicated.

G. Through Bolts: For exit devices and trim on metal doors. Electronic exit bars in first paragraph below can be used only with electrified locks.

H. Exit devices shall be touchpad style, fabricated of brass bronze, stainless steel, or aluminum, plated to the standard architectural finishes to match the balance of the door hardware. All exit device touchpads shall extend a minimum of one half of the door width. All latchbolts to be deadlatching type, with a self-lubricating coating to reduce wear. Touch pad height shall exceed height of mechanism case or rail assembly (T-Shaped) to eliminate pinch parts. If touch pad height does not exceed height of mechanism case/rail assembly, provide insert/filler on top and bottom of touch pad along mechanism case/rail to prevent pinch part. Provide stainless steel touch pads. Plastic touch pads shall not be acceptable. End caps shall be sloped to deflect any impact from carts and shall be flush with the external mechanism case. End caps that overlap and project above the mechanism case are unacceptable. Dogging mechanism shall be mechanical hook type with no plastic dogging cams.
 1. Strikes shall be roller type provided with a locking plate prevent movement. Latch bolts shall have a self-lubricating coating that reduces friction and wear. Plated latch bolts are unacceptable.
2. Lever trim shall be vandal resistant type, which will travel to a 90-degree down position when more than 35 pounds of torque are applied, and which can easily be re-set.

2.9 LOCK CYLINDERS

A. Equip exterior locks, exit devices, and cylinders with restricted, patent protected, full size interchangeable core cylinders with nickel silver blocking pin to verify patented feature on keys. Provide a minimum of six pins with nickel silver bottom pins. Cylinders must allow for grandmaster keying, combined to the Owner’s instructions. Balance of keyed cylinders shall be conventional cylinders, type required for lockset specified, and keyed to new key system per the Owner’s instructions.

B. Permanent Cores: Manufacturer’s restricted, patent protected; finish face to match lockset; with removable cores. The Owner shall remove all construction cores and install permanent cores.

C. Construction Cores: Comply with the following:
 1. Construction Keyed Cores: Provide construction cores for all exterior doors, and as specified in the Hardware Sets. Provide five (5) additional construction cores for the General Contractor’s use to secure the project. All construction cores shall be returned to the hardware supplier at project completion. Provide 5 construction master keys.

D. Manufacturer: Same manufacturer as for locks and latches.

E. Manufacturers:
 1. Schlage Lock, an Ingersoll Rand company.

F. Lock Cylinders: Tumbler type, constructed from brass or bronze, stainless steel, or nickel silver.
 1. Manufacturer: Schlage Primus. The Hardware Supplier shall verify the level of the existing Everest Primus system with the Owner prior to ordering the cores and housings.
 a. Schlage Commercial Lock Division; an Ingersoll-Rand company.

2.10 KEYING

A. Keying System: Factory registered, existing Everest Primus key system. Incorporate decisions made with the Owner in the keying conference.
 1. Existing System:
 a. Master key or grand master key locks to Owner’s existing system.

B. Keys: Brass.
 1. Stamping: Permanently inscribe each key with a visual key control number and include the following notation:
 a. Notation: "DO NOT DUPLICATE."
 2. Quantity: In addition to one extra key blank for each lock, provide the following:
 b. Master Keys: Five.
 c. Grand Master Keys: Two.

C. Key Control Cross-Index System: Single-index system for recording key information. Include three receipt forms for each key-holding hook. Match the Owner’s existing Key Control System. The Hardware Supplier shall furnish and set-up the key control system, along with the Owner’s representative.
 1. Manufacturers:
b. Lund Equipment Co., Inc. (LUN).
c. MMF Industries (MMF).
d. Sunroc Corporation (SUN).

2.11 OPERATING TRIM

A. Standard: BHMA A156.6.

B. Materials: Fabricate from stainless steel, unless otherwise indicated.

C. Manufacturers:
 1. Forms & Surfaces (FOR)
 2. IVES Hardware; an Ingersoll-Rand Company (IVE).
 3. Rockwood (ROC)

2.12 CLOSERS

A. Accessibility Requirements: Comply with the following maximum opening-force requirements:
 1. Interior, Non-Fire-Rated Hinged Doors: 5 lbf applied perpendicular to door.
 2. Fire Doors: Minimum opening force allowable by authorities having jurisdiction.

B. Door Closers for Means of Egress Doors: Comply with NFPA 101. Door closers shall not require more than 30 lbf to set door in motion and not more than 15 lbf to open door to minimum required width.

C. Closers shall not have pressure relief valves.

D. Hold-Open Closers/Detectors: Coordinate and interface integral smoke detector and closer device with fire alarm system.

E. Size of Units: Unless otherwise indicated, comply with manufacturer’s written recommendations for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Closers shall be adjustable in sizes 1 – 5 and be non-handed. Closers shall be adjustable to meet field conditions and requirements for opening force.

F. Surface Closers: BHMA A156.4, Grade 1. Closer cylinders shall be cast iron material. Provide type of arm required for closer to be located on non-public side of door, unless otherwise indicated. Closers at exterior doors shall have heavy duty forged main arm and forearm.
 1. Manufacturers:
 a. LCN Closers 4111; an Ingersoll-Rand Company (LCN).
 b. LCN Closers 1260 series x slim cover as specified (LCN).

G. Closer Holder Release Devices: BHMA A156.15.
 1. Life-Safety Type: On release of hold open, door becomes self-closing. Automatic release is activated by smoke detection system.
 2. Manufacturers:
 a. LCN Closers; an Ingersoll-Rand Company (LCN).

H. Coordinators: BHMA A156.3.

2.13 STOPS AND HOLDERS

A. Stops and Bumpers: BHMA A156.16, Grade 1.
1. Provide floor stops for doors unless wall or other type stops are scheduled or indicated. Do not mount floor stops where they will impede traffic. Where floor or wall stops are not appropriate, provide overhead holders.

B. Mechanical Door Holders: BHMA A156.16, Grade 1.

C. Combination Floor and Wall Stops and Holders: BHMA A156.8, Grade 1.

D. Combination Overhead Stops and Holders: BHMA A156.8, Grade 1.

E. Silencers for Door Frames: BHMA A156.16, Grade 1; neoprene or rubber; fabricated for drilled-in application to frame.

F. Available Manufacturers:
 1. Hager Companies (HAG).
 2. IVES Hardware; an Ingersoll-Rand Company (IVE).
 3. Rockwood (ROC).

2.14 DOOR GASKETING

A. Standard: BHMA A156.22.

B. General: Provide continuous weather-strip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated or scheduled. Provide non-corrosive fasteners for exterior applications and elsewhere as indicated.
 1. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.
 2. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.
 3. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

C. Smoke-Labeled Gasketing: Assemblies complying with NFPA 105 that are UBC 7.2-1997 listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for smoke-control ratings indicated, based on testing according to UL 1784.
 1. Provide smoke-labeled gasketing on 20-minute-rated doors and on smoke-labeled doors.

D. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer.

F. Manufacturers:
 1. Hager Companies (HAG).
 2. National Guard Products (NGP).

2.15 THRESHOLDS

A. Standard: BHMA A156.21.

B. Accessibility Requirements: Bevel raised thresholds with a slope of not more than 1:2. Provide thresholds not more than 1/2 inch high.

D. Manufacturers:
 1. Hager Companies (HAG).
 2. National Guard Products (NGP).

2.16 ELECTRIFIED HARDWARE

A. Coordinate installation of electrically operated hardware to insure proper size wire is used to power load(s). Comply with the manufacturer’s instructions for wiring, grounding, and shielding. Locate boxed power supplies and controllers above the ceiling at each opening or a location within for openings indicated with a shared power supply. Verify all power supply and/or controller locations with the GC and Electrical Contractor at the Pre-Install meeting prior to electrical rough-in.

 1. Products:
 b. Electric Dogging feature shall be provided as specified, retracting the latch bolt by holding the push bar. The bar may be momentarily pulled to retract the latch, or may be held for extended periods of time. The device shall be furnished as fail-secure. When the power is off the push bar is not retracted, and the door is latched.
 c. Electrified device shall be hardwired from the electrified hinge, minimum rating of .50 Amp, to the UL listed power supply using a minimum of 18 gauge wire.
 d. Power Supply: minimum 2 amp @12/24VDC output, field selectable with jumper. Power Supply shall be class 2 rated with a universal 120-240 VAC input and low voltage DC, regulated and filtered. Power supply and option boards shall be tested and certified to meet UL294. Provide with AC input and DC output monitoring circuit with LED indicators and single polarized connector for distribution boards. The power supply shall be furnished as NEMA 1 enclosure.
 e. Proximity Reader shall have a transmit frequency of 125kHz and have a read range of up to 4.5”. It shall be capable of reading access control data from Schlage Proximity, XceedID Proximity, HID Proximity, AWID and GE/CASI ProxLite Proximity credentials. It shall be a single gang style for wall mounting. The reader shall contain a sensor for tamper detection, have separate terminal control points for LEDs and for the audible indicator, and increased visibility. The reader shall have a limited lifetime warranty against defects in materials and workmanship.
 f. Electric Butt Hinge: shall comply with requirements for size, quantity, type, etc., as set forth for non-electric butt hinges. Provide number of power transfer device as needed. Locate power transfer device as middle hinge in of three hinges. Electric hinges shall have mortar box fastened to the frame jamb, installed by frame supplier. The electrified hinge shall permit passage of constant flow of current from jamb to the door, regardless of door position. Provide the number of wires needed by the electrified hardware it supports, plus two additional wires for future considerations. The capacity shall be 1 amp; 24volt. Wires shall be concealed with 12” leads.

2.17 FABRICATION

A. Base Metals: Produce door hardware units of base metal, fabricated by forming method indicated, using manufacturer's standard metal alloy, composition, temper, and hardness. Furnish metals of a quality equal to or greater than that of specified door hardware units and BHMA A156.18. Do not furnish manufacturer's standard materials or forming methods if different from specified standard.

B. Fasteners: Provide screws according to commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware, unless otherwise indicated.

 1. Comply with NFPA 80 for fasteners of door hardware in fire-rated applications.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Steel Doors and Frames: Comply with DHI A115 Series. Drill and tap doors and frames for surface-applied door hardware according to ANSI A250.6.

B. Wood Doors: Comply with DHI A115-W Series.

C. Mounting Heights: Mount door hardware units at heights indicated as follows unless otherwise indicated or required to comply with governing regulations.
 2. Wood Doors: DHI WDHS.3, "Recommended Locations for Architectural Hardware for Wood Flush Doors."

D. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 9 Sections. Do not install surface-mounted items until finishes have been completed on substrates involved.

E. Key Control System: Tag keys and place them on markers and hooks in key control system cabinet, as determined by final keying schedule.

F. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 7 Section "Joint Sealants."

G. Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.
 1. Door Closers: Unless otherwise required by authorities having jurisdiction, adjust sweep period so that, from an open position of 70 degrees, the door will take at least 3 seconds to move to a point 3 inches from the latch, measured to the leading edge of the door.

H. Installation of the electromechanical hardware shall be a warranted installation to the Owner. The General Contractor shall be responsible for the installation of hardware and wiring up to the power supply. The General Contractor shall be responsible for connecting to the power supply and controllers.

I. Programming/Training of Offline Access Control: SMS Express Installation & Training shall include software installation and training to be provided by the manufacturer’s representative and the Hardware Supplier. No wiring or electrical connections are included in this training. The Owner shall provide a PC/Laptop for the Access control software to reside, and shall be ready and available when the software and training is scheduled.

3.2 FIELD QUALITY CONTROL

A. Independent Architectural Hardware Consultant: Owner will engage a qualified independent Architectural Hardware Consultant to perform inspections and to prepare inspection reports.
3.3 DOOR HARDWARE SETS

HW SET: 01
- 3 EA HINGE 5BB1 4.5 X 4.5 NRP 652 IVE
- 1 EA CLASSROOM SEC LOCK ND75RD SPA 626 SCH
- 1 EA SURFACE CLOSER 1461 SCUSH TB 689 LCN
- 1 EA KICK PLATE 8400 8” X 2” LDW 630 IVE

HW SET: 02
- 3 EA HINGE 5BB1 4.5 X 4.5 652 IVE
- 1 EA CLASSROOM LOCK ND70RD SPA 626 SCH
- 1 EA WALL STOP WS401CVX 626 IVE
- 3 EA SILENCER SR64 GRY IVE

HW SET: 03
- 3 EA HINGE 5BB1 4.5 X 4.5 NRP 652 IVE
- 1 EA CLASSROOM SEC LOCK ND75RD SPA 626 SCH
- 1 EA WALL STOP WS401CVX 626 IVE
- 3 EA SILENCER SR64 GRY IVE

HW SET: 04 – Not Used

HW SET: 05
- 3 EA HINGE 5BB1 4.5 X 4.5 652 IVE
- 1 EA STOREROOM LOCK ND80RD SPA 626 SCH
- 1 EA KICK PLATE 8400 8” X 2” LDW 630 IVE

HW SET: 06
- 1 EA CONTINUOUS HINGE 112HD TW8 628 IVE
- 1 EA PANIC DEVICE EL-25-R-NL-OP 26D FAL
- 1 EA RIM CYLINDER 20-057-ICX 626 SCH
- 1 EA PRIMUS CORE ONLY 20-740 626 SCH
- 1 EA OFFSET DOOR PULL 8190-2-O 630 IVE
- 1 EA SURFACE CLOSER 4111 SCUSH 689 LCN
- 1 EA MOUNTING PLATE 4110-18PA 689 LCN
- 1 EA CUSH SHOE SUPPORT 4110-30 689 LCN
- 1 EA BLADE STOP SPACER 4110-61 689 LCN
- 1 EA THRESHOLD 425 AL NGP
- 1 EA OFFLINE CONTROLLER CT-5000 689 LCN
- 1 EA POWER SUPPLY 8914-2RS GRY SCE
- 1 EA WIRING DIAGRAMS FURNISH REQUIRED ELEV, RISER, & PTP BLK SCE
- 1 EA CARD READER SXF1550 GRY FAL

1. COORDINATE ELECTRIFIED HARDWARE WITH ALL RELATED TRADES.
2. DOOR FUNCTION: DOOR SHALL REMAIN CLOSED & SECURE. VALID CARD TO WALL-MOUNTED READER SHALL ALLOW ELECTRIC LATCH RETRACT FOR ENTRY. FREE EGRESS AT ALL TIMES.

END OF SECTION 08710
SECTION 088000 - GLAZING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes glazing for the following products and applications, including those specified in other Sections where glazing requirements are specified by reference to this Section:
 1. Windows.
 2. Doors.
 4. Storefront framing.
 5. Glazed entrances.
 6. Interior borrowed lites.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design glass, including comprehensive engineering analysis according to ICC's 2006 International Building Code by a qualified professional engineer, using the following design criteria:
 1. Design Wind Pressures: As indicated on Drawings.
 2. Vertical Glazing: For glass surfaces sloped 15 degrees or less from vertical, design glass to resist design wind pressure based on glass type factors for short-duration load.
 3. Differential Shading: Design glass to resist thermal stresses induced by differential shading within individual glass lites.

1.3 ACTION SUBMITTALS

A. Product Data: For each glass product and glazing material indicated.

B. Glass Samples: For each type of glass product other than clear monolithic vision glass; 12 inches square.

C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS

A. Preconstruction adhesion and compatibility test report.

1.5 QUALITY ASSURANCE

A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below, unless more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.

B. Safety Glazing Labeling: Where safety glazing labeling is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.
C. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

1.6 WARRANTY

A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer's standard form in which coated-glass manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.

1. Warranty Period: 10 years from date of Substantial Completion.

B. Manufacturer's Special Warranty on Insulating Glass: Manufacturer's standard form in which insulating-glass manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GLASS PRODUCTS, GENERAL

A. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass lites in thicknesses as needed to comply with requirements indicated.

B. Strength: Where float glass is indicated, provide annealed float glass, Kind HS heat-treated float glass, or Kind FT heat-treated float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened glass is indicated, provide Kind HS heat-treated float glass or Kind FT heat-treated float glass as needed to comply with "Performance Requirements" Article. Where fully tempered glass is indicated, provide Kind FT heat-treated float glass.

C. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:

1. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F.
2. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
3. Visible Reflectance: Center-of-glazing values, according to NFRC 300.

2.2 GLASS PRODUCTS

A. Heat-Treated Float Glass: ASTM C 1048; Type I; Quality-Q3; Class I (clear) unless otherwise indicated; of kind and condition indicated.

2.3 INSULATING GLASS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AGC (Basis of Design)
2. Cardinal
3. Guardian
4. Old Castle.

B. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190, and complying with other requirements specified.
 1. Sealing System: Dual seal.
 2. Spacer: Manufacturer's standard spacer material and construction.

2.4 GLAZING GASKETS

A. Dense Compression Gaskets: Molded or extruded gaskets of profile and hardness required to maintain watertight seal, made from one of the following:
 1. EPDM complying with ASTM C 864.
 2. Silicone complying with ASTM C 1115.
 3. Thermoplastic polyolefin rubber complying with ASTM C 1115.

B. Soft Compression Gaskets: Extruded or molded, closed-cell, integral-skinned EPDM, silicone or thermoplastic polyolefin rubber gaskets complying with ASTM C 509, Type II, black; of profile and hardness required to maintain watertight seal.
 1. Application: Use where soft compression gaskets will be compressed by inserting dense compression gaskets on opposite side of glazing or pressure applied by means of pressure-glazing stops on opposite side of glazing.

2.5 GLAZING SEALANTS

A. General:
 1. Compatibility: Provide glazing sealants that are compatible with one another and with other materials they will contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
 2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
 3. Sealants used inside the weatherproofing system, shall have a VOC content of not more than 250 g/L when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 4. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.

2.6 GLAZING TAPES

A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C 1281 and AAMA 800 for products indicated below:
 1. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
 2. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.

2.7 MISCELLANEOUS GLAZING MATERIALS

A. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

B. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.
C. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.

D. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).

E. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

F. Perimeter Insulation for Fire-Resistive Glazing: Product that is approved by testing agency that listed and labeled fire-resistant glazing product with which it is used for application and fire-protection rating indicated.

2.8 MONOLITHIC-GLASS TYPES

A. Glass Type **GL-2**: Clear tempered glass.
 1. Thickness: 6.0 mm.
 2. Provide safety glazing labeling.

2.9 INSULATING-GLASS TYPES

A. Glass Type **GL-1**: Low-e-coated, clear insulating glass.
 1. Basis of Design: AGC
 2. Overall Unit Thickness: 1 inch.
 3. Thickness of Each Glass Lite: 6.0 mm.
 5. Interspace Content: Air.
 6. Indoor Lite: Tempered. Color: CLEAR
 7. Low-E Coating: Pyrolytic or sputtered on second or third surface.
 8. Visible Light Transmittance: 68% percent minimum.
 9. Winter Nighttime U-Factor: 0.29 maximum.
 10. Summer Daytime U-Factor: 0.28 maximum.
 11. Solar Heat Gain Coefficient: 0.38 maximum.
 12. Provide safety glazing labeling.

PART 3 - EXECUTION

3.1 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Adjust glazing channel dimensions as required by Project conditions during installation to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.

D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.
E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

G. Provide spacers for glass lites where length plus width is larger than 50 inches.

H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

3.2 TAPE GLAZING

A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.

B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.

C. Cover vertical framing joints by applying tapes to heads and sills first and then to jambs. Cover horizontal framing joints by applying tapes to jambs and then to heads and sills.

D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.

E. Apply heel bead of elastomeric sealant.

F. Center glass lites in openings on setting blocks and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

G. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.3 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.

C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.
3.4 SEALANT GLAZING (WET)

A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.

B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.

C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.5 CLEANING AND PROTECTION

A. Protect exterior glass from damage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer.

C. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains; remove as recommended in writing by glass manufacturer.

D. Remove and replace glass that is broken, chipped, cracked, or abraded or that is damaged from natural causes, accidents, and vandalism, during construction period.

END OF SECTION 088000
SECTION 089119 - FIXED LOUVERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes fixed, extruded-aluminum louvers.

B. Related Requirements:
 1. Section 081113 "Hollow Metal Doors and Frames" for louvers in hollow-metal doors.
 2. Section 081416 "Flush Wood Doors" for louvers in flush wood doors.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.

B. Shop Drawings: For louvers and accessories. Include plans, elevations, sections, details, and attachments to other work. Show frame profiles and blade profiles, angles, and spacing.

C. Samples: For each type of metal finish required.

1.3 INFORMATIONAL SUBMITTALS

A. Product Test Reports: Based on tests performed according to AMCA 500-L.

B. Windborne-debris-impact-resistance test reports.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer's stock units identical to those provided, except for length and width according to AMCA 500-L.

2.2 FIXED, EXTRUDED-ALUMINUM LOUVERS

A. Horizontal, Nondrainable-Blade Louver:
 1. Manufacturers: Basis of design Ruskin EME745 Wind-Driven Rain Resistant Stationary Louver, provide approved equal products by one of the following:
 a. Airolite Company, LLC (The).
b. Greenheck Fan Corporation.
c. Louvers & Dampers, Inc.; a division of Mestek, Inc.
d. Nystrom, Inc.

2.3 LOUVER SCREENS

A. General: Provide screen at each exterior louver.
 1. Screen Location for Fixed Louvers: Interior face.
 2. Screening Type: Bird screening.

B. Louver Screen Frames: Same type and form of metal as indicated for louver to which screens are attached.

2.4 MATERIALS

A. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063-T5, T-52, or T6.

B. Fasteners: Use types and sizes to suit unit installation conditions.
 1. Use tamper-resistant screws for exposed fasteners unless otherwise indicated.
 2. For fastening aluminum, use aluminum or 300 series stainless-steel fasteners.
 3. For color-finished louvers, use fasteners with heads that match color of louvers.

C. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.5 FABRICATION

A. Fabricate frames, including integral sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.

B. Join frame members to each other and to fixed louver blades with fillet welds concealed from view unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary.

2.6 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.

2.7 SHEET FINISHES

A. Finish louvers after assembly.

B. Surface Preparation: Clean surfaces with nonpetroleum solvent so surfaces are free of oil and other contaminants. After cleaning, apply a conversion coating compatible with the organic coating to be applied over it. Clean welds, mechanical connections, and abraded areas and repair according to ASTM A 780.

C. Repair sheet finish by grinding and polishing irregularities, weld spatter, scratches, and forming marks to match surrounding finish.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Locate and place louvers level, plumb, and at indicated alignment with adjacent work.

B. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.

C. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.

D. Protect unpainted galvanized and nonferrous-metal surfaces that are in contact with concrete, masonry, or dissimilar metals from corrosion and galvanic action by applying a heavy coating of bituminous paint or by separating surfaces with waterproof gaskets or nonmetallic flashing.

3.2 ADJUSTING

A. Restore louvers damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.

END OF SECTION 089119
SECTION 092216 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Non-load-bearing steel framing systems for interior gypsum board assemblies.
 2. Suspension systems for interior gypsum ceilings, soffits, and grid systems.

B. Related Requirements:
 1. Section 054000 "Cold-Formed Metal Framing" for exterior and interior load-bearing and exterior non-load-bearing wall studs; floor joists; roof rafters and ceiling joists; and roof trusses.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Indicate yield strength of steel, section properties, limiting heights and spans.

B. Shop Drawings: For partitions requiring seismic bracing, submit coordinated set of partition anchorage drawings prior to installation including:
 1. Description, layout, and location of items to be anchored or braced with anchorage or brace points noted and dimensioned.
 2. Details of anchorage or bracing at large scale with all members, parts brackets shown, together with all connections, bolts, and welds clearly identified.
 3. Numerical value of design seismic brace loads.

1.4 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For EQ thickness (dimpled) steel studs and runners and firestop tracks, from ICC-ES.

PART 2 - PRODUCTS

2.1 DESCRIPTION

A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

2.2 MANUFACTURERS

A. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 1. MarinoWARE.
 2. Clark-Dietrich.
2.3 FRAMING SYSTEMS

A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.
 1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.
 a. Steel having yield strength greater than 33 KSI is permitted.

B. Studs and Runners: ASTM C 645. Use either steel studs and runners or dimpled steel studs and runners.
 1. Steel Studs and Runners:
 a. Minimum Base-Metal Thickness: Minimum 0.0312 inch (20 ga.) for gypsum wallboard, minimum 0.312 for tile backing panels, or greater as recommended by tile backer panel manufacturer, or greater as indicated in the manufacturer’s published performance data based on the following criteria:
 1) Yield Strength of steel.
 2) Deflection Limits:
 a) Gypsum Wallboard: L/240.
 3) Limiting heights: As indicated on Drawings.
 4) Spans: as indicated on Drawings or as recommended by manufacturer.
 5) Applied loads:
 a) Gypsum wallboard: 10 psf.
 b. Depth: As indicated on Drawings.
 2. Dimpled Steel Studs and Runners:
 a. Minimum Base-Metal Thickness: 0.179 inch.
 b. Comply with requirements above

C. Slip-Type Head Joints: Provide one of the following:
 1. Single Long-Leg Runner System: ASTM C 645 top runner with 2-inch- deep flanges in thickness not less than indicated for studs, installed with studs friction fit into top runner and with continuous bridging located within 12 inches of the top of studs to provide lateral bracing.
 2. Double-Runner System: ASTM C 645 top runners, inside runner with 2-inch- deep flanges in thickness not less than indicated for studs and fastened to studs, and outer runner sized to friction fit inside runner.
 3. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.
 a. Subject to compliance with requirements, provide one of the following:
 1) Dietrich Metal Framing; SLP-TRK Slotted Deflection Track.
 2) MBA Building Supplies; Slotted Deflecto Track.
 3) Steel Network Inc. (The); VertiClip SLD Series.
 4) Superior Metal Trim; Superior Flex Track System (SFT).
 5) Telling Industries; Vertical Slip Track.

D. Firestop Tracks: Top runner manufactured to allow partition heads to expand and contract with movement of the structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Fire Trak Corp.; Fire Trak System attached to studs with Fire Trak Posi Klip.
 b. Grace Construction Products; FlameSafe FlowTrak System.
 c. Metal-Lite, Inc.; The System.

E. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.
 1. Minimum Base-Metal Thickness: 0.033 inch.
F. Cold-Rolled Channel Bridging: Steel, 0.053-inch minimum base-metal thickness, with minimum 1/2-inch wide flanges.
 1. Depth: As indicated on Drawings.
 2. Clip Angle: Not less than 1-1/2 by 1-1/2 inches, 0.068-inch thick, galvanized steel.

 1. Minimum Base-Metal Thickness: 0.033 inch.
 2. Depth: As indicated on Drawings.

H. Cold-Rolled Furring Channels: 0.053-inch uncoated-steel thickness, with minimum 1/2-inch wide flanges.
 1. Depth: As indicated on Drawings.
 2. Furring Brackets: Adjustable, corrugated-edge type of steel sheet with minimum uncoated-steel thickness of 0.033 inch.
 3. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch-diameter wire, or double strand of 0.048-inch-diameter wire.

2.4 SUSPENSION SYSTEMS

A. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch-diameter wire, or double strand of 0.048-inch-diameter wire.

B. Hanger Attachments to Concrete:
 1. Anchors: Fabricated from corrosion-resistant materials with holes or loops for attaching wire hangers and capable of sustaining, without failure, a load equal to 5 times that imposed by construction as determined by testing according to ASTM E 488 by an independent testing agency.
 a. Type: Cast-in-place anchor, designed for attachment to concrete forms or Postinstalled, expansion anchor.
 2. Powder-Actuated Fasteners: Suitable for application indicated, fabricated from corrosion-resistant materials with clips or other devices for attaching hangers of type indicated, and capable of sustaining, without failure, a load equal to 10 times that imposed by construction as determined by testing according to ASTM E 1190 by an independent testing agency.

C. Wire Hangers: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.16 inch in diameter.

D. Carrying Channels: Cold-rolled, commercial-steel sheet with a base-metal thickness of 0.053 inch and minimum 1/2-inch-wide flanges.
 1. Depth: As indicated on Drawings.

E. Furring Channels (Furring Members):
 1. Cold-Rolled Channels: 0.053-inch uncoated-steel thickness, with minimum 1/2-inch-wide flanges, 3/4 inch deep.
 2. Steel Studs and Runners: ASTM C 645.
 a. Minimum Base-Metal Thickness: 0.033 inch.
 b. Depth: As indicated on Drawings.
 a. Minimum Base-Metal Thickness: 0.025 inch.
 b. Depth: As indicated on Drawings.
 a. Minimum Base-Metal Thickness: 0.033 inch.
 5. Resilient Furring Channels: 1/2-inch-deep members designed to reduce sound transmission.
a. Configuration: Asymmetrical or hat shaped.

F. Grid Suspension System for Gypsum Board Ceilings: ASTM C 645, direct-hung system composed of main beams and cross-furring members that interlock.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Chicago Metallic Corporation; Drywall Grid System.
 c. USG Corporation; Drywall Suspension System.

2.5 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards.
 1. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

B. Isolation Strip at Exterior Walls: Provide the following:
 1. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch thick, in width to suit steel stud size.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.
 1. Furnish concrete inserts and other devices indicated to other trades for installation in advance of time needed for coordination and construction.

B. Coordination with Sprayed Fire-Resistive Materials:
 1. Before sprayed fire-resistive materials are applied, attach offset anchor plates or ceiling runners (tracks) to surfaces indicated to receive sprayed fire-resistive materials. Where offset anchor plates are required, provide continuous plates fastened to building structure not more than 24 inches o.c.
 2. After sprayed fire-resistive materials are applied, remove them only to extent necessary for installation of non-load-bearing steel framing. Do not reduce thickness of fire-resistive materials below that required for fire-resistance ratings indicated. Protect adjacent fire-resistive materials from damage.

3.3 INSTALLATION, GENERAL

A. Installation Standard: ASTM C 754, except comply with framing sizes and spacing indicated.
1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.

B. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.

C. Install bracing at terminations in assemblies.

D. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING FRAMED ASSEMBLIES

A. Seismic Bracing: For partitions noted to require seismic bracing, laterally brace partitions to only structural elements of the building and separate such partition by a physical gap from all other structural elements and any other ceiling splay bracing.

B. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.

1. Space studs as follows:
 a. Single-Layer Application: 16 inches o.c. unless otherwise indicated.
 b. Multilayer Application: 16 inches o.c. unless otherwise indicated.
 c. Tile Backing Panels: 16 inches o.c. unless otherwise indicated.

C. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.

D. Install studs so flanges within framing system point in same direction.

E. Install tracks (runners) at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings, except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts penetrating partitions above ceiling.

1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
 a. Install two studs at each jamb unless otherwise indicated.
 b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.

F. Direct Furring:

1. Screw to framing.
2. Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches o.c.
G. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

3.5 INSTALLING SUSPENSION SYSTEMS

A. Install suspension system components in sizes and spacings indicated on Drawings, but not less than those required by referenced installation standards for assembly types and other assembly components indicated.

B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.

C. Suspend hangers from building structure as follows:
 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.
 3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 4. Flat Hangers: Secure to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices and fasteners that are secure and appropriate for structure and hanger, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 5. Do not attach hangers to steel roof deck.
 6. Do not attach hangers to permanent metal forms. Furnish cast-in-place hanger inserts that extend through forms.
 7. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.
 8. Do not connect or suspend steel framing from ducts, pipes, or conduit.

D. Fire-Resistance-Rated Assemblies: Wire tie furring channels to supports.

E. Seismic Bracing: Sway-brace suspension systems with hangers used for support.

F. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.

G. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION 092216
SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: Interior gypsum board.

B. Related Requirements:
 1. Section 092216 "Non-Structural Metal Framing" for non-structural steel framing and suspension
 systems that support gypsum board panels.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For the following products:
 1. Trim Accessories: Full-size Sample in 12-inch-long length for each trim accessory indicated.

C. Samples for Initial Selection: For each type of trim accessory indicated.

D. Samples for Verification: For the following products:
 1. Trim Accessories: Full-size Sample in 12-inch-long length for each trim accessory indicated.

1.4 QUALITY ASSURANCE

A. Mockups: Build mockups of at least 100 sq. ft. in surface area to demonstrate aesthetic effects and to set
 quality standards for materials and execution.
 1. Build mockups for the following:
 a. Each level of gypsum board finish indicated for use in exposed locations.
 2. Apply or install final decoration indicated, including painting, on exposed surfaces for review of
 mockups.
 3. Simulate finished lighting conditions for review of mockups.
 4. Subject to compliance with requirements, approved mockups may become part of the completed
 Work if undisturbed at time of Substantial Completion.

1.5 DELIVERY, STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct
 sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on
 risers on a flat platform to prevent sagging.

1.6 FIELD CONDITIONS

A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's
 written instructions, whichever are more stringent.
B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.

C. Do not install panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

A. Manufacturers
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Gypsum.
 b. CertainTeed Corporation.
 c. Georgia-Pacific Building Products.
 e. Temple-Inland Building Products by Georgia-Pacific.
 f. USG.

B. Gypsum Board, Type X: ASTM C 1396/C 1396M.
 1. Thickness: 5/8 inch.
 2. Long Edges: Tapered and featured (rounded or beveled) for prefilling.

C. Gypsum Ceiling Board: ASTM C 1396/C 1396M.
 1. Thickness: 1/2 inch.
 2. Long Edges: Tapered.

2.4 TRIM ACCESSORIES

A. Interior Trim: ASTM C 1047.
 1. Material: Galvanized or aluminum-coated steel sheet, rolled zinc, plastic, or paper-faced galvanized-steel sheet.
 2. Shapes:
 a. Cornerbead.
 b. Bullnose bead.
 c. LC-Bead: J-shaped; exposed long flange receives joint compound.
 d. L-Bead: L-shaped; exposed long flange receives joint compound.
 e. U-Bead: J-shaped; exposed short flange does not receive joint compound.
2.5 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C 475/C 475M.

C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
 1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
 a. Use setting-type compound for installing paper-faced metal trim accessories.
 3. Fill Coat: For second coat, use setting-type, sandable topping compound.
 4. Finish Coat: For third coat, use setting-type, sandable topping compound.

2.6 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.

B. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate.
 1. Laminating adhesive shall have a VOC content of 50 g/L or less).

C. Steel Drill Screws: ASTM C 1002 unless otherwise indicated.
 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.

D. Sound-Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.

E. Acoustical Joint Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Accumetric LLC.
 b. Grabber Construction Products.
 c. Pecora Corporation.
 d. Specified Technologies, Inc.
 e. USG Corporation.
 2. Acoustical joint sealant shall have a VOC content of 250 g/L or less.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

A. Comply with ASTM C 840.

B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.

C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.

D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.

E. Form control and expansion joints with space between edges of adjoining gypsum panels.

F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 2. Fit gypsum panels around ducts, pipes, and conduits.
 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch-wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4 to 1/2-inch-wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

I. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.3 APPLYING INTERIOR GYPSUM BOARD

A. Install interior gypsum board in the following locations:
 1. Type X: Vertical surfaces unless otherwise indicated.
 2. Ceiling Type: Ceiling surfaces.
 3. Type C: Where required for specific fire-resistance-rated assembly indicated.
B. Single-Layer Application:
 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 2. On partitions/walls, apply gypsum panels horizontally (perpendicular to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 b. At stairwells and other high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.
 3. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

C. Multilayer Application:
 1. On ceilings, apply gypsum board indicated for base layers before applying base layers on walls/partitions; apply face layers in same sequence. Apply base layers at right angles to framing members and offset face-layer joints one framing member, 16 inches minimum, from parallel base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly.
 2. On partitions/walls, apply gypsum board indicated for base layers and face layers vertically (parallel to framing) with joints of base layers located over stud or furring member and face-layer joints offset at least one stud or furring member with base-layer joints unless otherwise indicated or required by fire-resistance-rated assembly. Stagger joints on opposite sides of partitions.
 3. On Z-shaped furring members, apply base layer vertically (parallel to framing) and face layer either vertically (parallel to framing) or horizontally (perpendicular to framing) with vertical joints offset at least one furring member. Locate edge joints of base layer over furring members.
 4. Fastening Methods: Fasten base layers and face layers separately to supports with screws.

3.4 INSTALLING TRIM ACCESSORIES

A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.

B. Control Joints: Install control joints according to ASTM C 840 and in specific locations approved by Architect for visual effect.

C. Interior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners unless otherwise indicated.
 2. Bullnose Bead: Use at outside corners.
 3. LC-Bead: Use at exposed panel edges.
 4. L-Bead: Use where indicated.
 5. U-Bead: Use where indicated.

3.5 FINISHING GYPSUM BOARD

A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.

B. Prefill open joints, rounded or beveled edges, and damaged surface areas.

C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
2. Level 2: Where indicated on Drawings.
3. Level 3: Where indicated on Drawings.
4. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."

3.6 PROTECTION

A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-
drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and
other causes during remainder of the construction period.

C. Remove and replace panels that are wet, moisture damaged, and mold damaged.

1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration,
sagging, or irregular shape.
2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface
contamination and discoloration.

END OF SECTION 092900
SECTION 095113 - ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes acoustical panels and exposed suspension systems for ceilings.
 B. Products furnished, but not installed under this Section, include anchors, clips, and other ceiling attachment devices to be cast in concrete at ceilings.

1.3 DEFINITIONS
 A. AC: Articulation Class.
 B. CAC: Ceiling Attenuation Class.
 C. LR: Light Reflectance coefficient.
 D. NRC: Noise Reduction Coefficient.

1.4 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Ceiling suspension system members.
 2. Method of attaching hangers to building structure.
 3. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 C. Samples for Verification: For each component indicated and for each exposed finish required, prepared on Samples of size indicated below.
 1. Acoustical Panel: Set of full-size Samples of each type, color, pattern, and texture.
 2. Exposed Suspension System Members, Moldings, and Trim: Set of 12-inch-long Samples of each type, finish, and color.
 D. Qualification Data: For testing agency.
 E. Field quality-control test reports.
 F. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for each acoustical panel ceiling.
 G. Research/Evaluation Reports: For each acoustical panel ceiling and components and anchor and fastener type.
 H. Maintenance Data: For finishes to include in maintenance manuals.

1.5 QUALITY ASSURANCE
 A. Acoustical Testing Agency Qualifications: An independent testing laboratory, or an NVLAP-accredited laboratory, with the experience and capability to conduct the testing indicated. NVLAP-accredited laboratories must document accreditation, based on a "Certificate of Accreditation" and a "Scope of Accreditation" listing the test methods specified.
 B. Source Limitations:
 1. Acoustical Ceiling Panel: Obtain each type through one source from a single manufacturer.
2. Suspension System: Obtain each type through one source from a single manufacturer.

C. Source Limitations: Obtain each type of acoustical ceiling panel and supporting suspension system through one source from a single manufacturer.

D. Fire-Test-Response Characteristics: Provide acoustical panel ceilings that comply with the following requirements:
 1. Fire-Resistance Characteristics: Where indicated, provide acoustical panel ceilings identical to those of assemblies tested for fire resistance per ASTM E 119 by UL or another testing and inspecting agency acceptable to authorities having jurisdiction.
 a. Identify materials with appropriate markings of applicable testing and inspecting agency.
 2. Surface-Burning Characteristics: Provide acoustical panels with the following surface-burning characteristics complying with ASTM E 1264 for Class A materials as determined by testing identical products per ASTM E 84:
 a. Smoke-Developed Index: 450 or less.

E. Seismic Standard: Provide acoustical panel ceilings designed and installed to withstand the effects of earthquake motions according to the following:

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver acoustical panels, suspension system components, and accessories to Project site in original, unopened packages and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.

B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.

C. Handle acoustical panels carefully to avoid chipping edges or damaging units in any way.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weatherproof, wet work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

1.8 COORDINATION

A. Coordinate layout and installation of acoustical panels and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Acoustical Ceiling Panels: Full-size panels equal to 2.0 percent of quantity installed.
 2. Suspension System Components: Quantity of each exposed component equal to 2.0 percent of quantity installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide the product indicated in Part 3 of this section or comparable product by one of the following:
 1. Armstrong World Industries, Inc.
2. BPB USA
3. Chicago Metallic Corporation.
4. Ecophon CertainTeed, Inc.
5. USG Interiors, Inc.

2.2 ACOUSTICAL PANELS, GENERAL
A. Acoustical Panel Standard: Provide manufacturer's standard panels of configuration indicated that comply with ASTM E 1264 classifications as designated by types, patterns, acoustical ratings, and light reflectances, unless otherwise indicated.
 1. Mounting Method for Measuring NRC: Type E-400; plenum mounting in which face of test specimen is 15-3/4 inches away from test surface per ASTM E 795.
B. Acoustical Panel Colors and Patterns: Match appearance characteristics indicated for each product type.
C. Broad Spectrum Antimicrobial Fungicide and Bactericide Treatment: Provide acoustical panels treated with manufacturer's standard antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D 3273 and evaluated according to ASTM D 3274 or ASTM G 21, where indicated.

2.3 METAL SUSPENSION SYSTEMS, GENERAL
A. Metal Suspension System Standard: Provide manufacturer's standard direct-hung metal suspension systems of types, structural classifications, and finishes indicated that comply with applicable requirements in ASTM C 635.
 1. Provide pre-manufactured inside and outside corner covers.
B. Finishes and Colors, General: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. Provide manufacturer's standard factory-applied finish for type of system indicated.
 1. High-Humidity Finish: Comply with ASTM C 635 requirements for "Coating Classification for Severe Environment Performance" where high-humidity finishes are indicated.
C. Attachment Devices: Size for five times the design load indicated in ASTM C 635, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.
D. Wire Hangers, Braces, and Ties: Provide wires complying with the following requirements:
 2. Stainless-Steel Wire: ASTM A 580/A 580M, Type 304, nonmagnetic.
 4. Size: Select wire diameter so its stress at 3 times hanger design load (ASTM C 635, Table 1, "Direct Hung") will be less than yield stress of wire, but provide not less than 0.106-inch-diameter wire.
E. Seismic Struts: Manufacturer's standard compression struts designed to accommodate seismic forces.
F. Seismic Clips: Manufacturer's standard seismic clips designed and spaced to secure acoustical panels in-place.

2.4 METAL EDGE MOLDINGS AND TRIM
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Armstrong World Industries, Inc.
 2. Celotex Corporation; Architectural Ceilings Marketing Dept.
 3. Chicago Metallic Corporation.
 4. Fry Reglet Corporation.
 5. Gordon, Inc.
 6. MM Systems, Inc.
 7. USG Interiors, Inc.
B. Extruded-Aluminum Edge Moldings and Trim: Where indicated, provide manufacturer's extruded-aluminum edge moldings and trim of profile indicated or referenced by manufacturer's designations,
including splice plates, corner pieces, and attachment and other clips, complying with seismic design requirements and the following:

2. Wall Angle: 2-inch wide angle, provide one of the following:
 b. USG MS-274.
3. Wall Angle:
 a. Armstrong Seismic RX with BERC2 Clips.

2.5 ACOUSTICAL SEALANT

A. Products: Subject to compliance with requirements, provide one of the following:
 1. Acoustical Sealant for Exposed and Concealed Joints:
 a. Pecora Corporation; AC-20 FTR Acoustical and Insulation Sealant.
 b. USG Corporation; SHEETROCK Acoustical Sealant.
 2. Acoustical Sealant for Concealed Joints:
 a. OSI Sealants, Inc.; Pro-Series SC-175 Rubber Base Sound Sealant.
 b. Pecora Corporation; BA-98.

B. Acoustical Sealant for Exposed and Concealed Joints: Manufacturer's standard nonsag, paintable, nonstaining latex sealant, complying with ASTM C 834 and effective in reducing airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.

1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders, and comply with layout shown on reflected ceiling plans.

3.3 INSTALLATION

A. General: Install acoustical panel ceilings to comply with ASTM C 636 and seismic design requirements indicated, per manufacturer's written instructions and CISCA's "Ceiling Systems Handbook."

B. Suspend ceiling hangers from building's structural members and as follows:

1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
2. Splay hangers only where required and, if permitted with fire-resistance-rated ceilings, to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
4. Secure wire hangers to ceiling suspension members and to supports above with a minimum of three tight turns. Connect hangers directly either to structures or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.

5. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.

6. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.

7. Space hangers not more than 48 inches o.c. along each member supported directly from hangers, unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.

8. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards and publications.

C. Where area of ceiling exceeds 2500 square feet provide seismic separation joints as indicated, or, if not indicated, as directed by Architect.

D. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.
 1. Install Armstrong Seismic RX in accordance with manufacturer’s written recommendations with all accessories necessary to comply with ICC Report ESR-1308.
 2. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.
 3. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends, leveling with ceiling suspension system to a tolerance of 1/8 inch in 12 feet. Miter corners accurately and connect securely. Install pre-manufactured inside and outside corner covers.
 4. Do not use exposed fasteners, including pop rivets, on moldings and trim.

E. Install suspension system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.

F. Install acoustical panels with undamaged edges and fit accurately into suspension system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide a neat, precise fit.
 1. Arrange directionally patterned acoustical panels as follows:
 a. Install panels in a basket-weave pattern.
 2. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension system runners and moldings.
 3. For reveal-edged panels on suspension system runners, install panels with bottom of reveal in firm contact with top surface of runner flanges.
 4. For reveal-edged panels on suspension system members with box-shaped flanges, install panels with reveal surfaces in firm contact with suspension system surfaces and panel faces flush with bottom face of runners.
 5. Protect lighting fixtures and air ducts to comply with requirements indicated for fire-resistance-rated assembly.

3.4 FIELD QUALITY CONTROL
A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections and prepare reports:
 1. Suspended ceiling system.
 2. Hangers, anchors and fasteners.

B. Tests and Inspections: Testing and inspecting of completed installations of acoustical panel ceiling hangers and anchors and fasteners shall take place in successive stages, in areas of extent and using methods as follows. Do not proceed with installations of acoustical panel ceiling hangers for the next area until test results for previously completed installations of acoustical panel ceiling hangers show compliance with requirements.
 1. Extent of Each Test Area: When installation of ceiling suspension systems on each floor has reached 20 percent completion but no panels have been installed.
a. Within each test area, testing agency will select 1 of every 10 power-actuated fasteners and postinstalled anchors used to attach hangers to concrete and will test them for 200 lbf of tension; it will also select one of every 2 postinstalled anchors used to attach bracing wires to concrete and will test them for 440 lbf of tension.

b. When testing discovers fasteners and anchors that do not comply with requirements, testing agency will test those anchors not previously tested until 20 pass consecutively and then will resume initial testing frequency.

C. Remove and replace acoustical panel ceiling hangers and anchors and fasteners that do not pass tests and inspections and retest as specified above.

3.5 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

3.6 ACOUSTICAL PANEL CEILING SCHEDULE

A. SAT-1: High-Density Ceramic and Mineral-Base Acoustical Panels with Membrane-Faced Overlay.
 1. Products: Provide one of the following:
 a. Armstrong “Fine Fissured Ceramaguard.”
 b. USG “Radar Ceramic ClimaPlus.”
 2. Classification: Type XX, Pattern CEG.
 3. Description:
 b. Edge Detail: Square.
 c. Thickness: 5/8 inch.
 d. Size: 24 by 24 inches.
 4. Performance Requirements:
 a. Light Reflectance: Not less than 82.
 b. NRC: Not less than 0.50.
 c. CAC: Not less than 40.

3.7 SUSPENSION SYSTEM SCHEDULE

A. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet, prepainted, electrolytically zinc coated, or hot-dip galvanized according to ASTM A 653/A 653M, not less than G30 coating designation, with prefinished 15/16-inch-wide metal caps on flanges.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Armstrong World Industries, Inc.; “Prelude Exposed Tee” 15/16” system.
 b. USG Interiors, Inc.; “Donn Brand DX” 15/16” System.
 2. Structural Classification: Heavy-duty system.
 3. End Condition of Cross Runners: Override (stepped) type.
 5. Cap Material: Steel cold-rolled sheet.

END OF SECTION 095113
SECTION 096723 - RESINOUS FLOORING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes resinous flooring systems.

1.2 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Samples: For each type of exposed finish required.

1.4 INFORMATIONAL SUBMITTALS
 A. Material certificates.
 B. Material test reports.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance data.

1.6 QUALITY ASSURANCE
 A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

1.7 FIELD CONDITIONS
 A. Environmental Limitations: Comply with resinous flooring manufacturer's written instructions for substrate temperature, ambient temperature, moisture, ventilation, and other conditions affecting resinous flooring application.
 B. Lighting: Provide permanent lighting or, if permanent lighting is not in place, simulate permanent lighting conditions during resinous flooring application.
 C. Close spaces to traffic during resinous flooring application and for 24 hours after application unless manufacturer recommends a longer period.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. VOC Content of Liquid-Applied Flooring Components: Not more than 100 g/L when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 B. Flammability: Self-extinguishing according to ASTM D 635.
2.2 RESINOUS FLOORING

A. Resinous Flooring System: Abrasion-, impact-, and chemical-resistant, aggregate-filled, and resin-based monolithic floor surfacing designed to produce a seamless floor and integral cove base.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. DUDICK Inc.
 b. Duraflex, Inc.
 d. Neogard; a division of Jones-Blair, Inc.
 e. Stonhard, Inc. (Basis of Design - HRI)
 f. Tnemec Company, Inc.

B. System Characteristics:

2. Wearing Surface: Textured for slip resistance.
3. Overall System Thickness: 3/16 inch.

C. Primer: Type recommended by resinous flooring manufacturer for substrate and resinous flooring system indicated.

D. Reinforcing Membrane: Flexible resin formulation that is recommended by resinous flooring manufacturer.

E. Patching and Fill Material: Resinous product of or approved by resinous flooring manufacturer and recommended by manufacturer for application indicated.

F. Body Coats:

1. Resin: Epoxy.
2. Formulation Description: High solids.
3. Type: Pigmented.
4. Application Method: Troweled or screeded.
5. Number of Coats: One.
7. Aggregates: Colored quartz (ceramic-coated silica).

G. Topcoats: Sealing or finish coats.

1. Resin: Urethane.
2. Formulation Description: High solids.
3. Type: Clear.
4. Number of Coats: One.
5. Thickness of Coats: 8 mils 1/8 inch.

H. System Physical Properties: Provide resinous flooring system with the following minimum physical property requirements when tested according to test methods indicated:

1. Compressive Strength: 10,000 psi minimum according to ASTM C 579.
2. Tensile Strength: 2,000 psi minimum according to ASTM C 307.
3. Flexural Modulus of Elasticity: 2x10^6 psi minimum according to ASTM C 580.
4. Water Absorption: 0.1% percent maximum according to ASTM C 413.
I. System Chemical Resistance: Test specimens of cured resinous flooring system are unaffected when tested according to ASTM D 1308 for 50 percent immersion in the following reagents for no fewer than seven days.

PART 3 - EXECUTION

3.1 PREPARATION

A. Prepare and clean substrates according to resinous flooring manufacturer's written instructions for substrate indicated. Provide clean, dry substrate for resinous flooring application.

B. Concrete Substrates: Provide sound concrete surfaces free of laitance, glaze, efflorescence, curing compounds, form-release agents, dust, dirt, grease, oil, and other contaminants incompatible with resinous flooring.
 1. Roughen concrete substrates as follows:
 a. Shot-blast surfaces with an apparatus that abrades the concrete surface, contains the dispensed shot within the apparatus, and recirculates the shot by vacuum pickup.
 b. Comply with ASTM C 811 requirements unless manufacturer's written instructions are more stringent.
 2. Repair damaged and deteriorated concrete according to resinous flooring manufacturer's written instructions.
 3. Verify that concrete substrates are dry and moisture-vapor emissions are within acceptable levels according to manufacturer's written instructions.
 a. Anhydrous Calcium Chloride Test: ASTM F 1869. Proceed with application of resinous flooring only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. of slab area in 24 hours.
 b. Plastic Sheet Test: ASTM D 4263. Proceed with application only after testing indicates absence of moisture in substrates.
 c. Relative Humidity Test: Use in situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.
 4. Alkalinity and Adhesion Testing: Verify that concrete substrates have pH within acceptable range. Perform tests recommended by manufacturer. Proceed with application only after substrates pass testing.

C. Patching and Filling: Use patching and fill material to fill holes and depressions in substrates according to manufacturer's written instructions.

D. Resinous Materials: Mix components and prepare materials according to resinous flooring manufacturer's written instructions.

3.2 APPLICATION

A. Apply components of resinous flooring system according to manufacturer's written instructions to produce a uniform, monolithic wearing surface of thickness indicated.
 1. Expansion and Isolation Joint Treatment: At substrate expansion and isolation joints, comply with resinous flooring manufacturer's written instructions.

B. Primer: Apply primer over prepared substrate at manufacturer's recommended spreading rate.

C. Reinforcing Membrane: Apply reinforcing membrane to substrate cracks.

D. Integral Cove Base: Apply cove base mix to wall surfaces before applying flooring. Apply according to manufacturer's written instructions. Round internal and external corners.
1. Integral Cove Base: 4 inches high.

E. Self-Leveling Body Coats: Apply self-leveling slurry body coats in thickness indicated for flooring system.
 1. Aggregates: Broadcast aggregates at rate recommended by manufacturer and, after resin is cured, remove excess aggregates to provide surface texture indicated.

F. Troweled or Screeded Body Coats: Apply troweled or screeded body coats in thickness indicated for flooring system. Hand or power trowel and grout to fill voids. When body coats are cured, remove trowel marks and roughness using method recommended by manufacturer.

G. Grout Coat: Apply grout coat, of type recommended by resinous flooring manufacturer, to fill voids in surface of final body coat.

H. Topcoats: Apply topcoats in number indicated for flooring system and at spreading rates recommended in writing by manufacturer and to produce wearing surface indicated.

I. Protect resinous flooring from damage and wear during the remainder of construction period.

END OF SECTION 096723
SECTION 099600 - HIGH-PERFORMANCE COATINGS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes surface preparation and the application of high-performance coating systems.

1.2 DEFINITIONS

A. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.

B. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.

C. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

B. Samples: For each type of coating system and in each color and gloss of topcoat indicated.

1.4 QUALITY ASSURANCE

A. Mockups: Apply mockups of each coating system indicated to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.

1. Architect will select one surface to represent surfaces and conditions for application of each coating system.
2. Final approval of color selections will be based on mockups.
 a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Benjamin Moore & Co.
2. PPG Architectural Finishes, Inc.
4. Tnemec Company, Inc.

B. Concrete Floors (not schedule to receive resinous flooring) and other surfaces where indicated: Subject to compliance with requirements, Basis of Design: TriCoPolymer, Kennel-Seal (Clear Satin) by Agra Life or equivalent product by another listed manufacturer.

2.2 HIGH-PERFORMANCE COATINGS, GENERAL

A. Material Compatibility:
1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.

2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

3. Products shall be of same manufacturer for each coat in a coating system.

B. VOC Content: Products shall comply with VOC limits of authorities having jurisdiction.

C. Colors: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Concrete: 12 percent.
 2. Gypsum Board: 12 percent.

C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

D. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and coating systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean substrates of substances that could impair bond of coatings, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce coating systems indicated.

3.3 APPLICATION

A. Apply high-performance coatings according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."

B. Apply coatings to produce surface films without cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness, or other surface imperfections. Produce sharp glass lines and color breaks.
3.4 EXTERIOR HIGH-PERFORMANCE COATING SCHEDULE

A. Concrete Substrates, Horizontal Surfaces:
 1. Products: TriCoPolymer, Kennel-Seal (Clear Satin) by Agra Life.

B. Steel Substrates:
 1. Pigmented Polyurethane over Epoxy Zinc-Rich Primer System:
 c. Topcoat: Polyurethane, two component, pigmented, gloss (MPI Gloss Level 6).

C. Galvanized-Metal Substrates:
 1. Pigmented Polyurethane over Epoxy Primer System:
 a. Prime Coat: Primer, epoxy, anti-corrosive, for metal.
 c. Topcoat: Polyurethane, two component, pigmented, gloss (MPI Gloss Level 6).

3.5 INTERIOR HIGH-PERFORMANCE COATING SCHEDULE

A. Concrete and other indicated Substrates, Vertical Surfaces:
 1. Products: TriCoPolymer, Kennel-Seal (Clear Satin) by Agra Life.

B. Steel Substrates:
 1. Epoxy-Modified Latex System:
 c. Topcoat: Epoxy-modified latex, semi-gloss (MPI Gloss Level 5).
 d. Topcoat: Epoxy-modified latex, gloss (MPI Gloss Level 6).
 2. Pigmented Polyurethane over Epoxy Primer System:
 a. Prime Coat: Primer, epoxy, anti-corrosive, for metal.
 c. Topcoat: Polyurethane, two component, pigmented, gloss (MPI Gloss Level 6).
 3. Pigmented Polyurethane over Epoxy Zinc-Rich and Epoxy System:
 c. Topcoat: Polyurethane, two component, pigmented, gloss (MPI Gloss Level 6).

C. Galvanized-Metal Substrates:
 1. Epoxy over Epoxy Primer System:
 a. Prime Coat: Primer, epoxy, anti-corrosive, for metal.
 c. Topcoat: Epoxy, gloss.
 2. Epoxy over Vinyl Wash Primer and Epoxy Primer System:
 b. Intermediate Coat: Primer, epoxy, anti-corrosive, for metal.
 c. Topcoat: Epoxy, gloss.

D. Aluminum (Not Anodized or Otherwise Coated) Substrates:
 1. Epoxy System:
c. Topcoat: Epoxy, gloss.

2. Pigmented Polyurethane System:
 c. Topcoat: Polyurethane, two-component, pigmented, gloss (MPI Gloss Level 6).

E. Gypsum Board Substrates:

1. Epoxy-Modified Latex System:
 c. Topcoat: Epoxy-modified latex, semi-gloss (MPI Gloss Level 5).
 d. Topcoat: Epoxy-modified latex, gloss (MPI Gloss Level 6).

END OF SECTION 099600
SECTION 102215 - KENNEL PARTITION SYSTEM

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes (Interior units only):
 1. Kennel partitions.
 2. Stall fronts.
 3. Floor Seal.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis of Design: Mason Company

1. Other Manufacturers: Comply with substitution requirements of Division 1 for Architect determination as equal and approval to provide for this Project.

2.2 MATERIALS

A. Aluminum Extrusions: ASTM B 221, Alloy 6063-T6.

B. Stainless-Steel Bars and Shapes: ASTM A 276, Type 304 or Type 316L.

C. Stainless Steel Wire: ASTM A 276, Type 304.

E. Steel Plates, Channels, Angles, and Bars: ASTM A 36/A 36M.

F. Steel Sheet: Cold-rolled steel sheet, ASTM A 1008/A 1008M, Commercial Steel (CS), Type B.

G. Steel Pipe: ASTM A 53/A 53M, Schedule 40, unless another weight is indicated or required by structural loads.

H. Steel Tubing: ASTM A 500/A 500M, cold-formed structural-steel tubing or ASTM A 513, Type 5, mandrel-drawn mechanical tubing.

I. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B; with G60 zinc (galvanized) or A60 zinc-iron-alloy (galvannealed) coating designation.

J. Seismic Bracing: Angles with legs not less than 1-1/4 inch wide, formed from 0.040-inch-thick, metallic-coated steel sheet; with bolted connections and 1/4-inch-diameter bolts.

M. Seals: Basis of Design: Sani-Slope “T” Floor Seal with Silvis Seal.

2.3 FRP PANEL AND WIRE MESH PARTITION SYSTEM

A. Stainless Steel Stall Front:
 1. 74” H x 48” L. with 31-3/4” W door
 2. Grid: Stainless steel wire
 3. Two-way latch: Stainless steel
 4. No bottom frame
 5. Single Bowl Insert: Stainless steel

B. FRP Isolation Panels:
 1. 72” H x 96” L and 72” H x 72” L ; as indicated
 2. ¾” wide aluminum frame
 3. 24”H Top Grid: Stainless steel wire
 4. 48”H Bottom panel: FRP, manufacturer’s standard thickness.
 a. Color to be selected from manufacturer’s available colors.

C. Floor Seal:
 1. Sani-Slope “T” with Silvis Seal
 2. Length: 72” and 96” as indicated.

2.4 FABRICATION

A. General: Fabricate items from components of sizes not less than those indicated. Use larger-sized components as recommended by manufacturer. Furnish bolts, hardware, and accessories required for complete installation with manufacturer's standard finishes.
 1. Fabricate items to be readily disassembled.
 2. Welding: Weld corner joints of framing and grind smooth, leaving no evidence of joint.
 3. Fabricate partitions with bottom horizontal framing flush with finished floor.
 4. Doors: Align bottom of door with bottom of adjacent panels.
 5. Hardware Preparation: Mortise, reinforce, drill, and tap doors and framing as required to install hardware.

2.5 STEEL AND IRON FINISHES

A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.

2.6 ALUMINUM FINISHES

A. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.

B. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.
2.7 STAINLESS-STEEL FINISHES

A. Directional Satin Finish: No. 4.

PART 3 - EXECUTION

3.1 PARTITIONS ERECTION

A. Anchor partitions to floor per manufacturer’s instructions.

B. Provide seismic supports and bracing as indicated or, if not indicated, as recommended by manufacturer and as required for stability, extending and fastening members to supporting structure.

C. Install doors complete with door hardware.

3.2 ADJUSTING AND CLEANING

A. Adjust doors to operate smoothly and easily, without binding or warping. Adjust hardware to function smoothly. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas, and repair galvanizing to comply with ASTM A 780/A 780M.
SECTION 104400 - FIRE-PROTECTION SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following:
 1. Portable fire extinguishers.
 2. Fire protection cabinets for the following:
 a. Portable fire extinguishers.
 3. Fire-protection accessories.

1.3 ACTION SUBMITTALS
 A. Product Data: Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for fire-protection specialties.
 1. Fire Extinguishes: Include rating and classification.
 2. Cabinets: Include roughing-in dimensions, details showing mounting methods, relationships of box and trim to surrounding construction, door hardware, cabinet type, trim style, and panel style.

1.4 INFORMATIONAL SUBMITTALS
 A. Warranty: Sample of special warranty.

1.5 QUALITY ASSURANCE
 A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Standard for Portable Fire Extinguishers."
 B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.

1.6 COORDINATION
 A. Coordinate size of fire protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
 B. Coordinate sizes and locations of fire protection cabinets with wall depths.

1.7 WARRANTY
 A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Failure of hydrostatic test according to NFPA 10.
 b. Faulty operation of valves or release levers.
 2. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Fire Extinguishers and Cabinets:
 a. Amerex Corporation.
b. Ansul Incorporated; Tyco International Ltd.
c. Badger Fire Protection; a Kidde company.
d. J.L. Industries, Inc.
e. Larsen's Manufacturing Company.
f. Potter-Roemer; Div. of Smith Industries, Inc.

2.2 MATERIALS
A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B.
B. Aluminum: Alloy and temper recommended by aluminum producer and manufacturer for type of use and finish indicated, and as follows:
 2. Extruded Shapes: ASTM B 221.
C. Tempered Float Glass: ASTM C 1048, Kind FT, Condition A, Type I, Quality q3, 3 mm thick, Class 1 (clear).
D. Valves: Manufacturer's standard.
E. Handles and Levers: Manufacturer's standard.
F. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B and bar coding for documenting fire extinguisher location, inspections, maintenance, and recharging.

2.3 PORTABLE FIRE EXTINGUISHERS
A. General: Provide fire extinguishers of type, size, and capacity for each cabinet and other locations indicated.
B. Multipurpose Dry-Chemical Type: UL-rated 4-A:80-B:C, 10-lb nominal capacity, in enameled-steel container.

2.4 FIRE-PROTECTION CABINETS
A. Cabinet Construction: Provide manufacturer's standard box (tub), with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated. Weld joints and grind smooth. Miter and weld perimeter door frames.
 1. Cabinet Metal: Steel
B. Cabinet Type: Provide the following types, as indicated on Drawings:
 1. Suitable for fire extinguisher.
C. Cabinet Mounting: Suitable for the following mounting conditions:
 1. Semirecessed Cabinet: Cabinet box partially recessed in walls of shallow depth to suit style of trim indicated; with one-piece combination trim and perimeter door frame overlapping surrounding wall surface with exposed trim face and wall return at outer edge (backbend).
D. Cabinet Trim Material: Aluminum sheet.
E. Door Material: Aluminum sheet.
F. Door Glazing: Tempered float glass (clear).
G. Door Style:
 1. Typical: Vertical duo panel with frame.
H. Door Construction: Fabricate doors according to manufacturer's standards, of materials indicated, and coordinated with cabinet types and trim styles selected.
I. Door Hardware: Provide manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.
 1. Provide projecting lever handle with cam-action latch or projecting door pull and friction latch.
 2. Provide continuous hinge, of same material and finish as trim, permitting door to open 180 degrees.
J. Aluminum Finish: Clear anodized, satin finish as approved by Architect.
2.5 ACCESSORIES

A. Mounting Brackets: Manufacturer's standard steel, designed to secure extinguisher, of sizes required for types and capacities of extinguishers indicated, with plated or baked-enamel finish.
 1. Provide brackets for extinguishers not located in cabinets.

B. Door Lock: Cam lock that allows door to be opened during emergency by pulling sharply on door handle.

C. Identification: Provide lettering to comply with authorities having jurisdiction for letter style, color, size, spacing, and location. Locate as indicated by Architect.
 1. Identify bracket-mounted extinguishers with the words "FIRE EXTINGUISHER" in red letter decals applied to wall surface.
 2. Identify fire extinguisher in cabinet with the words "FIRE EXTINGUISHER" in white letter decals applied to door.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine walls and partitions for suitable framing depth and blocking where semirecessed cabinets are to be installed.

B. Examine fire extinguishers for proper sizing, charging and tagging.
 1. Remove and replace damaged, defective, or undercharged units.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer's written instructions for installing fire-protection specialties.

B. Install in locations and at mounting heights indicated or, if not indicated, at heights acceptable to authorities having jurisdiction.
 1. Prepare recesses for cabinets as required by type and size of cabinet and trim style.
 2. Fasten mounting brackets to structure and cabinets, square and plumb.
 3. Fasten cabinets to structure, square and plumb.

3.3 ADJUSTING, CLEANING, AND PROTECTION

A. Adjust cabinet doors that do not swing or operate freely.

B. Refinish or replace cabinets and doors damaged during installation.

C. Provide final protection and maintain conditions that ensure that cabinets and doors are without damage or deterioration at the time of Substantial Completion.

END OF SECTION 104400
SECTION 107326 - MANUFACTURED WALKWAY COVERINGS (Alternate)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following:
 1. Post-and-beam supported walkway covers.

1.3 ALTERNATES
 A. Refer to Division 01 Section "Alternates" for Alternates affecting the Work described in this Section.

1.4 SYSTEM DESCRIPTION
 A. General: Provide a complete, integrated set of walkway cover manufacturer's standard mutually dependent components and assemblies that form a walkway cover system capable of withstanding structural and other loads, thermally induced movement, and exposure to weather without failure or infiltration of water into building interior. Include primary and secondary framing, metal roof panels, and accessories complying with requirements indicated.
 1. Provide walkway cover system of size and with spacings, slopes, and spans indicated.

1.5 PERFORMANCE REQUIREMENTS
 A. Structural Performance: Provide walkway covers capable of withstanding the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:
 1. Design Loads: As indicated on Drawings.
 3. Roof Snow Loads: As indicated.
 4. Deflection Limits: Engineer assemblies to withstand design loads with deflections no greater than the following:
 b. Metal Roof Panels: Vertical deflection of 1/240 of the span.
 B. Seismic Performance: Design and engineer walkway cover systems capable of withstanding the effects of earthquake motions determined according to ASCE 7.
 C. Thermal Movements: Provide walkway covers that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

1.6 SUBMITTALS
 A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 B. Shop Drawings: Show fabrication and installation details for walkway covers.
 1. Include plans, elevations, and at least 3/4-inch scale sections of typical members and other components. Show anchors, reinforcement, accessories, layout, and installation details.
a. Installation Drawings: Signed, dated, and sealed by a registered architect or professional engineer licensed in jurisdiction in which the project is located.
b. Show locations of electrical service connections.

C. Samples for Verification: For each type of product indicated, of size below:
 1. Aluminum: For each form, finish, and color, on 6-inch-long sections of extrusions and squares of sheet at least 4 by 4 inches.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative of walkway covering manufacturer for installation of units required for this Project.
B. Source Limitations: Obtain walkway cover components through one source from a single manufacturer.
C. Product Options: Drawings indicate size, profiles, and dimensional requirements of walkway covers and are based on the specific types and models indicated. Refer to Division 01 Section "Product Requirements."
 1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.
D. Preinstallation Conference: Conduct conference at Project site.
E. [Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.]

1.8 DELIVERY AND HANDLING

A. Deliver walkway covers in protective covering and crating to protect components and surfaces against damage.

1.9 PROJECT CONDITIONS

A. Field Measurements: Verify actual dimensions of construction contiguous with walkway covers by field measurements and indicate on Shop Drawings.

1.10 COORDINATION

A. Coordinate installation of anchorages for walkway covers. Furnish setting drawings, templates, and directions for installing anchorages and other items that are to be embedded in concrete. Deliver such items to Project site in time for installation.
B. Coordinate delivery time so walkway cover systems can be installed within 24 hours of receipt at Project site.

1.11 WARRANTY

A. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: The design for each type of walkway cover is based on the product named. Subject to compliance with requirements, provide either the named product or a comparable product by one of the following:
 1. Dittmer Architectural Aluminum.
 2. East Coast TVM, LLC.
 3. Mapes Industries, Inc.
 4. Mason-Florida, LLC.
5. Peachtree Protective Covers.
7. Superior Metal Products Company, Inc.

2.2 MATERIALS
A. Aluminum Sheet and Plate: ASTM B 209, alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated, and with at least the strength and durability properties of alloy 5005-H15.
B. Aluminum Extrusions: Extruded Post, Roof Deck, Cap, Fascia: Alloy 6061-T6, 6063-T5, and 6063-T6 as called for by profile and design.
 1. Thickness: As required by design, complying with minimum thickness requirement specified.
C. Aluminum Sheet: For miscellaneous trim only: Alloy 3105-H28 or 3004-H34; Minimum yield: 30 ksi; Minimum thickness 0.040 inch.

2.3 POST SUPPORTED WALKWAY COVER
A. Basis-of-Design Product: Mapes Industries, Inc., (800) 228-2391, or a comparable product by one of the listed manufacturers.
 1. All sizes and thickness shall be increased to meet span requirements and to resist design loads.
B. Deck: Extruded aluminum.
 1. Thickness: Min. 0.078 inch.
 2. Depth: 3-1/2 inches.
 3. Interlocking flat bottom.
C. Fascia: Extruded aluminum.
 1. Thickness: 0.124 minimum.
 2. Depth: 8 inches.
D. Beams: Extruded aluminum.
 1. Thickness: .156 inch minimum.
 1. Thickness: .125 inch minimum.
F. Concealed Drainage: Integral gutter beams draining into designated hollow support posts.

2.4 ACCESSORIES
A. Fasteners: Use concealed fasteners fabricated from metals that are noncorrosive to walkway cover systems material and mounting surface.
B. Hardware:
 1. Fasteners: Plated non-corrosive Type 18-8 stainless steel, sealed with neoprene "O" rings beneath flat washers.
C. Anchors and Inserts: Use stainless steel or hot-dip galvanized anchors and inserts. Use torque-controlled expansion-bolt devices for drilled-in-place anchors. Furnish inserts, as required, to be set into concrete.
D. Concrete for Foundations: Comply with requirements in Division 03 Section "Cast-in-Place Concrete" for normal-weight, air-entrained, ready-mix concrete with a minimum 28-day compressive strength of 3000 psi, unless otherwise indicated.

2.5 FABRICATION, GENERAL
A. General: Provide walkway cover systems consisting of extruded aluminum canopy supported on aluminum structural framing system, wall-hung and post supported, as indicated.
 1. Welded Connections: Comply with AWS standards for recommended practices in shop welding. Provide welds behind finished surfaces without distortion or discoloration of exposed side.
 2. Mill joints to a tight, hairline fit. Form joints exposed to weather to exclude water penetration.
3. Conceal fasteners if possible; otherwise, locate fasteners where they will be inconspicuous.

2.6 STRUCTURE
 A. Base: Provide walkway covers with integral base consisting of channels, angles, plates, or other fittings. Drill holes in members for anchor-bolt connection.
 1. Provide anchor bolts of size required for connecting base to concrete foundations.

2.7 ALUMINUM FINISHES
 A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 B. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 C. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Verify all dimensions existing and provided.
 B. Make reasonable adjustments in fabrication and erection to provide an acceptable finished walkway cover.

3.2 INSTALLATION
 A. General: Install walkways covers in strict accordance with manufacturer’s written recommendations and approved Shop Drawings.
 B. Excavation: In firm, undisturbed or compacted soil, excavate walkway cover systems foundation to dimensions indicated.
 C. Set anchor bolts and other embedded items required for installation of walkway cover systems. Use templates furnished by suppliers of items to be attached.
 D. Install walkway cover systems level, plumb, and at height and slope indicated, with surfaces free from distortion or other defects in appearance.
 1. Beams:
 a. If mechanically fastened system, place beams in column notches and secure with proper number of fasteners as specified by size of beam and engineering. Ensure contact bearing in bottom of column notches; insert aluminum shim plates as necessary.
 b. Level tops of beams to receive roof panels; roof panels shall drain rainwater into beams as indicated.
 c. Minor connections and incidental details shall be as shown on the drawings.
 d. Ensure that end caps are welded or mechanically fastened securely into place.
 2. Roof Panels:
 a. Fabricate roof panels to required lengths.
 b. Install level and square to beams to avoid "out of square" conditions at beam ends.
 c. Secure each contact point with a minimum of three stainless steel fasteners with 3/4 inch flat neoprene washers or other manufacturer tested and approved system.
 3. Joint Sealants and Flashing:
 a. Seal fabrication joints and seams away from view where required.
 b. Seal all other points where water penetration might be expected.
 c. Properly flash connection to walls where walkway cover units contact surface of building. Note: Sealants are not acceptable for closure/flashing between building and walkway cover system.

3.3 CLEANING
 A. At completion of installation, clean soiled surfaces of walkway cover systems according to manufacturer's written instructions.
1. Remove protective film from members. Clean canopy of dirt, grease, handprints, and other blemishes. Leave area in a neat, clean, and acceptable condition.

B. Protect canopy from damage from other construction operations. Provide temporary barricades where necessary.

END OF SECTION 107326
SECTION 112300 - INSTITUTIONAL LAUNDRY EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
 Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes laundry equipment, including:
 1. Owner Furnished: Commercial washer/extractors and tumbler/dryers.
 B. Related Sections include the following:
 1. Division 22 Section "Domestic Water Piping" for water distribution piping connections to laundry
 equipment.
 2. Division 22 Section "Sanitary Waste and Vent Piping" for drainage and vent piping connections to
 laundry equipment.
 3. Division 23 Section "Natural Gas Piping" for distribution piping connections to laundry equipment.
 4. Division 26 Section "Wire and Cables" for services and connections to laundry equipment.

1.3 DELIVERY, STORAGE, AND HANDLING
 A. Storage (if required): Shall be in a secured, conditioned space and shall remain the Contractor’s
 equipment until installed in its permanent location.

1.4 PROJECT CONDITIONS
 A. Field Measurements: Verify actual dimensions of area where laundry equipment is to be installed and
 coordinate with the Owner before Owner purchase and Contractor installation of equipment.

1.5 COORDINATION
 A. Coordinate wiring requirements and current characteristics of laundry equipment with building electrical
 system. See Division 26 Sections.
 B. Coordinate layout and installation of plumbing, mechanical, and electrical services for laundry
 equipment.

PART 2 - PRODUCTS

2.1 LAUNDRY EQUIPMENT - To be furnished by the Owner.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine walls and floors, with Installer present, for compliance with requirements for installation
 tolerances and other conditions affecting performance of the Work.
 B. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
 C. Examine roughing-in for electrical power plumbing and mechanical system(s) to verify actual locations
 of connections before installation of laundry equipment.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install laundry equipment in strict accordance with manufacturer’s written instructions and approved
 Shop Drawings. Comply with requirements for anchorage and grouting.
B. Comply with requirements specified in Divisions 22 and 23 Sections for connecting laundry equipment to plumbing and mechanical system(s).

C. Comply with requirements specified in Division 26 Sections for connecting laundry equipment to electrical power system.

D. Scope of Installation services:
 1. Set equipment in place and leave ready for final hook-up.
 2. Furnish Integral equipment required for proper operation of laundry equipment.
 3. Provide and install piping, fittings, valves and material required for final hook-up and perform final hook-up per manufacturer's and code requirements.
 4. Furnish wiring, conduit, fittings, all accessories and materials required for final hook-up and perform final hook-up per manufacturer's and code requirements.

3.3 ADJUSTING AND CLEANING

A. Test, adjust, and verify operation of each appliance. Repair or replace items found to be defective or operating below rated capacity.

B. Verify that controls and safety features are functioning.

C. Owner Instruction: Instruct Owner in proper operation and maintenance for each item of laundry equipment.

D. Repair or replace damaged parts, dents, buckles, abrasions, and other defects affecting appearance or serviceability. Touch up factory-applied finishes to restore damaged or soiled areas.

END OF SECTION 112300
SECTION 113100 - RESIDENTIAL APPLIANCES

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes: Cleaning appliances.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Samples: For each exposed product and for each color and texture specified.

1.3 INFORMATIONAL SUBMITTALS
 A. Product certificates.
 B. Field quality-control reports.
 C. Sample warranties.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.5 WARRANTY
 A. Special Warranties: Manufacturer agrees to repair or replace residential appliances or components that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Electrical Appliances: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 DISHWASHERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Electrolux Home Products (Frigidaire).
 2. General Electric Company (GE Appliances).
 3. Sears Brands LLC (Kenmore).
 B. Dishwasher: Complying with AHAM DW-1.
 1. Type: Built-in undercounter.
2. Energy Performance, ENERGY STAR: Provide appliances that qualify for the EPA/DOE ENERGY STAR product-labeling program.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Built-in Equipment: Securely anchor units to supporting cabinets or countertops with concealed fasteners. Verify that clearances are adequate for proper functioning and that rough openings are completely concealed.

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Perform visual, mechanical, and electrical inspection and testing for each appliance according to manufacturers' written recommendations. Certify compliance with each manufacturer's appliance-performance parameters.
 2. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After installation, start units to confirm proper operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and components.

B. An appliance will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 113100
SECTION 133419 - METAL BUILDING SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Structural-steel framing.
 2. Metal roof panels.
 3. Metal wall panels.
 4. Metal soffit panels.
 5. Thermal insulation.
 6. Accessories.
 7. Refer to Division 8 for windows, doors and frames.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of metal building system component.

B. Shop Drawings: Indicate components by others. Include full building plan, elevations, sections, details and attachments to other work. Anchor bolt drawings and reactions to be submitted prior to the final metal building systems submittal.

C. Samples: For units with factory-applied finishes.

D. Delegated-Design Submittal: For metal building systems.
 1. Include analysis data indicating compliance with performance requirements and design data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Letter of Design Certification: Signed and sealed by a qualified professional engineer. Include the following:
 1. Name and location of Project.
 2. Order number.
 3. Name of manufacturer.
 4. Name of Contractor.
 5. Building dimensions including width, length, height, and roof slope.
 6. Indicate compliance with AISC standards for hot-rolled steel and AISI standards for cold-rolled steel, including edition dates of each standard.
 8. Design Loads: Include dead load, roof live load, collateral loads, roof snow load, deflection, wind loads/speeds and exposure, seismic design category or effective peak velocity-related acceleration/peak acceleration, and auxiliary loads (cranes).
 9. Load Combinations: Indicate that loads were applied acting simultaneously with concentrated loads, according to governing building code.

C. Material test reports.

D. Source quality-control reports.

E. Field quality-control reports.

F. Sample warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer.

 1. Accreditation: Manufacturer's facility accredited according to the International Accreditation Service's AC472, "Accreditation Criteria for Inspection Programs for Manufacturers of Metal Building Systems."

 2. Engineering Responsibility: Preparation of comprehensive engineering analysis and Shop Drawings by a professional engineer who is legally qualified to practice in jurisdiction where Project is located.

B. Erector Qualifications: An experienced erector who specializes in erecting and installing work similar in material, design, and extent to that indicated for this Project and who is acceptable to manufacturer.

C. Welding Qualifications: Qualify procedures and personnel according to the following:

 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 2. AWS D1.3, "Structural Welding Code - Sheet Steel."

1.7 WARRANTY

A. Special Warranty on Metal Panel Finishes: Manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.

 1. Finish Warranty Period: 20 years from date of Substantial Completion.

B. Special Weathertightness Warranty for Standing-Seam Metal Roof Panels: Manufacturer agrees to repair or replace standing-seam metal roof panel assemblies that leak or otherwise fail to remain weathertight within specified warranty period.

 1. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. ACI Building Systems, Inc.
 2. Alliance Steel, Inc.
 5. Bigbee Steel Buildings, Inc.
7. Ceco Building Systems; an NCI company.
8. Chief Buildings; Chief Industries, Inc.
9. Dean Steel Buildings, Inc.
11. Kirby
15. Vulcan Steel Structures, Inc.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design metal building system.

B. Structural Performance: Metal building systems shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated according to procedures in MBMA's "Metal Building Systems Manual."
 1. Design Loads: As indicated on Drawings.
 2. Deflection and Drift Limits: Design metal building system assemblies to withstand serviceability design loads without exceeding deflections and drift limits recommended in AISC Steel Design Guide No. 3 "Serviceability Design Considerations for Steel Buildings."
 3. Deflection and Drift Limits: No greater than the following:
 b. Girts: Horizontal deflection of 1/180 of the span.
 c. Metal Roof Panels: Vertical deflection of 1/360 of the span.
 d. Metal Wall Panels: Horizontal deflection of 1/180 of the span.
 e. Design secondary-framing system to accommodate deflection of primary framing and construction tolerances, and to maintain clearances at openings.
 f. Lateral Drift: Maximum of 1/100 of the building height.

C. Seismic Performance: Metal building system shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

E. Structural Performance for Metal Roof and Wall Panels: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E 1592:
 1. Wind Loads: As indicated on Drawings.

F. Air Infiltration for Metal Roof Panels: Air leakage of not more than 0.06 cfm/sq. ft. when tested according to ASTM E 1680 at the following test-pressure difference:

G. Air Infiltration for Metal Wall Panels: Air leakage of not more than 0.06 cfm/sq. ft. when tested according to ASTM E 283 at the following test-pressure difference:
H. Water Penetration for Metal Roof Panels: No water penetration when tested according to ASTM E 1646 at the following test-pressure difference:
 1. Test-Pressure Difference: 6.24 lbf/sq. ft..

I. Water Penetration for Metal Wall Panels: No water penetration when tested according to ASTM E 331 at the following test-pressure difference:
 1. Test-Pressure Difference: 2.86 lbf/sq. ft..

J. Wind-Uplift Resistance: Provide metal roof panel assemblies that comply with UL 580 for wind-uplift-resistance class indicated.
 1. Uplift Rating: UL 90.

K. FM Global Listing: Provide metal roof panels and component materials that comply with requirements in FM Global 4471 as part of a panel roofing system and that are listed in FM Global's "Approval Guide" for Class 1 or noncombustible construction, as applicable. Identify materials with FM Global markings.
 1. Fire/Windstorm Classification: Class 1A- 90.
 2. Hail Resistance: MH.

L. Thermal Performance for Opaque Elements: Provide the following maximum U-factors and minimum R-values when tested according to ASTM C 1363 or ASTM C 518:
 1. Roof: Refer to drawings
 2. Walls: Refer to drawings

2.3 STRUCTURAL-STEEL FRAMING

A. Structural Steel: Comply with AISC 360, "Specification for Structural Steel Buildings."

B. Bolted Connections: Comply with RCSC's "Specification for Structural Joints Using High-Strength Bolts."

C. Cold-Formed Steel: Comply with AISI's "North American Specification for the Design of Cold-Formed Steel Structural Members" for design requirements and allowable stresses.

D. Primary Framing: Manufacturer's standard primary-framing system, designed to withstand required loads and specified requirements. Primary framing includes transverse and lean-to frames; rafters and rake beams; sidewall, intermediate, end-wall, and corner columns; and wind bracing.
 a. Slight variations in span and spacing may be acceptable if necessary to comply with manufacturer's standard, as approved by Architect.
 2. Frame Configuration: Single gable with lean to.
 3. Typical Column: Uniform Depth
 4. Lean to Column: Tube Shape
 5. Rafter: Tapered.

E. End-Wall Framing: Manufacturer's standard primary end-wall framing fabricated for field-bolted assembly to comply with the following:

F. Secondary Framing: Manufacturer's standard secondary framing, including purlins, girts, eave struts, flange bracing, base members, gable angles, clips, headers, jambs, and other miscellaneous structural members. Unless otherwise indicated, fabricate framing from either cold-formed, structural-steel sheet or roll-formed, metallic-coated steel sheet, prepainted with coil coating, to comply with the following:
G. Anchor Rods: Headed anchor rods as indicated in Anchor Rod Plan for attachment of metal building to foundation.

2.4 METAL ROOF PANELS

A. Standing-Seam, Vertical-Rib, Metal Roof Panels: Formed with interlocking ribs at panel edges and intermediate stiffening ribs symmetrically spaced between ribs; designed for sequential installation by mechanically attaching panels to supports using concealed clips located under one side of panels and engaging opposite edge of adjacent panels.
1. Material: Zinc-coated (galvanized) or aluminum-zinc alloy-coated steel sheet, 0.024-inch nominal uncoated steel thickness. Prepainted by the coil-coating process to comply with ASTM A 755/A 755M.
 b. Color: As selected by Architect from manufacturer's full range.

2. Clips: One-piece fixed to accommodate thermal movement.
3. Joint Type: Mechanically seamed.
5. Panel Height: 2 inches.

2.5 FOAMED-INSULATION-CORE METAL WALL PANELS

A. General: Provide factory-formed and -assembled metal wall panels fabricated from two metal facing sheets and insulation core foamed in place during fabrication, and with joints between panels designed to form weathertight seals. Include accessories required for weathertight installation.
1. Insulation Core: Modified isocyanurate or polyurethane foam using a non-CFC blowing agent, with maximum flame-spread and smoke-developed indexes of 25 and 450, respectively.
 a. Closed-Cell Content: 90 percent when tested according to ASTM D 6226.
 b. Density: 2.0 to 2.6 lb/cu. ft. when tested according to ASTM D 1622.
 c. Compressive Strength: Minimum 20 psi when tested according to ASTM D 1621.
 d. Shear Strength: 26 psi when tested according to ASTM C 273/C 273M.

B. Concealed-Fastener, Foamed-Insulation-Core Metal Wall Panels: Formed with tongue-and-groove panel edges; designed for sequential installation by interlocking panel edges and mechanically attaching panels to supports using concealed clips or fasteners.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CENTRIA Architectural Systems.
 c. Kingspan Insulated Panels.
 d. MBCI; a division of NCI Group, Inc.
 e. Metl-Span.

2. Metallic-Coated Steel Sheet: Facings of zinc-coated (galvanized) steel sheet complying with ASTM A 653/A 653M, G90 coating designation, or aluminum-zinc alloy-coated steel sheet complying with ASTM A 792/A 792M, Class AZ50 coating designation; structural quality. Prepainted by the coil-coating process to comply with ASTM A 755/A 755M.
 a. Nominal Thickness: 0.034 inch.
 1) Color: As selected by Architect from manufacturer's full range.
 c. Interior Finish: Siliconized polyester.
 1) Color: As selected by Architect from manufacturer's full range.
4. Panel Thickness: 2.0 inches.
2.6 THERMAL INSULATION (Basis of Design: Simple Saver System)

A. Faced Metal Building Insulation: ASTM C 991, Type II, glass-fiber-blanket insulation; 0.5-lb/cu. ft. density; 2-inch-wide, continuous, vapor-tight edge tabs; with a flame-spread index of 25 or less.

B. Unfaced Metal Building Insulation: ASTM C 991, Type I, or NAIMA 202, glass-fiber-blanket insulation; 0.5-lb/cu. ft. density; 2-inch-wide, continuous, vapor-tight edge tabs; with a flame-spread index of 25 or less.

C. Retainer Strips: For securing insulation between supports, 0.025-inch nominal-thickness, formed, metallic-coated steel or PVC retainer clips colored to match insulation facing.

D. Vapor-Retarder Facing: ASTM C 1136, with permeance not greater than 0.02 perm when tested according to ASTM E 96/E 96M, Desiccant Method.

2.7 ACCESSORIES

A. General: Provide accessories as standard with metal building system manufacturer and as specified. Fabricate and finish accessories at the factory to greatest extent possible, by manufacturer's standard procedures and processes. Comply with indicated profiles and with dimensional and structural requirements.
 1. Form exposed sheet metal accessories that are without excessive oil-canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.

B. Roof Panel Accessories: Provide components required for a complete metal roof panel assembly including copings, fasciae, corner units, ridge closures, clips, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal roof panels unless otherwise indicated.

C. Wall Panel Accessories: Provide components required for a complete metal wall panel assembly including copings, fasciae, mullions, sills, corner units, clips, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal wall panels unless otherwise indicated.

D. Flashing and Trim: Zinc-coated (galvanized) or aluminum-zinc alloy-coated steel sheet, 0.018-inch nominal uncoated steel thickness, prepainted with coil coating; finished to match adjacent metal panels.

E. Gutters: Zinc-coated (galvanized) or aluminum-zinc alloy-coated steel sheet, 0.018-inch nominal uncoated steel thickness, prepainted with coil coating; finished to match roof fascia and rake trim. Match profile of gable trim, complete with end pieces, outlet tubes, and other special pieces as required. Fabricate in minimum 96-inch-long sections, sized according to SMACNA's "Architectural Sheet Metal Manual."
 1. Gutter Supports: Fabricated from same material and finish as gutters.
 2. Strainers: Bronze, copper, or aluminum wire ball type at outlets.

F. Downspouts: Zinc-coated (galvanized) or aluminum-zinc alloy-coated steel sheet, 0.018-inch nominal uncoated steel thickness, prepainted with coil coating; finished to match metal wall panels. Fabricate in minimum 10-foot-long sections, complete with formed elbows and offsets.
 1. Mounting Straps: Fabricated from same material and finish as gutters.

G. Refer to Section 086200 for Unit Skylights.

H. Roof Curbs: Zinc-coated (galvanized) or aluminum-zinc alloy-coated steel sheet, 0.048-inch nominal uncoated steel thickness prepainted with coil coating; finished to match metal roof panels; with welded top box and bottom skirt, and integral full-length cricket; capable of withstanding loads of size and height indicated.
I. Pipe Flashing: Premolded, EPDM pipe collar with flexible aluminum ring bonded to base.

2.8 FABRICATION

A. General: Design components and field connections required for erection to permit easy assembly.

1. Mark each piece and part of the assembly to correspond with previously prepared erection drawings, diagrams, and instruction manuals.

2. Fabricate structural framing to produce clean, smooth cuts and bends. Punch holes of proper size, shape, and location. Members shall be free of cracks, tears, and ruptures.

C. Primary Framing: Shop fabricate framing components to indicated size and section, with baseplates, bearing plates, stiffeners, and other items required for erection welded into place. Cut, form, punch, drill, and weld framing for bolted field assembly.

D. Secondary Framing: Shop fabricate framing components to indicated size and section by roll forming or break forming, with baseplates, bearing plates, stiffeners, and other plates required for erection welded into place. Cut, form, punch, drill, and weld secondary framing for bolted field connections to primary framing.

E. Metal Panels: Fabricate and finish metal panels at the factory to greatest extent possible, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements. Comply with indicated profiles and with dimensional and structural requirements.

1. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of metal panel.

2.9 SOURCE QUALITY CONTROL

A. Special Inspection: Owner will engage a qualified special inspector to perform source quality control inspections and to submit reports.

1. Accredited Manufacturers: Special inspections will not be required if fabrication is performed by an IAS AC472-accredited manufacturer approved by authorities having jurisdiction to perform such Work without special inspection.

B. Product will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ERECTION OF STRUCTURAL FRAMING

A. Erect metal building system according to manufacturer's written instructions and drawings.

B. Do not field cut, drill, or alter structural members without written approval from metal building system manufacturer's professional engineer.

C. Set structural framing accurately in locations and to elevations indicated, according to AISC specifications referenced in this Section. Maintain structural stability of frame during erection.

1. Set plates for structural members on wedges, shims, or setting nuts as required.
2. Tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
3. Promptly pack grout solidly between bearing surfaces and plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for shrinkage-resistant grouts.

E. Align and adjust structural framing before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact with framing. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.

1. Level and plumb individual members of structure.
2. Make allowances for difference between temperature at time of erection and mean temperature when structure will be completed and in service.

F. Primary Framing and End Walls: Erect framing level, plumb, rigid, secure, and true to line. Level baseplates to a true even plane with full bearing to supporting structures, set with double-nutted anchor bolts. Use grout to obtain uniform bearing and to maintain a level base-line elevation. Moist-cure grout for not less than seven days after placement.

1. Make field connections using high-strength bolts installed according to RCSC's "Specification for Structural Joints Using High-Strength Bolts" for bolt type and joint type specified.
 a. Joint Type: Snug tightened or pretensioned as required by manufacturer.

G. Secondary Framing: Erect framing level, plumb, rigid, secure, and true to line. Field bolt secondary framing to clips attached to primary framing.

1. Provide rake or gable purlins with tight-fitting closure channels and fasciae.
2. Locate and space wall girts to suit openings such as doors and windows.
3. Provide supplemental framing at entire perimeter of openings, including doors, windows, ventilators, and other penetrations of roof and walls.

H. Steel Joists: Install joists and accessories plumb, square, and true to line; securely fasten to supporting construction according to SJI's "Standard Specifications and Load Tables for Steel Joists and Joist Girders," joist manufacturer's written instructions, and requirements in this Section.

1. Before installation, splice joists delivered to Project site in more than one piece.
2. Space, adjust, and align joists accurately in location before permanently fastening.
3. Install temporary bracing and erection bridging, connections, and anchors to ensure that joists are stabilized during construction.
4. Joist Installation: Bolt joists to supporting steel framework using carbon-steel bolts unless otherwise indicated.
7. Install and connect bridging concurrently with joist erection, before construction loads are applied. Anchor ends of bridging lines at top and bottom chords if terminating at walls or beams.

I. Bracing: Install bracing in roof and sidewalls where indicated on erection drawings.

1. Tighten rod and cable bracing to avoid sag.
2. Locate interior end-bay bracing only where indicated.
J. Framing for Openings: Provide shapes of proper design and size to reinforce openings and to carry loads and vibrations imposed, including equipment furnished under mechanical and electrical work. Securely attach to structural framing.

K. Erection Tolerances: Maintain erection tolerances of structural framing within AISC 303.

3.2 METAL PANEL INSTALLATION, GENERAL

A. General: Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.

1. Field cut metal panels as required for doors, windows, and other openings. Cut openings as small as possible, neatly to size required, and without damage to adjacent metal panel finishes.
 a. Field cutting of metal panels by torch is not permitted unless approved in writing by manufacturer.

2. Install metal panels perpendicular to structural supports unless otherwise indicated.

3. Flash and seal metal panels with weather closures at perimeter of openings and similar elements. Fasten with self-tapping screws.

4. Locate and space fastenings in uniform vertical and horizontal alignment.

5. Locate metal panel splices over structural supports with end laps in alignment.

6. Lap metal flashing over metal panels to allow moisture to run over and off the material.

B. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with corrosion-resistant coating, by applying rubberized-asphalt underlayment to each contact surface, or by other permanent separation as recommended by metal roof panel manufacturer.

C. Joint Sealers: Install gaskets, joint fillers, and sealants where indicated and where required for weatherproof performance of metal panel assemblies. Provide types of gaskets, fillers, and sealants indicated; or, if not indicated, provide types recommended by metal panel manufacturer.

1. Seal metal panel end laps with double beads of tape or sealant the full width of panel. Seal side joints where recommended by metal panel manufacturer.

2. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."

3.3 METAL ROOF PANEL INSTALLATION

A. General: Provide metal roof panels of full length from eave to ridge unless otherwise indicated or restricted by shipping limitations.

1. Install ridge caps as metal roof panel work proceeds.

2. Flash and seal metal roof panels with weather closures at eaves and rakes. Fasten with self-tapping screws.

B. Standing-Seam Metal Roof Panels: Fasten metal roof panels to supports with concealed clips at each standing-seam joint, at location and spacing and with fasteners recommended by manufacturer.

1. Install clips to supports with self-drilling or self-tapping fasteners.

2. Install pressure plates at locations indicated in manufacturer's written installation instructions.

3. Snap Joint: Nest standing seams and fasten together by interlocking and completely engaging factory-applied sealant.

4. Seamed Joint: Crimp standing seams with manufacturer-approved motorized seamer tool so that clip, metal roof panel, and factory-applied sealant are completely engaged.

5. Rigidly fasten eave end of metal roof panels and allow ridge end free movement for thermal expansion and contraction. Predrill panels for fasteners.

6. Provide metal closures.
C. Metal Fascia Panels: Align bottom of metal panels and fasten with blind rivets, bolts, or self-drilling or self-tapping screws. Flash and seal metal panels with weather closures where fasciae meet soffits, along lower panel edges, and at perimeter of all openings.

3.4 INSULATED METAL WALL PANEL INSTALLATION

A. General: Apply continuous ribbon of sealant to panel joint on concealed side of insulated metal wall panels as vapor seal; apply sealant to panel joint on exposed side of panels for weather seal.
 1. Fasten foamed-insulation-core metal wall panels to supports with fasteners at each lapped joint at location and spacing and with fasteners recommended by manufacturer.
 2. Apply panels and associated items true to line for neat and weathertight enclosure. Avoid "panel creep" or application not true to line.
 3. Provide metal-backed washers under heads of exposed fasteners on weather side of insulated metal wall panels.
 4. Locate and space exposed fasteners in uniform vertical and horizontal alignment. Use proper tools to obtain controlled uniform compression for positive seal without rupture of washer.
 5. Provide sealant tape at lapped joints of insulated metal wall panels and between panels and protruding equipment, vents, and accessories.
 6. Apply a continuous ribbon of sealant tape to panel side laps and elsewhere as needed to make panels weathertight.
 7. Apply snap-on battens to exposed-fastener, insulated-core metal wall panel seams to conceal fasteners.

B. Foamed-Insulation-Core Metal Wall Panels: Fasten metal wall panels to supports with concealed clips at each joint at location and spacing and with fasteners recommended by manufacturer. Fully engage tongue and groove of adjacent panels.
 1. Install clips to supports with self-tapping fasteners.

C. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.

D. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level. Install work with laps, joints, and seams that are permanently watertight.

3.5 METAL SOFFIT PANEL INSTALLATION

A. Provide metal soffit panels the full width of soffits. Install panels perpendicular to support framing.

B. Flash and seal metal soffit panels with weather closures where panels meet walls and at perimeter of all openings.

3.6 THERMAL INSULATION INSTALLATION

A. Blanket Roof Insulation: Comply with the following installation method:
 1. Two-Layers-between-Purlin-with-Spacer-Block Installation: Extend insulation and vapor retarder between purlins. Carry vapor-retarder-facing tabs up and over purlin, overlapping adjoining facing of next insulation course and maintaining continuity of retarder. Install layer of filler insulation over first layer to fill space between purlins formed by thermal spacer blocks. Hold in place with bands and crossbands below insulation.
 a. Thermal Spacer Blocks: Where metal roof panels attach directly to purlins, install thermal spacer blocks.
2. Retainer Strips: Install retainer strips at each longitudinal insulation joint, straight and taut, nesting with secondary framing to hold insulation in place.

3.7 ACCESSORY INSTALLATION

A. General: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.

1. Install components required for a complete metal roof panel assembly, including trim, copings, ridge closures, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items.
2. Install components for a complete metal wall panel assembly, including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items.
3. Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with corrosion-resistant coating, by applying rubberized-asphalt underlayment to each contact surface, or by other permanent separation as recommended by manufacturer.

B. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level. Install work with laps, joints, and seams that will be permanently watertight and weather resistant.

1. Install exposed flashing and trim that is without excessive oil-canning, buckling, and tool marks and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and to result in waterproof and weather-resistant performance.
2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet with no joints allowed within 24 inches of corner or intersection. Where lapped or bayonet-type expansion provisions cannot be used or would not be sufficiently weather resistant and waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with mastic sealant (concealed within joints).

C. Gutters: Join sections with riveted-and-soldered or lapped-and-sealed joints. Attach gutters to eave with gutter hangers spaced as required for gutter size, but not more than 36 inches o.c. using manufacturer's standard fasteners. Provide end closures and seal watertight with sealant. Provide for thermal expansion.

D. Downspouts: Join sections with 1-1/2-inch telescoping joints. Provide fasteners designed to hold downspouts securely 1 inch away from walls; locate fasteners at top and bottom and at approximately 60 inches o.c. in between.

1. Provide elbows at base of downspouts to direct water away from building at upper roof locations.
2. Tie downspouts to underground drainage system indicated.

E. Skylights: Refer to Section 086200 for installation requirements.

F. Roof Curbs: Install curbs at locations indicated on Drawings. Install flashing around bases where they meet metal roof panels.

G. Pipe Flashing: Form flashing around pipe penetration and metal roof panels. Fasten and seal to panel as recommended by manufacturer.

3.8 FIELD QUALITY CONTROL

A. Special Inspections: Owner will engage a qualified special inspector to perform field quality control special inspections and to submit reports.

B. Product will be considered defective if it does not pass tests and inspections.
C. Prepare test and inspection reports.

END OF SECTION 133419
SECTION 220500 - PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The drawings and general provisions of the Contract, including General and Supplementary Conditions, General Requirements and all other Specification Sections apply to the work specified in this section. In the event of conflict between specific requirements of the various documents, the more restrictive, the more extensive (i.e.: more expensive) requirement shall govern.

1.2 SCOPE

A. This section includes the storm, soil, waste, drain, vent and domestic water systems from their source of supply or point of disposal to and including their connection to equipment and fixtures.

B. Contractor shall coordinate required water, foundation drainage, storm, and sanitary services with the general contractor. Contractor shall perform all work within the building and to a point five (5) feet from the building wall and shall be coordinated with civil work.

C. The requirements of Division 23, Sections “Mechanical and Electrical General Provisions” shall apply to all work specified under this section. Sterilization shall comply with Section 610 of the 2012 International Plumbing Code.

D. Roof and overflow drains shall be furnished by plumbing contractor, installed by roofing contractor. Vents through roof shall be installed by plumbing contractor. Roofing contractor(s) shall be responsible for flashing all roof penetrations thru roof systems to maintain warranties.

1.3 CODES

A. All plumbing work shall comply with the 2012 International Plumbing Code and the regulations of the South Carolina Department of Health and Environmental Control (DHEC), and the State of South Carolina. Obtain all approvals before starting plumbing work. Request all inspections during the course of work.

B. Installation shall meet the regulations contained in the Safe Drinking Water Act (SDWA) concerning lead and copper concentrations.

C. All residential type faucets, electric water coolers and drinking fountains shall meet the requirements of NSF Standard 61, Section 9.

1.4 QUALITY ASSURANCE

A. All building domestic and service water heating systems shall meet the mandatory provisions for performance as documented in ASHRAE 90.1-2007 Section 7.4. The minimum performance requirements listed in ASHRAE 90.1-2007 Table 7.8 must be met.

1.5 SERVICES

A. Contractor shall arrange for and coordinate water, foundation drainage, storm, and sanitary services. Contractor shall perform all work within the building and to a point five (5) feet from the building wall and shall be coordinated with civil work. The building water main, foundation drainage, sanitary and storm sewers shall connect to site water mains and sewers provided under another Division.
B. Contractor shall arrange and pay for all permits required for service connections.

C. Before any sewer work is done inside the property line, the Contractor shall uncover each street sewer at the point of connection and shall determine the actual sewer elevation. If actual elevation is such that the drainage systems cannot be installed as shown, notify the Architect before proceeding with any work.

D. Gas service, new meter and regulator shall be provided by the contractor. The Contractor shall arrange for and coordinate the new service.

1.6 EQUIPMENT CONNECTIONS

A. Provide all plumbing connections required by equipment which is provided on this project. Certain items of equipment shall be provided under this section and certain items will be furnished and set under other sections of the specifications. In all cases, provide valved water supplies, waste and vent lines, and, unless noted otherwise, make final connections after equipment is in place.

PART 2 - PRODUCTS

2.1 PIPE, VALVES AND FITTINGS

A. Provide materials as hereinbefore specified in Division 23, Section “Basic Materials and Methods”. All floor, wall and ceiling penetrations for piping shall be sealed with appropriate sealant.

B. Unions or flanges shall be provided at all connections to each piece of plumbing equipment and on both sides of valves and other in-line devices that require removal for maintenance. Bronze adaptors shall be used at all copper to flanged or IPS connections.

2.2 CLEANOUTS

A. Cleanouts shall be placed in piping throughout the building, where noted and where required by code and at not greater than seventy five (75) foot intervals. Cleanouts on piping below floors, at ends of runs and changes of direction of piping shall consist of Y branches, the full size of pipes to which they are connected with cleanout plugs and covers as listed below or as detailed. Extend cleanouts on concealed piping to finished walls, floors and grade. Cleanouts shall be Josam, Zurn or J.R. Smith equal to Josam numbers indicated below.

B. In concrete floors on grade (generally) - Series 55000-1-SQ cleanout with scoriated square satin nikaloy top, bronze cleanout plug with gasket seal, and adjustable frame.

C. At base of vertical piping and in walls - Series 58910-Z cleanout tee with countersunk bronze threaded plug. Where risers are concealed, provide Series 58760 cleanout tee with plug and nickel satin access cover and frame.

D. Cleanouts on exposed and above ceiling horizontal piping shall be Series 58900 with bronze threaded plug.

E. Cleanouts in exterior underground piping shall be countersunk set in four (4) inch extra heavy cast iron pipe extension to grade. Provide Josam Series 58360 set in twelve (12) inches by twelve (12) inches by eight (8) inches concrete finished flush with grade.

F. Cleanouts in waterproofed equipment rooms - Series 58460A with bronze plug.

G. Provide cleanouts in each exposed P-trap not integral with the fixture.
H. Clean-outs shall be the same nominal size of the pipe for sizes 4” and smaller and 4” nominal size for larger pipe.

2.3 DRAINS

A. Drains installed where water-proofing membranes exist shall have a flashing clamp device.
 1. Provide drains where indicated. Drains shall be J. R. Smith, Josam or Zurn equal to J. R. Smith equipment as follows:

 Floor Drains (FDR) J. R. Smith 2005
 Floor Drains (SD-1) J. R. Smith 2005

 2. Floor drains installed where people walk shall have a grate to prevent people from falling into the sink.
 3. Drains receiving indirect waste shall be provided with ½ grates as required to receive discharge without splashing.

B. TRENCH DRAINS (TD-1)
 1. Trench drain shall be POLYCAST 600 Series Presloped Heavy Duty/Light Duty polyester polymer trench drain or approved equal.
 2. The precast, presloped polymer concrete drain system is designed to be installed flush to grade.
 3. The precast, presloped polymer concrete drain system is designed for installation in paved traffic ways. The components supplied shall be five (13) channels, five (13) frames, and five (13) grates. Coordinate and provide actual quantity and type of components required for installation.
 4. The precast, presloped polymer concrete drain components must have a minimum average slope of 0.65%.
 5. Each channel shall be four (4) feet in length or two (2) feet in length for half channels.
 6. Provide two (2) lockdown mechanisms per four (4) foot section and one (1) per two (2) foot section. Lockdown bolts shall be provided with each channel and grate assembly. The lockdown bolts shall be 3/8” - 16 UNC stainless steel. A round washer shall be placed between the bolt head and the grate. The lockdown mechanism shall be designed for an installation torque of ten (10) ft/lbs.
 7. Male and female end caps shall be provided where required. Each type of end cap shall be available with a removable diaphragm for flow through applications.
 8. Transition pieces for female to female connections and male to male connections shall be available and provided where required.
 9. Each precast, presloped polymer concrete channel shall be designed with a means of mechanical engagement into the adjacent concrete. This locking key shall be along the bottom on both sides. This key must be centered and run along at least 60% of the length of each channel. The transition from the locking key to the channel shall be developed in a manner which minimizes any stress concentrations on the channel or the adjacent concrete.
 10. Alignment chairs shall be available which support the channel at the joint and aid in holding two corresponding channels together. These chairs shall not require special tools or techniques to install and adjust.

2.4 GAS-FIRED INDUSTRIAL DOMESTIC WATER HEATERS

A. Furnish and install as shown on plans in accordance with all codes and authorities having jurisdiction, gas-fired domestic water heaters with 304L stainless steel pressure vessel as manufactured by State, AERCO International, Fulton or prior approved equal. Each unit shall be UL Listed, ASME coded and stamped, and incorporate a gas train designed in accordance with IRI. The system shall be capable of providing the capacities as scheduled on the drawings.

B. Natural gas water heater shall be minimum 95% thermal efficiency and a maximum hydrostatic working pressure of 160 PSI. Water heater(s) shall have:
1. Modulating gas burner that automatically adjusts the input based on demand
2. Powered anodes that are non sacrificial and maintenance free.
3. Have seamless glass-lined steel tank construction, with glass lining applied to all water-side surfaces after the tank has been assembled and welded
4. Meets the thermal efficiency and/or standby loss requirements of the U. S. Department of Energy and current edition of ASHRAE/IESNA 90.1
5. Have foam insulation and a CSA Certified and ASME rated T&P relief valve
6. Have a down-fired power burner designed for precise mixing of air and gas for optimum efficiency, requiring no special calibration on start-up
7. Be approved for 0˝ clearance to combustibles

C. The control shall be an integrated solid-state temperature and ignition control device with integral diagnostics, graphic user interface, fault history display, and shall have digital temperature readout.

D. All water heaters shall be certified by Underwriters Laboratories (UL), Inc., according to ANSI Z21.10.3 - CSA 4.3 standards governing storage type water heaters

E. All water heaters shall be meet the thermal efficiency and standby loss requirements of the U. S. Department of Energy and current edition ASHRAE/IESNA 90.1. Complies with SCAQMD Rule 1146.2 and other air quality management districts with similar requirements for low NOx emissions.

F. For Power Direct Venting: Water heater shall be suitable for power direct venting using a 4” or 6” diameter PVC pipe and a 4” or 6” diameter PVC intake air piping.

G. Operation of the water heater in a closed system where thermal expansion has not been compensated for (with a properly sized thermal expansion tank) will void the warranty.

H. Water heater should incorporate a control panel with BACNet communication for remote monitoring, leak detection and fault alert.

2.5 DOMESTIC WATER THERMAL EXPANSION TANKS

A. Pressurized diaphragm or bladder type expansion tank shall be provided for the domestic water system, where indicated on the drawings. Pressurized diaphragm type expansion tanks as manufactured by Amtrol or Taco equal to Amtrol Therm-X-Trol Series shall be provided. Capacities shall be as indicated. Each tank and system shall be air precharged to the initial fill pressure of its respective system, suitable for a maximum working pressure of 125 pounds per square inch gauge (psig). All internal parts must comply with FDA regulations and approvals. The tank shall be supported by steel legs or a base (integral ring mount) for a vertical installation. Each tank shall have a steel shell and an internal butyl/EPDM diaphragm or butyl bladder with code approvals NSF/ANSI 61 used to isolate the air charge from fluid. Provide air charger tank connection.

2.6 HOT WATER CIRCULATOR

A. Refer to Pumps specification in Division 23, Section “Heating and Air-Conditioning Equipment”.

B. Pump for domestic water systems and indicated as Type "B" or Type “C” in the Pump specification shall be Bell and Gossett, Taco, or Thrush in-line circulator of capacity indicated on drawings. Pump shall be suitable for continuous operation with 200 degrees Fahrenheit water and shall be all bronze construction.

C. Pump shall also meet all requirements as hereinafter specified in Division 23, Section “Heating and Air-Conditioning Equipment”.

PLUMBING 220500-4
2.7 PLUMBING FIXTURES

A. Provide all plumbing fixtures indicated on the drawings and as specified herein. All exposed metal parts of all fixtures, including all trim and fittings, shall be brass, chromium plated. Each hot and cold water connection to each fixture shall be provided with a stop valve and all nipples shall be chrome plated red brass. Provide backflow devices on all faucets and fittings requiring same. Devices may be inline type when not provided integral with the faucet. All faucet handles, where possible, shall have color coded "indexes" identifying the service used. All "serrated" or slip hose connection spout outlets shall have Allen wrench operated volume controls to control "splashing" of water as it hits sink bottoms. Water supplies for handicapped lavatories and sinks shall be insulated. Waste line for handicapped lavatories and sinks shall be offset and insulated. Refer to Division 23, Section “Mechanical Insulation” for insulation type and thickness.

B. Water supplies for handicapped water closets shall be roughed-in for flush valve handles to be operated from the accessible side of the water closet. The Contractor shall coordinate and provide flush handles on the accessible side of all handicapped water closets. Provide offset flush connection as required to coordinate with wall mounted grab bars” to all ADA water closets with flush valves.

C. The Contractor shall provide metal supports necessary to adequately and substantially hang and set all fixtures subject to the approval of the Architect. No wood grounds, wood plugs, or expansion bolts shall be permitted for fixture support. Provide carriers where specified below and as required to hang fixtures.

D. Insulate all exposed piping under lavatories and sinks with a white, fitted/molded antimicrobial undersink pipe cover equal to Truebro Lav Guard 2. Cover shall have internal, E-Z Tear-To-Fit trim feature for square, clean trimming (internal ribs) and built-in, concealed E-Z Grip fasteners (no cable-tie fasteners allowed).

E. Water-Conserving Fixtures: Plumbing fixtures and fittings shall use in aggregate at least 30% less water than the water use baseline calculated for the building after meeting the Energy Policy Act of 1992 fixture performance requirements. Flow and flush rates shall not exceed the following:

1. Toilets: no more than 1.3 gallons per flush and have documented bowl evacuation capability per MaP testing of at least 400 grams.
2. Urinals: no more than 0.13 gallons per flush or use.
3. Lavatory Faucets: 0.35 gpm with automatic faucet controls.
4. Showerheads: no more than 1.5 gpm.

F. Acceptable Manufacturers

1. Fixture shall be Sloan, American Standard, Crane or Kohler, equal to American Standard or other manufacturer of the types listed below.
2. Flush valves shall be Zurn, Sloan, Delany or Cambridge Brass, equal to Sloan of the types listed below.
3. Faucets shall be Sloan, Kohler, Chicago Faucet, T & S Brass, Crane, Eljer or American Standard equal to Sloan of the types listed below.
4. Drinking fountains shall be Elkay, Oasis or Halsey Taylor equal to Elkay of the types listed below.
5. Toilet seats shall be Bemis (Church), Beneke, Sperzel equal to Church of the types listed below.

G. Fixtures:

1. P-1 Water Closet:
 Fixtures: Kohler Wellworth
 K-3577, high efficiency toilet at 1.28 gallons per flush
 Flush Valve: Tank type water closet
Seat: Church No. 9500CT, open front
Carrier: N/A floor mounted
Remarks: Floor mount, round bowl, vitreous china,

2. P-2 Lavatory:

Fixture: Kohler Park Falls K-6655, cast iron, acid-resistant enamel finish, single bowl, top mount, three hole
Faucet: American Standard Heritage, two handle lavatory faucet 4802.000, with wrist blades, 1.5 gpm
Strainer: Grid Strainer provided with faucet
Trap: McGuire 8872 cast brass chrome plated 1-1/4” x 1-1/4” P-trap with cleanout with 17 gauge tubular wall bend, cast brass slip nuts. Trap shall be in compliance with CSA and bear both manufacturer and testing mark.
Supplies and Stops: Chicago Faucet No. 1006 with 1-100xtjknf cartridge, 1/4 turn, ball valve type angle stop fitting.
Carrier: Not required
Remarks: Counter mounted.

3. P-2a Lavatory:

Fixture: Kohler Pinoir K-2035, wall mounted, vitreous china, 22”x18”x34” in height. Sink shall have 8” centers and an overflow drain
Faucet: American Standard Heritage, two handle lavatory faucet 4802.000, with wrist blades, 1.5 gpm
Strainer: Grid Strainer provided with faucet
Trap: McGuire 8872 cast brass chrome plated 1-1/4” x 1-1/4” P-trap with cleanout with 17 gauge tubular wall bend, cast brass slip nuts. Trap shall be in compliance with CSA and bear both manufacturer and testing mark.
Carrier: Zurn Z1251, concealed arm system wall support
Remarks: Mount per ADA

4. P-3 Utility Tub:

Fixture: Mustee 19CFT UTILATUB Combo Utility Tub 18 gallon capacity extra deep 13” tub with smooth surface, 6” swing spout faucet with aerator and hose end, (2) 20” flexible supply lines and sealant tape, 1 ½” PVC P-Trap

PLUMBING 220500-6
with 12” tailpiece, top cover and drain stop

5. P-4 Provided by Owner:
6. P-4a Provided by Owner
7. P-5 Provided under other divisions
8. P-6 Water connection Box Ox Box 696 series with ¼” compression outlet
9. P-7 Not Used
10. P-8 Shower:
 Fixtures: American Standard 1662.601 Complete personal shower system includes: a pressure balance valve, a wall supply with 1/2” NPT female inlet and 1/2” NPSM male outlet; a 59” shower hose; a single function personal shower; and a 25” Slide Bar. Valve features a cast brass body, washerless ceramic disc valve cartridge with back-to-back capability and hot limit safety stop. Cycles from off to hot through cold. Pressure balancing cartridge maintains constant output temperature in response to changes in relative hot and cold supply pressure. One-half inch direct sweat inlets and outlets. With screwdriver stops. Durable metal handle provides easy, certain control for all users. Rough-in plaster guard designed for use as thin-wall mounting adaptor. Single function handshower with 1.5 gpm flow restrictor. Slide bar features an adjustable shower holder which can be set at any height or position along the bar and angle up to 45°. The shower valve shall be compliant with ASSE 1016 or ASME A112.18.1.

11. P-9 Kitchen Sink:
 Fixtures: American Standard 17DB.332283.073, Drop-in 18 gauge stainless steel, double bowl, three hole
 Faucet: Zurn Z871A6-XL-25F, Polished chrome-plated 8” brass deck faucet with a 3-1/2” centerline rigid or swing gooseneck spout and quarter turn ceramic disc cartridges. Unit is furnished with a 0.35 GPM pressure compensating aerator (complying with ANSI A112.18.1 Standard for flow), 6” vandal-resistant color-coded metal wrist blade handles, mounting hardware and 1/2” NPSM coupling nuts for standard lavatory risers.
 Strainer: McGuire 151A8 cast brass chrome plated heavy duty forged brass basket strainer with brass basket. Furnished with 1 1/2” x 4” tailpiece brass lock and coupling nuts, 2 required
 Trap: McGuire 8872 cast brass chrome plated 1-1/2” x 1-1/2” P-trap with cleanout with 17 gauge tubular wall bend, cast brass slip nuts. Trap shall be in compliance with CSA and bear both manufacturer and testing mark. 2 required
 Supplies and Stops: McGuire H2167 1/2” x 1/2”, angle stop valves, 12” copper flexible risers, chrome plated
 Remarks: Counter mounted
12. P-10 Drinking Fountain:

 Fixture: Oasis PG8SBF
 0.8gph of 50° F degree water at 90° F ambient and 80° F inlet water. Shall include Sports Bottle Filler with independent manual activation; lower unit must have front and side push pads to activate the manual flow of water for the cooler. Activation button contain antimicrobial compound that reduces the growth of micro-organisms and mildew to protect the surfaces from discoloration, odors and degradation. Basin shall be designed to eliminate splashing and standing water. Bubbler shall reduce waste water by 50%. Bubbler shall be a Low Flow, one piece construction with flexible guard and operate between 20 and 120 PSI. Cabinet finish shall be brushed stainless steel. Cabinet finish shall be sandstone powder coated paint on galvanized steel or brushed stainless steel. Cooling system shall use R-134a refrigerant. Water cooler delivers 8.0 gallons of chilled drinking water per hour. Model shall satisfy CABO/ANSI A117.1 and water cooler shall comply with ADA requirements when properly installed. Units shall also meet guidelines for children’s accessibility when installed per the owner’s guidelines.

2.8 SPECIALTIES

A. Hose Bibcocks and Wall Hydrants
 1. Hose bibcocks shall be freeze protected with an escutcheon plate on the wall.
 2. Hose bibcocks, including wall hydrants and sill cocks shall be equipped with a vacuum breaker as per instructions from the S.C. Department of Health and Environmental Control (DHEC).
 3. Interior hose bibcocks shall be Kohler 1-8980, ¾” brass, with wheel handle, to fit standard garden hose.
 4. Exterior hose bibcock shall be Watts No. NFB.
 5. Exterior wall hydrants shall be Josam Series 71000-54-74-95, Watts No. NFB or approved equal, non-freeze type with union elbow assembly and cylinder vandal-proof lock.
 6. Indoor wall hydrants shall be Josam Series 71020-54-74-92 or approved equal, with union elbow assembly and cylinder vandal-proof lock.

B. Shock Absorbers
 1. Provide Josam, Watts or Zurn shock absorbers/arrestors equal to Josam 1480/1481 where indicated and as required by code and sized in accordance with PDI Standard WH 201.
 2. Shock absorbers shall be the same size as the line on which they are installed, up to 1” pipe size. Pipe lines larger than 1” shall have one inch shock absorbers installed.
 3. Shock absorbers shall be installed at the end of all branch lines and as indicated on the drawings.
 4. Pipe extensions shall not be used in place of shock absorbers

C. Josam 60100H-SAP Series epoxy coated fabricated steel grease interceptor, no-hub connections, internal trap, removable diffuser baffle, gasketed non-skid center bolt cover, flow control fitting, PDI seal of approval and wall mounted controller for factory installed grease/oil level detector and alarm probe. Unit shall be sized for 70 lb grease capacity.

D. Josam 61805 Series lint interceptor with acid-resisting coating, non-skid cover, galvanized steel bucket
with stainless steel screens and threaded connections. Unit shall be sized for 64 gpm drainage flow rate. Inlet height of interceptor shall be equal to or below the discharge drain height of the washer/laundry extractor.

E. Solids Interceptor Trap

1. Solids interceptor trap shall be a normal capacity solids interceptor, on the floor type, equal to Jay R Smith Model No. 8714-56. Interceptor shall have an internal deep seal trap and shall be cleaned by removing cover and lifting sediment bucket vertically out of the body.
2. Unit shall consist of a steel body with galvanized sub-coat with white duco finish inside and outside, stainless steel perforated bucket and aluminum cover.
3. Install components in accordance with manufacturer's instructions and approved product data submittals. Set unit plumb, level, and rigid.

F. Trap Primer:

1. Type A: Provide one (1) flush valve in each toilet room with a Sloan VBF-72-A1 vacuum breaker trap primer. Extend 3/8 inch water line to floor drains located in toilet rooms or any adjacent rooms indicated on the drawings. Trap primer water line shall be connected to the rear of the tailpiece such that it is concealed from view.
2. Type B: Trap primer system shall be provided where indicated on the plans and shall consist of Precision Plumbing Products Model No. PTS. System shall consist of 3/4” inch NPT female inlet, 1/2” inch compression fitting outlets, circuit Breaker, manual override switch/test button, timer, UL listed solenoid valve, anti-siphon atmospheric vacuum breaker. Electric timer shall be arranged for one (1) five second operation every twenty-four (24) hours. The entire system shall be packaged and mounted in a common, locking control panel with 3/4” Type “L” copper tubing manifold with the total number of discharge lines and balancing cocks as indicated on the drawings. Extend 3/8 inch water line to floor drains in all locations except for toilet rooms. System shall utilize 120 volt power source provided under Division 26.

G. Backwater valve shall be Josam Series 67500 or approved equal swing-check type where indicated on the drawings. Valve shall be constructed of cast-iron with bronze swing check assembly and bolted gasketed cover for access.

H. Thermostatic mixing valves for emergency fixtures shall be Bradley, Leonard or Lawler equal to Bradley models below. Valve shall have positive shut off on hot and cold supply and built-in cold water by-pass to ensure non-scalding upon failure of valve. Valves shall be preset for 85 degrees F. Flow, temperature settings, and installation shall be in accordance with ANSI Z358.1-2009.

1. All mixing valves shall comply with the requirements of IPC 411.1.
2. Mixing valve for emergency eyewash units shall be equal to Bradley Navigator EFX25 Model S19-2100-RE-W, minimum flushing fluid of 0.4 gpm @ 30 psi.
3. Mixing valve for emergency eye/face wash units & drench hoses shall be equal to Bradley Navigator EFX25 Model S19-2100-RE-W, minimum flushing fluid of 3 gpm @ 30 psi.
5. Based on manufacturer's requirements, emergency shower and combination units shall be provided with a flow restrictor as required to utilize a thermostatic mixing valve.
6. Cabinets: Recessed, white enamel, 18 gauge body & door, with left-hand hinge, Plexiglas window in door and inlet/outlet knock-out holes for mounting flexibility.

2.9 WATER METERS

A. Indoor water meters located on new/existing building mains, HVAC make-up water lines and as indicated on the plumbing drawings shall be Badger Meter, Inc. Recordall Turbo Series or approved equal bronze meter meeting AWWA C701 Class II standard.
B. Meter shall have hermetically sealed register with tamperproof seal screw.

C. Meters shall be suitable for a maximum operating temperature range of thirty-eight (38) degrees Fahrenheit to eighty (80) degrees Fahrenheit and maximum operating pressure of 150 pounds per square inch.

D. Meter shall be provided with integral plate strainer.

E. Isolation valves shall be provided on both sides of water meters to allow servicing.

2.10 THERMOSTATIC MIXING VALVE

A. Provide factory assembled and tested Leonard New Generation High-Low Systems consisting of large Type TM thermostatic water mixing valve, small Type TM valve, DURA-trol solid bi-metal thermostat (directly linked to valve porting to control the intake of hot and cold water and compensate for supply temperature or pressure fluctuations) with seven year limited warranty, color coded dials (hot-cold with directional indicators), locking temperature regulator handles, adjustable limit stops set for 120°F (49°C), integral hot and cold supply checkstops, outlet ball valve shutoffs and color coded dial thermometer, inlet piping manifold Factory preassembled and tested, rough bronze finish, mounted in a stainless steel recessed cabinet with door and lock. System shall provide full time standby service should one mixing valve require maintenance and shall be piped according to Leonard’s required piping method.

PART 3 - EXECUTION

3.1 FLOOR DRAINS

A. Floor drains shall be covered during periods of construction. If drains are not covered and it is suspected that dirt, debris or trash has entered the drainage system, the interior drainage system shall be professionally cleaned to the Architect’s satisfaction and at no expense to the Owner.

3.2 INSTALLATION OF PIPING

A. Interior Drainage Systems:

1. Soil, waste, vent, and drain piping for sanitary and storm drainage, shall be of the sizes noted, and shall be run as indicated. Pipes must be run in straight lines and have a uniform grade between elevations noted. No branch drain shall have a grade less than that indicated for the main drain to which it is connected. Where elevations are not given, horizontal pipes shall have a uniform grade of 1/4 inch per foot where possible but in no case less than 1/8 inch per foot and shall be installed to the inverts shown. All piping shall be adequately supported as specified in Division 23, Section “Mechanical and Electrical General Provisions”. All main vertical soil and waste stacks shall be extended as vents full size to approximately 18 inches above the roof of the building. Two (2) or more vent lines shall be connected together where practicable and extended as one (1) pipe through the roof. Vent pipes in roof spaces shall be run as close as possible to the underside of the roof without forming traps in pipes. Vent pipes may be connected to other vent pipes or to main vent stacks provided the connections are at least four (4) feet above the floor on which the fixtures are located so that no vent pipe can be used as a waste. Openings in roof for vent pipes shall be flashed and made watertight. Use vent stack flashing sleeves where applicable. Handicapped plumbing fixtures shall be rough-in to suit the specific mounting of the fixture. Waste lines shall be offset for lavatories and sinks to accommodate wheelchair type strainers and traps shall be insulated.

2. Changes in direction shall be made by appropriate use of forty-five (45) degree wyes, 1/2 wyes, or long sweep 1/4, 1/6, 1/8, or 1/16 bends. Sanitary tees or short quarter bends may be used on vertical stacks of drainage lines where change in direction of flow is from horizontal to vertical; except use long turn tee wyes when two (2) fixtures have common drain. Straight tees, elbows,
and crosses may be used on vent lines. Make no change in direction of flow greater than ninety (90) degrees. Where different sizes of drainage pipes or pipes and fittings are to be connected, use standard increasers and reducers of proper size. Reduction of size in horizontal drainage piping in direction of flow is prohibited.

3. Drilling and tapping of drains, soil, waste, or vent piping, and use of saddle hubs and bands are prohibited.

4. Connect piping to fixtures or equipment by couplings or unions so that devices may be replaced with no disturbance to piping.

B. Exterior Drainage Systems:

1. See Division 23, Section “Mechanical and Electrical General Provisions” for Excavation and Backfill.

2. Pipe and fittings shall be moved to the trench, carefully lowered and set to line and grade. Pipe shall be laid on the shaped sub-grade. No blocking will be permitted and the bleeding shall be such that it forms a continuous bearing with a minimum width of bearing equal to 0.6 the outside diameter of the pipe for the full length of the pipe, except for that portion at the bell hole. No pipe or fitting shall be installed until sufficient trench has been completely excavated to satisfy the Architect that no unforeseen obstructions of any kind are likely to be encountered. Pipe shall be cut by the Contractor when required without any additional compensation. Special care shall be exercised by the Contractor to prevent damage to any pipe. Before placing in the trench, each pipe or fitting shall be carefully cleaned of any foreign substance which may have collected therein and shall be kept clean at all times thereafter. For this purpose, the open ends of all pipes and fittings in the trench shall be closed to the satisfaction of the Architect before leaving the work for the night and for all holidays or other items of interruption to the work.

3. Install horizontal lines to 1/8 inch per foot minimum grade, unless otherwise indicated.

C. Water Piping Systems:

1. Water piping shall be complete from service connection to all fixtures, equipment, outlets, etc. Sizes of pipes shall be shown or as specified.

2. Chromium plated piping shall be threaded and made up carefully, and not more than one (1) full turn of thread shall be exposed beyond any fitting.

3. Ends of pipes or tubing and recesses of fittings to be bronzed or soldered shall be thoroughly cleaned. Joints shall be assembled without binding. Brazing material or solder shall penetrate fully and shall fill the joint completely.

4. All brass and copper pipe and tubing shall be free from cuts, dents or other surface damage at the time of final inspection. Damaged pipe or tubing shall be removed and replaced with new pipe or tubing.

5. Horizontal runs of brass and copper pipe and tubing over fifty (50) feet in length shall be anchored to wall or floor construction. Anchors shall be located near the midpoints of the runs so as to force the expansion equally to the ends or in a direction where expansion can take place without excessive strain. Swing joints, offsets, expansion joints, etc., shall be provided where necessary to accommodate expansion of piping, which will be approximately two (2) inches in 100 feet of brass or copper hot water piping.

6. Where non-ferrous metal piping and zinc-coated metal piping are jointed, dielectric (insulating) couplings, fittings or unions shall be provided.

7. Where pipe sizes shown or specified differ from the connection sizes of meters, pumps, fixtures, outlets, etc., reducing fittings shall be installed.

8. Water supplies for wall hung lavatories shall be roughed in as high as possible and still permit connections to the faucet. Water supplies shall be insulated for handicapped fixtures and rough-in shall be on accessible side of fixture for flush valves and flush handles.

D. All rough-in plumbing shall be sealed off with test plugs, caps, etc., until fixtures are ready to be installed.
3.3 CLEANOUTS

A. Where soil, waste, or roof drainage risers connect to a sewer or drain extending from the building above the lowest floor, the fitting at the base of each stack or downspout shall be a sanitary tee or a combination Y and 1/8 bend with cleanout plug in the end of the run of the main.

B. Each vertical soil, waste, and vent pipe and each downspout and roof drainage pipe which connects to horizontal drain piping below ground shall be fitted with a test tee above the lowest floor or ground. Where accessible, test tee may be installed in the horizontal pipe at the base of the riser.

3.4 TRAPS

A. Each fixture, floor drain and piece of equipment connected to the sanitary system shall be equipped with a trap.

B. Provide traps for storm water lines where required by code.

C. Each trap shall be placed as close to the fixture as possible and no fixture shall be double trapped.

D. All traps on bell and spigot pipe shall be extra heavy cast iron and all traps on threaded pipe shall be galvanized cast iron recessed drainage type.

END OF SECTION 220500
SECTION 230500 - MECHANICAL AND ELECTRICAL GENERAL PROVISIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The drawings and general provisions of the Contract, including General and Supplementary Conditions, General Requirements and all other Specification Sections apply to the work specified in this section. In the event of conflict between specific requirements of the various documents, the more restrictive, the more extensive (i.e.: more expensive) requirement shall govern.

1.2 SCOPE

A. This Section describes the general provisions for the plumbing, mechanical and electrical work included in Divisions 22, 23 and 26 respectively. This section applies to all sections of Divisions 22, 23 and 26. Refer to Division 26 for additional General Provisions related to electrical work.

B. Contractor shall obtain and pay for all installation permits, certificates, and inspection fees relative to the work. The preparation of any specific plans or shop drawings necessary to obtain these permits shall also be the responsibility of the contractor.

1.3 COMMISSIONING

A. Refer to the Divisions 1, 22, 23 and 26 commissioning specifications for additional information.

1.4 RESPONSIBILITY

A. The General Contractor shall be responsible for all work included in the Mechanical, Electrical, Plumbing and Fire Protection Divisions. The delegation of work to Subcontractors shall not relieve him of this responsibility. Subcontractors who perform work under these Sections shall be responsible to the General Contractor. The term "Contractor" is used throughout this Division and shall mean the General Contractor, although the actual performance of the work may be by a Subcontractor.

B. Within thirty (30) days after award of the contract, the Contractor shall submit to the Architect, for approval a list of all subcontractors’ names he proposes to use.

C. The Contractor shall carefully review all divisions of the project specifications. Where conflicts exist between divisions and/or sections of the specifications the most stringent requirement as determined by the Architect shall apply.

D. The contractor shall obtain and pay for all installation permits, certificates, and inspection fees relative to the work. The preparation of any specific plans or shop drawings necessary to obtain these permits shall also be the responsibility of the contractor.

1.5 REFERENCES AND DEFINITIONS

Following are definitions of terms and expressions used in the Mechanical and Electrical Sections:

- Provide - furnish and install
- Directed - directed by the Architect
- Indicated - indicated in Contract Documents
- Concealed - hidden from normal sight; includes items within furred spaces, pipe and duct shafts, above suspended ceilings and within return air plenums.
Exposed - non concealed - Work within Equipment Rooms shall be considered exposed.
Exterior - items being or situated outside. Items located within a crawl space shall be considered exterior.
Conditioned - a heated or cooled space, or both, within a building and, where required, provided with humidification or dehumidification means, so as to be capable of maintaining a space condition falling within the comfort envelope set forth in ASHRAE 55.
Piping - includes pipes, fittings, valves, hangers, and accessories comprising a system.
Ductwork - includes ducts, fittings, housings, dampers, hangers, air devices, and accessories comprising a system.

1.6 STANDARD SPECIFICATIONS

A. See Division 1 - General Requirements.

B. References to catalogs, standards, codes, specifications, and regulations apply to the latest edition in effect at the date of the invitation to bid.

1.7 CODES, REGULATIONS, AND PERMITS:

A. Give all necessary notices, obtain all permits, and pay all fees and other costs, including those for utility connections or extensions in connection with the work. File all necessary plans, prepare all documents, and obtain all necessary approvals of all governmental departments having jurisdiction. Obtain all required certificates of inspection and deliver same to the Architect before request for acceptance and final payment for the work.

B. All materials furnished and all work installed shall comply with the latest rules, regulations, and recommendations of the following bodies:

- 2012 International Building Code with State of South Carolina Supplements
- 2012 International Existing Building Code with State of South Carolina Supplements
- 2012 International Mechanical Code with State of South Carolina Supplements
- 2012 International Plumbing Code with State of South Carolina Supplements
- 2012 International Fire Code with State of South Carolina Supplements
- 2009 International Energy Code with State of South Carolina Supplements
- National Fire Protection Association Standards (Latest Editions)
- State Fire Marshal Regulations
- Fire Prevention Bureaus of Mount Pleasant, the City of Charleston, Charleston County and the State of South Carolina
- ASHRAE Standards and Handbooks (Latest Editions)
- Local Health Department
- State Health Department
- Local Utility Companies
- Underwriters Laboratories
- Owner's Insurance Underwriter Standards
- Environmental Protection Agency

1.8 MATERIALS LIST AND SHOP DRAWINGS

A. See Division 1, GENERAL REQUIREMENTS for Additional Requirements related to submittals and shop drawings.
B. Prior to delivery of any material or equipment to the job site; submit for approval, dimensioned drawings or cuts showing construction size, arrangement, operating clearances, performance characteristics, and capacity of material or equipment. Each item of equipment proposed shall be a standard catalog product of the approved manufacturer. Submittals shall be received early in the construction period to allow the architect ample time for review and checking for compliance with the contract documents. The architect will be expected to process a maximum of ten (10) submittals in a five (5) day working period. The Contractor shall carefully schedule the submission time of all submittals to insure that approvals will be received to meet the critical path of the construction project.

C. If the contractor's submittals, upon review by the architect, do not conform to the requirements of the contract documents, the contractor shall be required to resubmit with modification, within fifteen (15) working days of receipt of the architect’s notification and comments to the contractor. The contractor shall be responsible for the extra expenses for subsequent review of rejected or revised submittals necessitated by the contractor's failure to provide a complete and accurate submittal meeting the requirements of the contract documents. Such extra fees shall be deducted by the owner from payments to the contractor.

D. Samples, drawings, specifications, catalogs, etc., submitted for approval shall be properly labeled indicating specific item, model number, and service for which material or equipment shall be used. Section and article number of specifications governing, contractor's name, name of job, and date and also be clearly indicated on all submittals. Submittals that are not properly labeled or identified will be returned marked "Not Reviewed".

E. Catalogs, pamphlets, or other documents submitted to describe items on which approval is being requested shall be specific. Identification in catalog, pamphlet, etc., of item submitted shall be clearly made in ink. Data of a general nature will not be accepted.

F. If material or equipment is installed prior to receipt by the contractor of pertinent shop drawings marked "No Exceptions Taken" or "Comments Noted", the contractor shall be liable for its removable replacement at no extra charge to the owner.

G. Prepare and submit shop drawings for all specifically fabricated items, modifications to standards items, specially designed systems where detailed design is not shown on the contract drawings, or where the proposed installation differs from that shown on contract drawings.

H. Submit data and shop drawings as listed below, in addition to provisions of paragraphs above. Identify all shop drawings by the name of the item and system and applicable specification paragraph number.

Shop Drawings:

Section 220500 – Plumbing

- Cleanouts
- Drains
- Electric Domestic Water Heater
- Hot Water Circulator
- Plumbing Fixtures
- Electric Water Coolers
- Trap Primers
- Water Meters
- Tempering Valves
- Shock Absorbers
- Downspout Nozzles
- Wall Hydrants
- Hose Bibbs
Section 230500 – Mechanical and Electrical General Provisions

Record Drawings
Installation and Coordination Drawings
Pipe and Conduit Hangers and Supports
Access Doors
Sleeves and Penetrations Drawings
Operation and Maintenance Manuals
List of Manufacturers' Material and Equipment
Welder Certificates

Section 230513 – Motors

Motors

Section 230530 – Basic Materials and Methods

Hangers and Pipe Shields
Identification Items
Pipe, Fittings, and Joints

Section 230548 – Mechanical Vibration, Sound and Seismic Controls

Vibration Isolation and Seismic Restraint Components

Section 230593 – Testing and Balancing

Test Reports

Section 230700 – Mechanical Systems Insulation

All Insulation Types
Adhesives, Sealers, and Coatings
Fabric Jackets
Fitting and Valve Covers
Metallic Components

Section 230900 – Building Automation and Temperature Control System

Central Equipment and Operating System
Data Transmission System
Operators Terminal
Printer
Annunciator Module
Intercom
Selectograph Projector
User Software
Data Gathering Panels
Sensors
Control Dampers:
 Motor Operated
 Back Draft
Humidistats
Thermostats
Transmitters
Gauges and Thermometers
Control Valves
Operators
Control Panels
Receiver Controllers
Fire and Smoke Control Devices
Electronic Components
Software
Field Hardware
Automatic Temperature Control System

Section 233110 – Air Distribution

Air Devices
Insulated Metal Casings
Sound Attenuators and Certified Test Data
Air Filters and Holding Frames
Dampers:
 - Fire
 - Fire/Smoke
 - Smoke
 - Volume
Ductwork
Medium Pressure Ductwork Samples
Duct Lining
Air Measuring Devices
Fans
Roof Ventilators and Penthouses
Louvers
Duct Heaters

233400 – Centrifugal HVAC Fans

HVAC Fans

Section 237330 – Dedicated Outdoor Air Units

Dedicated Outdoor Air Units

Section 238120 – Heating and Air-Conditioning Equipment

Variable Refrigerant Flow (VRF) System

I. Contractor, additionally, shall submit for approval any other shop drawings as requested by the Architect. No item listed above shall be delivered to the site, or installed, until approved. After the proposed materials have been approved, no substitution will be permitted except where approved by the Architect.

1.9 EQUIPMENT START-UP AND INITIAL OPERATION

A. No equipment shall be operated, for testing or trial use, before full compliance with the equipment manufacturers' specifications and instructions for the lubrication, alignment, direction of rotation, balance, and other applicable considerations.

B. Particular care shall be taken to see that all equipment is completely assembled, properly lubricated, and all grease and oil cases and reservoirs have been filled to the correct level with the recommended lubricants.
C. It is the Contractor's responsibility to place each item of equipment, installed by him, in operating condition. This responsibility includes all auxiliaries, piping, wiring, etc., the start up of each unit, and a check of its performance.

1.10 WARRANTY

A. The Contractor shall warranty, by his acceptance of the Contract, that all work installed, by him or his subcontractors, will be free from defects, in workmanship and materials, for a period of one (1) year after the date of certification of completion and acceptance of work. Any defects in workmanship, materials or performance which appear within the guarantee period shall be corrected by the Contractor, without cost to the Owner, within a reasonable time to be specified in notice from the Architect. In default thereof, Owner may have such work done and charge the cost of same to the Contractor.

1.11 SITE VISIT

A. Prior to preparing the bid, the Contractor and subcontractors shall visit the site and familiarize themselves with all existing conditions, make all necessary investigations as to locations of utilities, and all other matters which can affect the work. No additional compensation will be made to the Contractor as a result of his failure to familiarize himself with the existing conditions under which the work must be performed.

1.12 DRAWINGS

A. The Contract Drawings are diagrammatic and indicate the general arrangement of systems and work included in the Contract. Any offsets, rises, or transitions not shown on the drawings and required to provide a complete system shall be provided at no additional contract cost. Do not scale the drawings. Consult the Architectural and Structural drawings and details for exact location of structure and equipment; where same are not definitely located, obtain this information from the Architect.

1.13 RECORD DRAWINGS

A. Contractor shall keep accurate records of all deviations in work, as actually installed, from work indicated.

B. When work is complete, make two (2) complete "Record" sets of marked-up prints, certify the accuracy of each print by endorsement and signature thereon. Deliver same to the Architect who will, after approval, deliver these two (2) sets to the Owner.

C. All underground work shall be accurately located on record drawings by plan dimension and elevation. Such work shall include utilities, storage tanks, plumbing pipes, etc.

1.14 OPERATING AND MAINTENANCE INSTRUCTIONS

A. Upon completion of all work and all tests, Contractor shall furnish the necessary skilled labor and helpers for operating the systems and equipment for a minimum period of four (4) days of eight (8) hours each, or as otherwise specified. During this period, Contractor shall instruct the Owner's representative fully in the operation, adjustment, and maintenance of all equipment furnished. At least forty-eight (48) hours in advance written notice shall be given to the Owner.

B. Contractor shall furnish to the Architect four (4) complete bound sets of typewritten or blueprinted instructions for operating and maintaining all systems and equipment included in this Contract. Operating and maintenance manuals shall include all construction test reports, final balancing reports, valve tag schedule, final inspection certificates, and occupancy permits. Also provide two (2) complete bound sets of approved shop drawings for all items of equipment utilized on the project. All instructions shall be submitted in draft for approval prior to final issue. Manufacturers' advertising literature or catalogs will not be acceptable for operating and maintenance instructions.
C. Instructions shall include a general description of each system and specific instructions describing routine and emergency procedures required of the building personnel for operating and maintaining each system. The instructions shall include the name or label, location, and function of all operating equipment and controls, such as start-stop switches, time clocks, and safety and temperature controllers. Operating modes and the procedures for indexing each mode shall be clearly described. A listing of names, addresses, and phone numbers of the service organizations for each item of equipment and a typewritten maintenance schedule for same shall be included.

D. The instructor shall be thoroughly familiar with all parts of the installation on which he is to give instruction. The instructor shall be trained in operating theory as well as practical operation and maintenance work. Employ factory trained instructors for automatic temperature control systems and wherever else necessary, as determined by the Architect.

E. During the warranty period, the Contractor shall service and maintain all equipment, excluding filter replacement, provided under this contract. Prior to the start of guarantee period, the Contractor shall provide the Owner with a schedule of required maintenance operations for each system and items of equipment. Contractor shall submit schedule to the Architect for approval. Thereafter, monthly reports shall be submitted to the Owner describing actual service provided. Forty-eight (48) hours advance notice shall be given to the Owner, prior to work required under this Section.

F. Contractor shall provide the Owner with all tools required to service and maintain all equipment.

1.15 ELECTRICAL WORK

A. Under Divisions 22 PLUMBING and 23 MECHANICAL, provide the following items of electrical work which shall conform with the applicable requirements of the Electrical Division:
 1. Low voltage temperature control wiring.
 2. Interlock wiring for mechanical equipment and devices.

B. Under Division 26 ELECTRICAL, provide:
 1. Power wiring, complete from power source to motor or equipment junction box, including power wiring through motor starters, power factor correction devices, and line reactors. Power factor correction devices shall be provided under Division 23 and installed under Division 26.
 2. Motor control centers or motor starter, panelboards.
 3. All miscellaneous individual motor starters, unless noted or specified otherwise.

C. Variable frequency drives will be furnished and set in place under Division 23. Power wiring shall be provided under Division 26

1.16 SINGULAR NUMBER

A. Where any device or part of equipment is herein referred to in the singular number (such as "valve"), such reference applies to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 MATERIALS

A. All materials shall be new, the best of their respective kinds, suitable for the conditions and duties imposed on them at the building, and shall be of reputable manufacturers’. The description, characteristics, and requirements of materials to be used shall be in accordance with qualifying conditions established in the sections following.
B. See Division 1 - General Requirements. All component parts of each item of equipment or device shall bear the manufacturers' name plate; giving name of manufacturer, description, size, type, serial or model number, electrical characteristics, etc., in order to facilitate the maintenance or replacement. The name plate of a subcontractor or distributor will not be acceptable. Where Underwriters' Laboratories standards apply, material and equipment shall be approved by them and shall bear the UL Label.

C. In specifying materials, three (3) general procedures are used. The three (3) classifications are as follows:

GROUP 1: When a material or equipment is specified by brand name or other identifying information and three (3) or more brands are named it is considered that any one (1) of the brands so named will perform as desired, and the Contractor shall base his proposal on one (1) of the named brands. The first brand named or identified basis of design shall be used as a standard. The other brands named shall be equal to the specified brand in all respects. If one (1) of the other brands named is used it shall be the Contractor's responsibility to verify proper clearances and fit of the substituted equipment.

GROUP 2: When the material or equipment is specified with the phrase "...or approved equal..." after a brand name and other identifying information, it is intended that the brand name is used for the purpose of establishing a minimum acceptable standard of quality and performance and Contractor may base his bid proposal on any item which is in all respects equal to that specified and presents essentially the same appearance. It shall be the Contractor's responsibility to ensure proper fit and clearances of all substituted equipment.

GROUP 3: When material is specified as complying with the requirements of published "Standard Specification" of trade associations, American Society of Testing and Materials, government specifications, etc. the Contractor shall base his proposal on any item which can be shown to comply in all respects to the referred "Standard Specification".

1. It is distinctly understood: (1) that the Architect will use his own judgment in determining whether or not any materials, equipment or methods offered in substitution are equal to those specified; (2) that the decision of the Architect on all such questions of equality is final; and (3) that all substitutions will be made at no increase in cost to the Owner.

2. Upon receipt of written approval from Architect, Contractor may proceed with substitution providing Contractor assumes full responsibility for, and makes, at his own expense, any changes or adjustments in construction or connection with other work that may be required by the substitution of such materials, equipment or methods. In the event of any adverse decisions by the Architect no claim of any sort shall be made or allowed against the Owner.

2.2 INSTALLATION AND COORDINATION DRAWINGS

A. Prepare, submit and use composite installation and coordination drawings to assure proper coordination and installation of work in all buildings. No installation or construction work shall begin until the coordination drawings are completed, submitted, and approved. Drawings shall include, but not be limited to, the following:

1. Complete Roof, Floor, Interstitial and Crawl Space Plans, including all exterior equipment
2. Mechanical Rooms in the Building
3. Mechanical Shafts
4. Pipe sleeves, equipment pads, etc.

B. Show relationship and integration of different construction elements that require coordination during fabrication or installation to fit in space provided and function as intended.

C. Prior to fabricating or installing work, prepare composite coordination drawings at appropriate scale; detail major elements, components, and systems of architectural, structural, mechanical, and electrical such as equipment, components, and materials in relationship with each other, installations, and building components. Include dimensions. Composite coordination drawings shall include new and existing elements, components, and systems.
D. Indicate locations where space is limited for installation and access and where sequencing and coordination of installations are important to efficient flow of work.

E. Indicate scheduling, sequencing, movement, and positioning of large equipment into building during construction.

F. Assembly Penetrations: Prepare drawings as required to indicate penetrations in floors, walls, and ceilings and their relationship to assembly construction, other penetrations and installations. Identify where additional bracing and offsets are required to comply with Contract Documents.

G. Prepare drawings as required to coordinate and integrate ceiling installations, air outlets and inlets, light fixtures, communications systems components, sprinklers, other ceiling-mounted devices, components located above suspended ceilings, and suspended ceiling support components.

H. Show interrelationship of components indicated on separate Shop Drawings.

I. Indicate required installation sequences to minimize cutting and patching.

J. In addition, prepare coordination drawings required below and in other Specification sections.

K. Mechanical Systems: Include, but do not necessarily limit to, the following:
 1. Proposed locations of piping, ductwork, equipment, and materials.
 2. Proposed locations for access panels and doors.
 3. Clearances for installing and maintaining insulation.
 4. Clearances for servicing and maintaining equipment, including tube removal, filter removal, and space for equipment disassembly required for periodic maintenance. Show access locations.
 5. Equipment connections and support details, including vibration isolation, seismic and sway bracing.
 7. Fire-rated wall and floor penetrations.
 8. Sizes and location of required concrete pads and bases.

L. Draw plans to a scale not less than 1/4 inch equals one (1) foot. Include plans, sections, and elevations of proposed work, showing all equipment, piping and ductwork in areas involved. Fully dimension all work horizontally and vertically. Show coordination with other work including sprinklers, lighting fixtures, conduits, pullboxes, panelboards, and other electrical work, walls, doors, ceilings, columns, beams, joists and other architectural and structural work.

M. Identify all equipment and devices on wiring diagrams and schematics. Where field connections are shown to be factory-wired terminals include manufacturer's literature showing internal wiring.

N. Installation and coordination drawings shall be produced on an AutoCad format. Reproduction of any portion of the mechanical and electrical contract drawings for re-submittal as a shop drawing is strictly prohibited. Shop drawings produced in such a manner will be rejected and returned not reviewed. Installation and coordination drawings shall be to scale reflecting actual equipment sizes purchased for the project.

O. The “Base” architectural and structural background drawings will be provided on Autocad format by the Construction Manager/General Contractor. These "Base" background documents are to be provided to each Contractor in the coordination process to establish a common platform for each Contractor to use for their design drawings. This same information will be used to communicate their respective coordination with the other Contractors. Coordination will be accomplished by each Contractor superimposing his work on drawings in the following sequence:
1. Construction Manager/General Contractor - Base Drawings indicating structural steel with elevations for bottom of beams & finish floor. The general contractor shall include a layout of ceiling tiles (where applicable).

2. HVAC Contractor - Ductwork layout drawings & piping with elevations to bottom of ductwork & piping. HVAC contractor shall indicate location of all registers, diffusers and grilles.

3. Plumbing Contractor - Layout of all piping with elevations.

4. Sprinkler Contractor - Layout of all piping & heads with elevations.

5. Electrical Contractor - Conduit layout with junction boxes and location of all electrical fixtures.

P. If necessary, Contractor coordination meetings shall be held continuously until the coordination drawings are complete and approved by all parties. Any conflicts, etc., discovered in the coordination stages prior to Contractor(s) sign-off which cannot be resolved by the Contractor(s) shall be brought to the Architect’s attention for resolution.

Q. Any conflicts, etc., discovered after the created and submission of the coordination and installation drawings and during the installation of the Work will be the responsibility of the Contractor(s) to resolve with the approval of Architect. Any and all costs for these resolutions shall be solely the responsibility of the Contractor(s).

R. Work fabricated/installed prior to the completion of the coordination and installation drawings is performed at the Contractors own risk, and compensation of time/costs for corrections will not be awarded. Any work installed that is not in conformance with final approved coordination and installation drawings shall be required to be removed and relocated, and compensation of time/costs for corrections will not be awarded.

S. Each Contractor is responsible for timely updates to the coordination drawings to indicate as-built conditions for their own work. Updates are required to include all changes regardless of the source or reason for the change, including changes initiated by the Owner, Architects or Engineers.

2.3 PIPING, CONDUITS, AND SUPPORTS, GENERALLY

A. Piping and conduits, except electrical conduits run in floor construction, shall be run parallel with the lines of the building, unless otherwise shown or noted on the drawings. Electrical conduits shall not be hung on hangers with any other service pipes. The different service pipes, valves, and fittings shall be so installed that after the covering is applied there will not be less than 1/2 inch clear space between the finished covering and other work and between the finished covering and parallel adjacent pipes. Hangers on different service lines, running parallel with each other and nearly together, shall be in line with each other and parallel to the lines of the building. Exact location of sprinklers, electrical outlets, piping, ducts, and conduits shall be coordinated among the trades so that there will be no interference between lighting fixtures, piping, ducts, and conduits. Where conflicts between the trades result, they shall be resolved by the Contractor to the Architect’s satisfaction and at no expense to the Owner.

B. Hangers shall be spaced to prevent sag and permit proper drainage. Refer to Division 23, Section “Basic Materials and Methods” for hanger spacing. A hanger shall be placed within one (1) foot of each horizontal elbow. See drawings for any additional hanger requirements.

C. Vertical runs of pipe and conduit less than fifteen (15) feet long shall be supported by hangers placed one (1) foot or less from the elbows on the connecting horizontal runs. Vertical runs of pipe and conduit over fifteen (15) feet long, but not over sixty (60) feet long, and not over six (6) inches in size, shall be supported by heavy steel clamps. Clamps shall be bolted tightly around the pipes and conduits and shall rest securely on the building structure without blocking. Clamps may be welded to the pipes or placed below coupling.

D. Hangers and support devices shall be by Anvil International, Unistrut, Fee & Mason, Elcene, Kindorf, Mueller or Auto-Grip. Unless otherwise specified, or indicated on the drawings, pipe and conduit
hangers and hanger supports shall conform to the following Anvil International figures.

1. Hangers generally shall be Figs. 65, 104, 212, 260 and 295.
2. Hanger Figs. 212 and 295 shall be provided with turnbuckles and eye rods or rods with eye nuts.
3. Turnbuckles shall be Figs. 114 or 230, shall have not less than 1-1/2 inches of adjustment, and shall be provided with locknuts.
4. Brackets Figs. 194, 195, and 199 shall be used for support of pipe hangers on lines larger than four (4) inches run along walls near floors.
5. Riser clamps shall be Figs. 261 or CT-121.
6. Roller hangers Figs. 171, 175, 177 and 181 shall be used for steam and condensate piping two (2) inches and larger and wherever the movement of pipe due to expansion exceeds 3/4 inch per foot of hanger rod lengths.
7. Roller supports shall be adjustable, Anvil International Fig. 274 for installation of hot service piping over two (2) inches in size and installed in racks or on trapeze hangers.
8. Concrete inserts shall be Figs. 281 or 282.
9. On copper pipes, hangers in contact with pipe shall be copper plated.

E. In lieu of individual hangers, multiple (trapeze) hangers may be used for water pipes having same elevation and slope and for electrical conduits as specified hereinafter:

1. Horizontal members shall consist of 1-1/2 inch by 1-1/2 inch twelve (12) gauge, cold formed, lipped channels designed to accept special, springheld, hardened steel nuts for securing hanger rods and other attachments. Two (2) or more such channels may be welded together forming horizontal members of greater strength than single channels. Members shall be Kindorf, Unistrut, or equal. Horizontal members made of Kindorf, Unistrut, or similar products shall be limited to a maximum length of eight (8) feet. Structural steel members shall be used for horizontal members exceeding eight (8) feet in length.
2. Each multiple hanger shall be designed to support a load equal to the sum of the weights of the pipes, conduits, wire, and water, the weight of the hanger itself, and 200 pounds. The size of the hanger rods shall be such that the stress at the roof of the thread will not be over 10,000 pounds per square inch at the design load. No rod shall be smaller than 3/8 inch. The size of the horizontal members shall be such that the maximum stress will not be over 15,000 pounds per square inch at design load.
3. Horizontal runs of piping and conduits along walls, four (4) inches and smaller, exposed or concealed, shall be secured to Kindorf or Unistrut support members as specified hereinbefore. Provide appropriate clamps, brackets and similar attachments to secure piping and conduits to vertical members in accordance with applicable sections of the specification.
4. Refer to architectural and laboratory design drawings and specifications for additional requirements related to supports using Kindorf or Unistrut type systems.

F. Hanger attachments shall be suitable for each type of hanger and shall be compatible with the building materials to which it is secured. The types of attachments which shall be used for the various types of building construction encountered shall conform to the following Anvil International figures:

1. Concrete (new) - Inserts Figs. 281 or 282. Power driven fasteners may be used for light loading as hereinafter specified.
2. Concrete (existing) - Figs. 47, 49 or 52 attachments. Refer to drawings for specific application of individual types.
3. Steel beams - Figs. 66, 92, and 93 attachments. Refer to drawings for specific application of individual types.
4. Bar joists - Figs. 60 or 225.
5. Brick or block walls - Figs. 194, 195, 199, or 202 fastened as follows: For light duty, self-drilling anchors in brick and toggle bolts in block; for heavy duty, through bolts with backing plates.

G. Per IBC code section 1912 and ACI 318 Appendix D, all concrete anchors within the scope of ACI 318 require approved anchors for crack concrete. Attachment devices shall have certified load test data from an independent test laboratory and shall be capable of carrying a minimum of five times the design load.
The concrete anchors for the following supported items need to meet the crack concrete requirements:

1. Any suspended pipe, larger than 2", regardless of material.
2. All components with an Ip 1.5 (example) Sprinkler piping, gas lines, exhaust / fume hoods containing hazards.
3. Cable tray.
4. All components required to function after a seismic event (example) generator, emergency lightings, fire alarm and all associated conduits / panels, etc.
5. Anywhere required by ASCE 7.
6. All suspended HVAC and air distribution equipment, including air handling units, supply and exhaust air terminal units, fan coil units and fans.

H. Welded attachments for securing hangers to piping or to structural steel may be provided in lieu of other attachments specified. Welded attachments shall be designed so that the fiber stress at any point in the weld or attachment will not exceed the fiber stress in the hanger rod.

I. The different service pipes, valves, and fittings shall be installed so that, after the insulation/jacketing is applied, there shall not be less than 1 in. clear space between the finished jacketing and other work, and between the finished jacketing and parallel adjacent pipes.

J. Refer to Division 23, Section “Mechanical Vibration, Sound and Seismic Controls”, for vibration hanger requirements.

K. In no case shall wire or perforated strap be used for pipe or conduit support.

L. All piping, ductwork, and equipment shall be suspended from the structure above unless otherwise indicated or noted on the drawings. The Contractor shall obtain prior approval from the Architect for floor supports of piping, ductwork, and equipment. Provide structural steel members consisting of angles, channels, and beams as required to hang piping, ductwork, and equipment.

M. Gripple hangers shall be used to suspend all exposed rectangular, oval, round and spiral ductwork. Gripple hangers shall consist of a pre-formed wire rope sling with either a pre-formed ferruled loop, permanently fixed threaded stud, or permanently fixed end-stop with or without a toggle. This is secured and tensioned with a Gripple.
 1. The contractor shall select the correct specification of Gripple hangers for supporting each particular service.
 2. Gripple hangers shall be installed in accordance with all the manufacturer’s recommendations.

2.4 SLEEVES AND PLATES

A. All pipe sleeves shall be constructed of one (1) piece Schedule 40 steel pipe, unless otherwise indicated on the drawings.

B. Where watertight sleeves are indicated, provide Link Seal rubber seals, as manufactured by Thunderline Corporation, between pipes and sleeves.

C. Escutcheon plates shall be provided for all exposed pipes passing through walls, floors, and ceilings in finished areas. Plates shall be chrome plated brass, split ring type, and sized to match the pipe or insulation where installed. Where plates are provided for pipes passing through sleeves which extend above the floor surface, provide deep recessed plates to conceal the pipe sleeves.

D. Provide twenty-four (24) gauge galvanized sheet metal sleeves for all exposed ductwork passing through floors, walls, or ceilings and all ductwork passing through fire-rated or smoke partitions. Duct sleeves shall be large enough to pass duct with insulation and shall have 2 (two) inch flanges returned against floor, wall, partition, or ceiling. Where fire dampers are required, provide sleeves as detailed on the
drawings and as required by the damper manufacturer.

E. At all sleeves, where noise can be transmitted and at fire rated separations, seal all openings between pipes and ducts and corresponding sleeve to prevent sound transmission and maintain fire rating of the wall, floor or ceiling. Submit method of sealing sleeves for approval. U.L. assembly rating of fire walls and floors shall be maintained at all times. All sleeves installed in masonry or concrete construction shall be grouted in place.

2.5 FIRE RATED PENETRATION SYSTEMS

A. Provide UL Listed fire penetration systems in openings in rated floors, walls, and other elements of construction. Provide UL listed fire penetration systems at all new and existing pipe penetrations of new and existing rated construction within the area of work. Coordinate work of this section with all other trades necessary for the proper installation of the fire rated penetration systems.

B. Submit shop drawings showing each condition requiring penetration seals in dictating proposed UL systems materials, anchorage, methods of installation, and actual adjacent construction. Submit a copy of UL illustration of each proposed system indicating manufacturer approved modifications. Submit copies of manufacturer's specifications, recommendations, inspection requirements, installation instructions, and maintenance data for each type of material required. Include letter indicating that each material complies with the requirements and is recommended for the applications shown.

C. All fire penetration systems shall reference ASTM E814/UL 1479 - Fire Test of Through - Penetration Fire Stops.

D. All systems shall be UL tested and listed in the UL Fire Resistance Directory.

E. Submit copies of written guarantee agreeing to repair or replace joint sealers which fail in joint adhesion, cohesion, abrasion resistance, weather resistance, extrusion resistance, migration resistance, stain resistance, general durability or appear to deteriorate in any other manner not clearly specified by submitted manufacturer's data as an inherent quality of the material for the exposure indicated. The guarantee period shall be one (1) year from date of substantial completion.

F. 3M products have been specified as the penetration fire stop basis of design. Other manufacturer's systems are acceptable providing they meet the requirements set forth in this specification. The fire rated penetration systems shall be the products of one manufacturer to the maximum extent possible. The products of more than one manufacturer shall not be used as a combined seal.

G. Provide materials classified by UL to provide fire stopping equal to time rating, both "F" and "T" ratings, of construction being penetrated. Provide asbestos free materials that comply with applicable codes and have been tested under positive pressure in accordance with UL 1479 or ASTM E814. Systems shall be smoke and air tight.

H. Deliver material undamaged in manufacturer's clearly labeled, unopened containers identified with brand, type, grade, and UL label where applicable. Coordinate delivery with scheduled installation date to allow minimum storage time at site. Store material in clean, dry ventilated location. Protect from soiling, abuse, and moisture. Follow manufacturer's instruction.

I. Verify existing conditions and substrates before starting work. Correct unsatisfactory conditions before proceeding. Proceed with installation only after penetrations of the substrate and supporting brackets have been installed.

J. Furnish adequate ventilation if using solvent. Furnish forced air ventilation during installation if required by manufacturer. Keep flammable materials away from sparks or flame. Provide masking and drop cloths to prevent contamination of adjacent surfaces by fire stopping resistance.
K. Clean surfaces to be in contact with penetration seal materials, of dirt, grease, oil, loose, materials, rust, or other substances that may affect proper fitting, adhesion of the required fire resistance.

L. Install penetration seal materials in accordance with printed instructions of the UL Fire Resistance Directory and in accordance with manufacturer's instructions. Seal holes or voids made by penetrations to ensure an effective smoke barrier. Where floor openings without penetrating items are more than four (4) inches in width and subject to traffic or loading, install fire stopping materials capable of supporting same loading as floor. Protect materials from damages on surfaces subject to traffic.

M. Clean up spills of liquid components. Neatly cut and trim materials as required. Remove equipment, materials, and debris, leaving area in undamaged, clean condition.

N. Examine penetration sealed areas to ensure proper installation before concealing or enclosing areas. Keep areas of work accessible until inspection by applicable code authorities. Perform under this section patching and repairing of fire stopping caused by cutting or penetration by local inspectors and other trades.

2.6 DRIVES FOR MACHINERY

A. Equip each motor driven machine with a V-belt drive except those which are specified as direct drive. Where factory designed and assembled belt drives which do not conform to the following are proposed to be furnished, such non-conformity must be noted on the shop drawings submittals and may be cause for rejection of the item.

B. Provide OSHA approved guards, for all belt drives, constructed in accordance with SMACNA standards. Submit shop drawings for approval.

C. Select each drive according to the ratings and recommendations of the manufacturer for the service with which used, giving proper allowance for sheave diameter, center distance, and arc of contact less than one hundred eighty degrees. Size the motor driving a centrifugal fan, with forward curved blades, to have a nameplate rating of not less than five (5) percent above the total of actual fan brake horsepower and drive loss at specified capacity, if the wheel is of other than the forward curved blade type. Size motor not less than fifty (50) percent above the total of actual fan brake horsepower and drive loss at specified capacity, if the wheel is of the forward curved blade type.

D. Belts shall be constructed of endless reinforced cords of long staple cotton, nylon, rayon, or other suitable textile fibers imbedded in rubber. Use belt with correct cross section to fit properly the sheave grooves. Carefully match belts for each drive.

E. Sheaves for motors under fifteen (15) HP shall be adjustable pitch type, selected so that the required fan rotational speed will be obtained with the motor sheave set approximately in mid-position and have the specified pitch diameter in that position. Sheaves for motors fifteen (15) HP and larger shall be fixed pitch type. Provide any changes to the sheaves, belts, pulleys or drive package to obtain the specified airflow, if required. Any changes shall be installed under Division 23, Section “Air Distribution”.

F. Select the motor of a capacity needed to operate the equipment at the specified mid-position operating condition. Where non-overloading motors are specified, select the motor capacity rating at the most closed position of the motor sheave. In no case shall motors be a smaller size than those indicated on the drawings.

G. Do not select fan sheave smaller in diameter than thirty (30) percent of the fan wheel diameter.

H. Construct sheaves of cast iron or steel, bored to fit properly on the shafts, and secured with key ways of proper size (not set screws). Key ways may be omitted for sheaves having 1/2 inch or smaller bores where set screws may be used.
PART 3 - EXECUTION

3.1 WORKMANSHIP

A. Each Subcontractor shall furnish the services of an experienced superintendent who shall be constantly in charge of the installation of the work.

B. The quality of workmanship required, for each trade, in the execution of work shall be the finest and highest obtainable in that trade working with the materials specified. Workmanship shall be satisfactory to the Architect and his decision as to acceptable quality is final.

C. Workmanship proven to be of poor quality or unsatisfactory in the commissioning phase of the project as deemed by the Architect shall be removed and replaced to the satisfaction of the Architect.

3.2 EQUIPMENT PERFORMANCE

A. All equipment, devices, controls, and hardware shall be proven to operate successfully throughout the guarantee period. Systems shall be proven during all weather seasons and be demonstrated to affect the design conditions at times. System components or equipment items that fail to consistently deliver the design conditions shall be removed and replaced as directed by the Architect. The cost of required equipment replacements shall be borne by the Contractor.

B. All equipment shall be tested after installation and be proven to deliver the manufacturers quoted design capacity. When capacity is in question as deemed by the Architect, the Contractor shall perform a detailed and comprehensive field performance test to certify the equipment capacity. System effect or installed performance factors may not be applied to performance ratings unless they were previously included when the equipment was submitted for approval. Equipment that fails to deliver manufacturers quoted design capacity shall be removed and replaced at the Contractors expense.

C. Workmanship proven to be of poor quality or unsatisfactory in the commissioning phase of the project as deemed by the Architect shall be removed and replaced to the satisfaction of the Architect.

3.3 EQUIPMENT CONNECTIONS

A. All equipment shall be installed and connected in accordance with the best engineering practice and in accordance with manufacturer's instructions and recommendations. Auxiliary piping, piping specialties, water seals, valves, and electric connections recommended by the manufacturer, required by code or required for proper operation shall be provided.

3.4 WATERPROOFING

A. Under no circumstances shall waterproofing be damaged or penetrated. Should conditions arise which indicate such necessity, notify the Architect.

3.5 CUTTING AND PATCHING

A. Cutting and patching associated with the work in the existing structure shall be performed in a neat and workmanlike manner. Existing surfaces, which are damaged by the Contractor, shall be repaired or provided with new materials. All patching shall be done with materials and methods similar to existing adjacent work, subject to approval of the Architect. Structural members shall not be cut or penetrated. Holes cut through concrete and/or masonry to accommodate new work shall be cut by reciprocating or rotary, non-percussive methods.

B. The Contractor shall submit to the Architect for approval dimensioned drawings showing all penetrations through structural slabs or walls required for mechanical and electrical work. Drawings shall clearly...
show opening size, plan location, and/or elevation as applicable. All openings shall be approved by the Architect prior to starting work.

C. Patching of areas disturbed by installation of new work shall match existing adjacent surfaces in material, texture, and color.

3.6 PROTECTION OF EXISTING WORK

A. When working in and around the existing building, extreme care shall be exercised with regard to protection of the existing structure and mechanical and electrical services. Repair or replace, to the satisfaction of the Architect, any existing work damaged in the performance of the new work.

3.7 SURVEYS AND MEASUREMENTS

A. Base all measurements (both horizontal and vertical) from established bench marks. All work shall agree with these established lines and levels. Verify all measurements at site and check correctness of same as related to the work. Verify locations of existing utilities and inverts of same prior to the start of any systems shown connecting to existing utilities.

B. Should the Contractor discover any discrepancy between actual measurements or conditions, and those indicated, which prevent following good practice or the intent of the drawings and specifications, he shall notify the Architect and shall not proceed with his work until he has received instruction from the Architect.

3.8 WELDING

A. Welding shall conform to current standards and recommendations of the National Certified Pipe Welding Bureau, with all South Carolina Occupational Safety and Health Acts, State, City and County Fire Prevention Code Requirements, and NFPA Standard 241 including provision of appropriate portable fire extinguishers.

B. Before assigning any welders to work covered by this specification, the Contractor shall provide the Architect with the names of pipe welders to be employed for the work, together with each welder's assigned number, letter, or symbol which shall be used to identify the work of that welder and which shall be affixed immediately upon completion of each weld. Contractor shall also submit, with the list of names, copies of each welder's certified qualification tests prescribed by the National Certified Welding Bureau or by other reputable testing laboratory using procedures covered in the American Society of Mechanical Engineers Building Construction Code, Section IX, "Qualification Standard Welding and Brazing Procedures, Welders, Brazers, and Welding and Brazing Operators". Welders must be certified for all positions.

C. If requested by the Architect, the Contractor shall submit identifying stenciled test coupons made by any welder in question. The Contractor shall require any welder to retake the tests when, in the opinion of the Architect, the work of the welder creates a reasonable doubt as to his proficiency. Tests, when required, shall be conducted at no additional expense to the Owner; and the welder in question shall not be permitted to work as a welder on this project until he has been recertified. Recertification of the welder shall be made to the Architect only after the welder has taken and passed the required test; welder must pass the test without benefit of retests in order to resume work as a welder on this project.

D. Welding shall conform to the ANSI Code for Pressure Piping ANSI B31.9, Building Services Piping. The Contractor shall be responsible for the quality of welding and shall repair or replace any work not in accordance with these specifications. Contractor shall, without cost to the Owner, check welds by radiograph, ultrasonic testing, sectioning or a combination of these methods wherever there is a question raised by the Architect as to the quality of a weld. Examination of the questionable weld shall be in addition to other system tests specified. Welds shall have penetration complete to the inside diameter of
the pipe. The recommended spacing and levels between ends of pipes prior to welding shall be used in all cases to assure full penetration.

E. Welders on pressure piping shall be certified and carry their identification stamp with them. Welds on lines with operating pressures above 100 psig shall be stamped.

3.9 HANDLING AND STORAGE OF MATERIAL

A. Proper and suitable tools, equipment and appliances for the safe and convenient handling and placing of all materials and equipment shall be used. During loading, unloading, and placing, care shall be taken in handling the equipment and materials so that no equipment or materials are damaged.

B. All mechanical and/or electrical equipment delivered to the job site shall be stored on pedestals, above the ground and under roof or other approved covering. All enclosures for equipment shall be weatherproof. All motors, drives, switchgear, panels, etc. which are not totally enclosed, that are involved in the work, shall be stored in a heated, dry, water protected area with a minimum temperature of fifty degrees (50) Fahrenheit. All valves shall be stored under roof on wood pedestals, above ground. All insulation shall be stored under roof or in trailers, adequately protected from the weather. The Contractor shall follow all written instructions and recommendations of the manufacturer and all requirements of the Architect in oiling, protection and maintenance of equipment during storage. It shall be the Contractor's complete responsibility for the storage and care of the equipment and materials.

C. If any equipment and/or materials are found to be in poor condition at the time of installation the Architect may, at his discretion, order the Contractor to furnish and install new equipment and/or material at no cost to the Owner.

3.10 COOPERATION WITH OTHER TRADES

A. Mechanical and Electrical trades shall give full cooperation to other trades and shall furnish in writing, with copies to Architect any information necessary to permit the work of all trades to be installed satisfactorily and with least possible interference or delay. Exact location of all mechanical and electrical equipment, devices, etc. in finished spaces shall be coordinated with Architectural reflected ceiling plans, elevations and details.

3.11 CLEANING AND PAINTING

A. Thoroughly clean all exposed surfaces of equipment and material and leave in a neat, clean condition ready for painting. Restore and touch-up factory finishes which have been damaged during construction. Finished painting will be performed under another Division.

B. Miscellaneous requirements include:

1. Touch-up threads of zinc coated screwed pipe with Rust-O-Leum primer and one (1) coat of enamel conforming with painting specification.
2. Paint behind grilles and registers in finished areas with two (2) coats of flat black paint following the proper surface preparation of the zinc coated metal.

3.12 ACCESSIBILITY

A. Locate all equipment which must be serviced, operated, or maintained, in fully accessible positions to eliminate the need for access panels and doors. Equipment shall include, but not be limited to, valves, clean-outs, motors, controllers, dampers, drain points, etc.

B. Where overhead equipment cannot be located above spaces with either no ceilings or removable acoustical ceiling tiles, contractor shall provide, as part of the contract and no expense to the Owner, fourteen (14) gauge painted steel access doors where required and/or where directed (color shall match
Access panels shall be Milcor or approved equal to suit material in which installed. Access doors installed in fire rated walls or shafts shall be labeled and shall match rating of the construction. Doors shall be of sufficient size to allow access to all components; minimum size shall be eighteen (18) inches by eighteen (18) inches. Doors in Toilet Rooms and Janitor’s Closets shall be Type 304 stainless steel.

Equipment deemed inaccessible by the Architect shall be reworked by the Contractor at no expense to the Owner. All doors shall have cylinder locks operable from same key. Submit shop drawings for approval.

3.13 EXCAVATION AND BACKFILL:

A. Excavation:

1. See Division 31 for additional requirements.
2. Trenches shall be excavated to the necessary width and depth as shown on the drawings. The trench subgrade shall be such as to allow the bedding of the utility with a uniform and continuous bearing on solid, undisturbed earth for the full length of each pipe, except for that portion at the bell holes. The subgrade shall be graded with sufficient accuracy to assure this minimum. The bottom portion of all trenches from the subgrade to a point two (2) feet above the crown or top of the utility shall be as nearly vertical as practicable and at the minimum width.
3. Trenches in fill areas shall not be excavated until embankment construction has been completed to a point at least two (2) feet above the crown or top of the utility being placed.
4. Any part of the bottom of the trench excavated below the specified subgrade shall be backfilled, at the Contractor's expense, with bedding materials as hereinafter specified. Whenever wet, or otherwise unstable, subgrade is encountered below the elevation of the original ground surface which existed prior to the time of construction, such soil shall be removed to the depth and extent direct by the Architect and the trench backfilled to the proper grade with bedding material as hereinafter specified. Reimbursement for extra work performed by the Contractor shall be in accordance with the General Conditions. Whenever the Architect requires the removal of wet or otherwise unstable subgrade from the fill material previously placed by the Contractor, the cost of all removal of unstable soil, together with backfilling of the trench as herein specified shall be borne by the Contractor.
5. Excavation for manholes and similar structures shall be of sufficient size to leave a minimum of twelve (12) inches and a maximum of twenty-four (24) inches clearance on all sides. Any over-depth excavation shall be filled with concrete as directed and at the expense of the Contractor.
6. Provide shoring and sheet piling necessary for excavation and for the safety of personnel and property as directed. Unless otherwise directed, the sides of all excavations over four (4) feet deep must be braced. All shoring, bracing, sheet piling, etc., must be solidly installed heavy timber suitable for the purpose. No lumber shall be buried when excavations are backfilled, except by authority of the Architect.

B. Backfill:

1. See Division 31 for additional requirements.
2. No backfill and/or bedding shall be placed until the construction adjacent thereto or the utility to be backfilled has been inspected, tested and approved. Notify the Architect when inspections are required.
3. Backfill material shall be earth materials only, free from perceptible amounts of wood, debris, or topsoil and shall not contain marble or other elements which tend to keep it in a plastic state. The material shall be free of frost at the time of placement. Backfill for plastic pipe shall be clean sand, free of foreign materials.
4. Bedding material, for use where trench subgrade is excavated below specified depth of for use at Contractor's option, shall be crushed stone or gravel, meeting the requirements of S.R.C. No. 6 aggregate or crusher run S.R.C. Cr-6 and shall be free of frost at the time of placing.
5. Mechanical tampers, for compacting backfill, shall be tampers capable of exerting a blow equal to
250 foot-pounds per square foot \((\text{FT}^2)\) of area of the tamping face.

6. Work broken or ruptured by improperly placed backfill shall be removed and replaced by the Contractor at no additional cost to the Owner.

7. Following inspection as specified above, approved backfill material shall be deposited in the trench with hand shovels, not by means of wheelbarrows, carts, trucks, bulldozers, or similar equipment, in four (4) inch layers and compacted by mechanical tampers until the pipe has a cover of not less than two (2) feet. The remainder of the backfill material shall then be deposited in the trench in eight (8) inch layers and compacted. Any trenches improperly backfilled shall be reopened, then refilled and compacted to the required grade and smoothed off. Backfill shall be placed and tamped to achieve ninety-five (95) percent (percent of dry weight) compaction.

8. Field density tests may be required by the Architect in areas where, in his opinion, a question exists with respect to compliance with compaction requirements. These tests will be paid for at standard rates by the Owner, where the test results indicate compliance with the compaction requirements, and by the Contractor where the test results indicate non-compliance with compaction requirements. Density tests shall be performed by the methods specified in A.A.S.H.O. Designation T-147, the Field Determination of Density of Soil-In-Place.

3.14 EQUIPMENT BASES AND SUPPORTS

A. Refer to Division 23, “Mechanical Vibration, Sound and Seismic Controls” for vibration isolation and seismic restraint requirements.

B. Concrete bases, curbs, and supports will be furnished and installed under this Division and shall be in accordance with Division 3.

C. The Subcontractors shall furnish, to the General Contractor, all required foundation sizes, bolts, washers, sleeves, plates and templates for equipment.

D. The size of the foundation bolts shall be as recommended by the manufacturer.

E. All equipment shall be set on the foundations, shimmed level with steel shims, and grouted up under base for uniform bearing by the Subcontractor.

F. Under this Section, provide all equipment supports; consisting of inertia pads, platforms, gratings, structural members and related materials required for the mechanical and electrical work.

G. The type and size of the supporting channels and supplementary steel shall be determined by the Subcontractor and shall be of sufficient strength and size to allow only a minimum deflection in conformance with the manufacturer's requirements for loading.

3.15 SLEEVES AND PLATES

A. Sleeves shall be provided by the trade installing the pipes or ducts for which sleeves are to be used. The sleeves shall be carefully located in advance of the construction of walls and floors, where new construction is involved. All cutting and patching necessary to set sleeves which are not placed prior to construction shall be the responsibility of the trade providing the sleeves.

B. Sleeves shall be provided for all piping, conduits, and ducts passing through all floor slabs and concrete, masonry, tile, and gypsum wall construction.

C. Fasten sleeves securely in floors and walls so that they will not become displaced when concrete is poured or when other construction is built around them. Take precautions to prevent concrete, plaster or other materials from being forced into space between pipe and sleeve during construction.

D. Where pipe motion due to expansion and contraction will occur, make sleeves of sufficient diameter to
permit free movement of pipe. Where insulated pipes and ducts pass through sleeves, the sleeves shall be large enough to pass the pipe or duct and the insulation. Check floor and wall construction to determine proper length for various locations; make actual lengths to suit the following:

1. Terminate sleeves flush with walls, partitions, and ceilings.
2. Terminate sleeves two (2) inches above finished floors. Fill all voids between sleeves and structures with an approved sealant or grout as determined by the Architect. Refer to Architectural drawings and specifications for sealing requirements of sleeves in floor.

E. Submit, for approval, shop drawings showing size, type, and location of all sleeves and penetrations through poured concrete walls or existing structure. Sleeves installed in load bearing concrete or masonry construction shall be completely grouted in place. See Architectural drawings for extent and location of such walls. Single and multiple pipe or conduit penetrations, as well as duct openings, shall be accurately located by field measurements and indicated on the drawings. The drawings shall be prepared sufficiently in advance for approval by the Architect and shall be prepared at a minimum scale of 1/8 inch equals one (1) foot.

F. Structural members shall not be cut or penetrated. Notify the Architect where penetrations of structural members are required. Holes cut through concrete and/or masonry, to accommodate new work, shall be cut by reciprocating or rotary, non-percussive methods.

3.16 FLASHING

A. Openings for pipes and ducts through waterproofed floors and roof areas shall be flashed. Vent pipes through roof shall be flashed with spun aluminum base having a minimum of five (5) inch roof surface flange. Base shall extend five (5) inches above roof surface.

B. Fan bases shall be provided with prefabricated curbs as specified elsewhere in this Division.

3.17 DEMOLITION

A. All existing piping, conduit, equipment, ductwork, and materials not required for re-use or re-installation shall be removed. Any existing materials and equipment which are removed and are desired by the Owner, or are indicated to remain the property of the Owner, shall be delivered to him on the premises by the Contractor where directed by the Architect. All other materials and equipment which are removed shall become the property of the Contractor and shall be removed by him from the premises.

B. Existing piping that remains concealed, buried, or otherwise contained in the remaining slabs and walls shall be capped, plugged, or otherwise sealed. All pipes shall be cut so that their capped or plugged ends will be below the finished floors or behind finished surfaces.

C. Existing wiring, where possible, shall be removed or pulled through conduits. Wiring remaining shall be cut back behind the termination of conduits so that conduits can be adequately capped, plugged, or sealed.

3.18 CONNECTIONS AND ALTERATIONS TO EXISTING WORK

A. When existing mechanical and electrical work is removed, all pipes, valves, ducts, and materials shall be removed to a point below the finished floors or behind finished walls and capped. Such points shall be far enough behind finished surfaces to allow for the installation of the normal thickness of finished material.

B. When the work specified hereinafter connects to existing equipment, piping, or ductwork, the Contractor shall perform all necessary alterations, cuttings, or fitting of existing work as may be necessary or required to make satisfactory connections between the new and existing work and to leave the completed work in a finished and workmanlike condition, to the entire satisfaction of the Architect.
C. When the work specified hereinafter or under other divisions of the contract necessitates relocation of existing equipment, piping, or ductwork, the Contractor shall perform all work and make all necessary changes to existing work as may be required to leave the completed work in a finished and workmanlike condition, to the satisfaction of the Architect. All work resulting in an extra to the contract shall be approved by the Owner and Architect before proceeding.

D. All cutting and patching necessary for the installation of the mechanical work shall be done under this Division. Any damage done to the work already in place shall be repaired at the Contractor's expense. Patching shall be uniform in appearance and shall match the surrounding surface.

3.19 INTERRUPTION OF EXISTING UTILITIES

A. Notify the Owner in writing at least seven (7) days in advance of any required shutdown of water, sewage, gas, electrical service or other utility. Upon written receipt of approval from Owner, shutdowns shall be performed between the hours of six (6) p.m. and six (6) a.m. including clean-up or as directed otherwise and shall be accomplished at no additional cost.

B. At the end of each interruption, all services shall be restored so that normal use of the building can continue.

END OF SECTION 230500
SECTION 230513 - MOTORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The drawings and general provisions of the Contract, including General and Supplementary Conditions, General Requirements and all other Specification Sections apply to the work specified in this section. In the event of conflict between specific requirements of the various documents, the more restrictive, the more extensive (i.e.: more expensive) requirement shall govern.

B. Motors for equipment specified in other Sections of the Specification shall comply with the requirements of this Section. In the absence of a requirement in another Section, the requirements in this Specification shall be met.

1.2 SUMMARY

A. This Section includes basic requirements for factory-installed motors.

1.3 DEFINITIONS

A. Factory-Installed Motor: A motor installed by motorized-equipment manufacturer as a component of equipment.

1.4 SUBMITTALS

A. Shop Drawings and Product Data: Shop drawings and product data for motors shall be provided with the submittal package for the piece of equipment that it serves. In accordance with Division 01, Section “Submittals” provide the following:

1. Product catalog data: nameplate data and ratings; materials of construction; mounting arrangement, size and location of motor terminal box and conduit entry, grounding lugs and coatings.
2. Completed tabulation sheet (template provided at the end of this Section).
3. For motors over 100 hp, submit routine test report for a similar motor. Routine tests shall be as described in NEMA MG 1 using IEEE Method 112 forms.

B. Warranties

1. In addition to the guarantee requirements of the General Conditions, warranties for each motor shall be covered in the warranty for the entire mechanical assembly (fan & motor, pump and motor, etc).

C. Manufacturer Seismic Qualification Certification: Submit certification that motors, accessories, and components will withstand seismic forces defined in Division 23, Section "Mechanical Vibration, Sound and Seismic Controls. Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Operation and Maintenance Data: For factory-installed motors to include in emergency, operation, and maintenance manuals.

1.5 DESIGN REQUIREMENTS

A. Each motor shall be sized to provide adequate operating torque at the operating speed(s) for the equipment served without exceeding the motor’s nominal horsepower. The manufacturer of the driven equipment shall provide the motor for that particular piece of equipment. In no case shall the Contractor supply the motor separately for the driven piece of equipment.

B. Motor speed listed in Section 15 is the synchronous speed for both squirrel cage induction and synchronous motor types. It shall be the responsibility of the driven equipment supplier to match the driven equipment speed requirements with the motor, including motor slip and synchronizing torque requirements.

1.6 QUALITY ASSURANCE

A. Source Limitations: Obtain factory-installed motors through one source from a single manufacturer.

B. Product Options for Factory-Installed Motors: Drawings indicate size, profiles, and dimensional requirements of motors and are based on the specific system indicated. Refer to Division I Section "Product Requirements."

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with NFPA 70, "National Electrical Code."

E. NRTL Listing: Motors shall be NRTL-listed.
 1. Term "Listed": As defined in "National Electrical Code," Article 100.
 2. Listing Agency Qualifications: "Nationally Recognized Testing Laboratory" (NRTL) as defined in OSHA Regulation 1910.

F. Comply with NEMA MG 1, "Motors and Generators."

G. Comply with UL 1004, "Motors, Electric."

H. Provide factory test reports in accordance with Part 2 of this Section.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Whenever possible, motor and driven equipment shall be shipped complete as an entire assembly.

B. Inspect equipment immediately upon arrival and any irregularities or damage shall be reported to the Manufacturer/Supplier and Designer immediately.

C. Store in accordance with manufacturer’s recommendations.

1.8 IDENTIFICATION

A. Nameplates: All motors shall have a stainless steel nameplate attached with stainless steel fasteners on
the motor. The nameplate shall be stamped with nameplate markings listed in NEMA MG 1 20.60, plus the following:

1. Manufacturer
2. Model Number
3. Serial Number
4. Nominal efficiency
5. Minimum efficiency
6. Temperature Rise
7. Bearing manufacturer’s name and catalog number

1.9 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices and features that comply with the following:

1. Compatible with the following:
 a. Magnetic controllers.
 b. Multispeed controllers.
 c. Reduced-voltage controllers.

2. Designed and labeled for use with variable frequency controllers, and suitable for use throughout speed range without overheating.
3. Matched to torque and horsepower requirements of the load.
4. Matched to ratings and characteristics of supply circuit and required control sequence.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3.

PART 2 - PRODUCTS

2.1 MOTOR REQUIREMENTS

A. Motor requirements apply to factory-installed motors except as follows:

1. Different ratings, performance, or characteristics for motor are specified in another Section.
2. Motorized-equipment manufacturer requires ratings, performance, or characteristics, other than those specified in this Section, to meet performance specified.

B. Motors shall be sized to drive the equipment, and perform the specified duty, but in no case less than the size shown or specified. If a motor larger than that specified is required, the Contractor shall bear the expense of changes in foundations, supports, wire and conduit connections, circuit protective devices, or other affected elements of the system. Each motor shall have sufficient capacity to start and operate the machine it drives without exceeding the motor nameplate rating at the speed specified or at the load which may be obtained by the drive actually provided. Motors shall be Class F insulation, Class B temperature rise at 1.0 service factor and 1.15 (minimum) service factor for continuous duty of 115 percent of rated capacity with maximum temperature rise in accordance with NEMA Chapter 12 Tables.

C. Contractor assumes responsibility for the correct direction of rotation required by the equipment drives. In the event of damage due to reverse rotation, the equipment shall be repaired or replaced at no charge to the Owner.

D. Motors shall have the following enclosure types in accordance with NEMA MG 1:

1. For clean dry indoor areas: open drip proof (ODP) fully-guarded
2. For outdoor locations: totally-enclosed fan-cooled for small and medium machines, weather protected type II for large machines
3. Explosion-proof machines shall be provided for hazardous areas classified in accordance with NFPA 70 (National Electrical Code). Explosion proof motors shall be NRTL-listed for the hazardous area classification.

E. Motors, 1/2 HP and larger, shall be three (3) phase, Class B, general purpose, squirrel cage, open type, premium efficiency, induction motors in accordance with NEMA MG1, wound for voltage indicated on the drawings, sixty (60) Hertz, alternating current, unless otherwise indicated on the drawings or specified herein. Motors smaller than 1/2 HP shall be single phase, open capacitor type in accordance with NEMA standards wound for 115 volts, 60 Hertz, alternating current. Motors 1/6 HP and under may be split phase type. Motors 1 HP and larger shall have nameplate rating and efficiency per NEMA MG 1. Ratings shall be based on IEEE Test Procedure 112, Method B.

F. Each motor, 1 HP or larger, or motor driven equipment, 1 HP or larger shall have a composite power factor (PF) rating of ninety (90) percent to 100 percent when the driven equipment is operating at the design duty defined on the drawings. Power factor correction devices shall be provided to meet the stated criteria.

G. Devices such as capacitors, or equipment such as solid state power factor controllers, shall be provided as part of the motor or item of motor driven equipment when required for power factor correction. Devices shall be completely mounted and wired to the motor terminal except as follows:

1. For a motor or motor driven equipment requiring other than across-the-line starting, power factor (PF) correcting capacitors, or other equipment, shall be connected to motor terminals via a contactor (controller) with a 120 volt alternating current (VAC) coil. The 120 volt alternating current (VAC) coil shall be energized via an auxiliary contact on the contactor (controller) used to establish the "run" operating mode for the motor driven equipment.

2. For two (2) speed motors, power factor (PF) shall be corrected at each speed via separate groups of capacitors or other equipment for each speed. Each group of PF correcting components shall be connected to motor terminals via a separate contact or (controller) with a 120 volt alternating current (VAC) coil. Each 120 volt alternating current (VAC) coil shall be energized via an auxiliary contact on the contactor or controller used to establish "run" operations at each speed.

H. Locked rotor kVA shall not exceed NEMA Code Letter F for motors over 10 horsepower.

I. Motor Insulation: The insulation system shall consist of Class F or better insulation materials and shall utilize a process of one cycle of vacuum impregnation of 100% polyester resins and two cycles of treatment with a polyester varnish. All materials shall be non-hygroscopic. No asbestos materials shall be used. Motors over 600V shall have windings tested in a water-filled tank in accordance with NEMA MG 1 12.62.

J. Motor Bearings: Motor bearings shall be specifically designed for the drive application, and shall be approved by the Engineer. Bearings shall have a minimum bearing life of B-10 or L-10 as defined by the AFBMA. Bearings shall be designed to carry the total hydraulic and static thrust developed by the driven load. Bearings shall be grease or oil lubricated. Oil lubricated motors shall be fitted with gravity-feed oil reservoirs. Grease lubricated bearings shall be regreasable (not sealed) and shall be supplied with grease fittings and drain plugs. Medium voltage and variable frequency controlled motor bearings shall be electrically isolated from the shaft on at least one end to prevent transmission of electric current. Current drain brushes shall be fitted where it is necessary to divert the flow of electrical current from bearings. Bearings, housing and brackets shall be constructed to permit access, removal and replacement of the bearings without disassembly of the motor.

K. Rotor: The rotor shall be dynamically and statically balanced. Assembled motor shall be tested at the factory in accordance with latest applicable NEMA MG 1 and IEEE 112 methods of testing, and balanced at no more than 0.001 inches total peak-to-peak deflection on the bearing housing and the shaft. Overall vibration readings, including all vibration frequencies, shall be taken and recorded at no load and design speed.
L. **Terminal Box:** Motors shall have a watertight cable terminal box. Terminal box shall be oversized, diagonally split, and rotatable in 90° increments to allow conduit and cable entry from top, bottom and sides.

M. **Motor Leads:** Motor leads shall be a minimum of 6 inches in length. All motor leads shall be extended from the conduit box. Motors rated over 200 HP or over 600V shall have insulated tin plated copper busbar terminals with bolt holes for compression wire lugs.

N. **Drains and Breathers:** Provide drain(s) in the bottom of the motor at the lowest point(s). Enclosed motors shall be fitted with breathers.

O. **Screens:** Provide stainless steel screens at motor ventilation openings.

P. **Rotation:** Motor rotation shall be coordinated with the requirements of the pump or fan.

Q. **Motor Shaft:** The motor shaft shall be ASTM A322 GR 140 (AISI 4140) steel and shall be sized to accommodate the required power and torque. Provide shaft end with keyway for connection to coupling with the pump shaft. Coordinate shaft design requirements with driven load.

R. **Stainless Steel Hardware:** Provide corrosion resistant hardware for motor components including grease fittings, plugs, nuts, bolts, washers and screws.

S. **Motor Casing and Coating:** The motor housing shall be cast iron for small and medium machines and fabricated steel plate for large machines. Housings shall be degreased, primed and painted both inside and outside with a rust inhibitive primer and corrosion resistant polyester paint. Painting shall be performed prior to installing the motor stator windings. The primer and paint materials selected shall be suitable for the environment encountered, both inside and outside of the casing.

T. **Motors connected to Variable Frequency Drives** shall be “inverter duty” with additional magnet wire insulation to achieve a minimum motor impulse voltage rating equal to the VFD manufacturer’s recommendations for the motor, cable size, and cable length actually installed.

U. **Shaft Grounding Ring:** Each motor shaft shall be provided with a Shaft Grounding Ring (SGR) that will provide a reliable low resistance path from the motor shaft to the motor frame to prevent the build up of destructive high frequency shaft currents that are created by the Pulse Width Modulation of the Variable Frequency Drive units. The SGR shall encircle the shaft and shall be designed to promote efficient discharge of the high frequency shaft currents to the motor frame. The motor frame shall be inherently grounded by design.

V. **Power Factor Correction Capacitors:** Provide motor power factor correction capacitors for all motors rated 600V or less (except variable frequency controlled motors) with less than 90% uncorrected power factor. Motor power factor correction capacitors shall be sized as recommended by the motor manufacturer to correct the motor power factor to over 90%. Motor power factor correction capacitor sizes shall not be larger than the maximum size recommended by the motor manufacturer. Enclosure type shall be NEMA 12. Capacitors shall be dry film type with fuses and discharge resistors.

W. **Motor winding temperature protection** shall be provided for motors 400 HP and larger. Winding temperature detectors shall consist of six 100 ohm RTD’s (resistance temperature detectors) with three leads each, imbedded in pairs in each phase of the stator windings, and brought out to labeled terminal in a separate motor RTD terminal box. Provide compatible motor winding temperature monitoring at the motor controller to shut down the motor when the temperature exceeds 50 deg. F. above the Class B temperature rise, and provide three conductor shielded cable in rigid galvanized steel conduit from the RTD’s to the motor controller.
2.2 MOTOR CHARACTERISTICS

A. Motors 1/2 HP and Larger: Three phase.

B. Motors Smaller Than 1/2 HP: Single phase.

C. Frequency Rating: 60 Hz.

D. Voltage Rating: NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected.

E. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.

F. Duty: Continuous duty at ambient temperature of 105 deg F and at altitude of 3300 feet above sea level.

G. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

H. Enclosure: Open dripproof.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Premium, as defined in NEMA MG 1. Refer to Motor Efficiency Table for average motor efficiencies.
<table>
<thead>
<tr>
<th>Motor Size (HP)</th>
<th>6-pole</th>
<th>4-pole</th>
<th>2-pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>82.5%</td>
<td>85.5%</td>
<td>77.0%</td>
</tr>
<tr>
<td>1.5</td>
<td>86.5%</td>
<td>86.5%</td>
<td>84.0%</td>
</tr>
<tr>
<td>2</td>
<td>87.5%</td>
<td>86.5%</td>
<td>85.5%</td>
</tr>
<tr>
<td>3</td>
<td>88.5%</td>
<td>89.5%</td>
<td>85.5%</td>
</tr>
<tr>
<td>5</td>
<td>89.5%</td>
<td>89.5%</td>
<td>86.5%</td>
</tr>
<tr>
<td>7.5</td>
<td>90.2%</td>
<td>91.0%</td>
<td>88.5%</td>
</tr>
<tr>
<td>10</td>
<td>91.7%</td>
<td>91.7%</td>
<td>89.5%</td>
</tr>
<tr>
<td>15</td>
<td>91.7%</td>
<td>93.0%</td>
<td>90.2%</td>
</tr>
<tr>
<td>20</td>
<td>92.4%</td>
<td>93.0%</td>
<td>91.0%</td>
</tr>
<tr>
<td>25</td>
<td>93.0%</td>
<td>93.6%</td>
<td>91.7%</td>
</tr>
<tr>
<td>30</td>
<td>93.6%</td>
<td>94.1%</td>
<td>91.7%</td>
</tr>
<tr>
<td>40</td>
<td>94.1%</td>
<td>94.1%</td>
<td>92.4%</td>
</tr>
<tr>
<td>50</td>
<td>94.1%</td>
<td>94.5%</td>
<td>93.0%</td>
</tr>
</tbody>
</table>

C. Stator: Copper windings, unless otherwise indicated.
 1. Multispeed motors shall have separate winding for each speed.

D. Rotor: Squirrel cage, unless otherwise indicated.

E. Bearings: Double-shielded, prelubricated ball bearings suitable for radial and thrust loading.

F. Temperature Rise: Match insulation rating, unless otherwise indicated.

G. Insulation: Class F, unless otherwise indicated.

H. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.

I. Enclosure: Cast iron for motors 7.5 HP and larger; rolled steel for motors smaller than 7.5 HP.
 1. Finish: Gray enamel.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Inrush Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Designed with critical vibration frequencies outside operating range of controller output.
2. Temperature Rise: Matched to rating for Class B insulation.
3. Insulation: Class H.
4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Rugged-Duty Motors: Totally enclosed, with 1.25 minimum service factor, greased bearings, integral condensate drains, and capped relief vents. Windings insulated with non-hygroscopic material.
 1. Finish: Chemical-resistant paint over corrosion-resistant primer.

D. Source Quality Control for Field-Installed Motors: Perform the following tests on each motor according to NEMA MG 1:
 1. Measure winding resistance.
 2. Read no-load current and speed at rated voltage and frequency.
 3. Measure locked rotor current at rated frequency.
 4. Perform high-potential test.

2.5 SINGLE-PHASE MOTORS

A. Type: One of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split-phase start, capacitor run.
 3. Capacitor start, capacitor run.

B. Shaded-Pole Motors: For motors 1/20 HP and smaller only.

C. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

D. Bearings: Ball type for belt-connected motors and other motors with high radial forces on motor shaft; sealed, prelubricated-sleeve type for other single-phase motors.

PART 3 - EXECUTION

3.1 COMMISSIONING

A. Check operating motors for unusual conditions during normal operation. Coordinate with the commissioning of the equipment for which the motor is a part.

B. Report unusual conditions.

C. Correct deficiencies.

END OF SECTION 230513
SECTION 230530 - BASIC MATERIALS AND METHODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The drawings and general provisions of the Contract, including General and Supplementary Conditions, General Requirements and all other Specification Sections apply to the work specified in this section. In the event of conflict between specific requirements of the various documents, the more restrictive, the more extensive (i.e.: more expensive) requirement shall govern.

1.2 SCOPE

A. This section includes requirements for items of equipment, materials and procedures which are common to more than one section of Division 22 and 23 and which are general in nature and use. This section applies to all sections of Divisions 22 and 23.

B. The requirements of Division 23, Section “Mechanical and Electrical General Provisions” shall apply to all work specified under this section.

C. This section specifies the color schemes for painting exposed and insulated piping in the mechanical rooms. Refer to Division 9 for painting specifications.

1.3 SHOP DRAWINGS

A. Submit shop drawings for all items of materials specified in this section in accordance with the General Requirements.

1.4 TESTS AND ADJUSTMENTS

A. The Contractor shall furnish labor, instruments, equipment, and materials required to perform tests prescribed in the sections describing the various systems. All tests shall be performed in the presence of the Owner and/or the Architect. Forty-eight (48) hours prior notice shall be given to the Owner and Architect for all tests. A written test report shall be submitted following all tests and before systems are insulated.

B. Replace or repair defects found during inspection or tests with new materials. Caulking of welded joints, screwed joints, cracks, or holes is not acceptable. Correct leaks in screwed fittings by remaking joints. Cut out and reweld. Repeat tests after defects have been eliminated.

C. Where reasonable doubt exists as to a system's ability to comply with contract requirements, perform any reasonable test required by the Architect.

D. Make static pressure tests and prove to the satisfaction of the Architect the piping is tight before pipes are concealed. Tests shall be provided as hereinafter specified.

E. Use test instruments tested for accuracy by an approved laboratory or by the instrument manufacturer, and furnish certificates showing degree of accuracy to the Architect when requested. Make calibration histories for each instrument available for examination.

F. Where gauges, thermometers and other instruments which are to be left permanently installed are used for tests, do not install until just prior to the tests to avoid possible changes in calibration.
1.5 REFERENCES AND DEFINITIONS

A. Unless otherwise specifically indicated, the term, and requirements of, “domestic” water systems shall universally apply to all potable, HVAC make-up and industrial laboratory water systems.

PART 2 - PRODUCTS

2.1 HANGERS:

A. See Division 23, Section “Mechanical and Electrical General Provisions” for general requirements.

B. Hangers and accessories shall be Anvil International, Carpenter-Patterson, Michigan, B-Line, or Basic Engineering of the types specified in Division 23, Section “Mechanical and Electrical General Provisions”.

C. It shall be the responsibility of the Contractor to provide an adequate pipe suspension system in accordance with recognized engineering practices, using standard, commercially accepted pipe hangers and suspension equipment.

D. The Contractor shall engage a qualified professional engineer to design an engineered pipe hanger and support system for all pipe systems of this Contract. Contractor shall perform calculations to ensure that the pipe support system being provided is adequate for the service. For all pipe hangers, supports, anchors, guides, etc., the Contractor shall submit a pipe hanger assembly drawing in accordance with the recommendations provided by MSS SP-89. Provide proposed equipment manufacturer, manufacturer's model number and size, construction, finish, quantities and/or lengths. Utilize columns shown on Contract Drawings for the location plan. Indicate pipe system, line size, insulation thickness, and Contract Drawing for which the plan view of the pipe hanger location can be found.

1. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of hangers and supports that are similar to those indicated for this Project in material, design, and extent.

E. All brackets used for supporting piping shall be provided by the Contractor and shall be of welded steel construction with a design safety factor of not less than five.

F. The design of all hangers and supports shall conform to the latest requirements of ANSI/ASME B31.1 or ANSI/B31.9 and Manufacturers' Standardization Society (MSS) Standard Practice SP-58, SP-69 and SP-89, unless otherwise made more stringent below.

1. Hangers for steel pipe, except as noted otherwise, shall be spaced at least every ten (10) feet.
2. Hangers for cast iron pipe shall be provided at each joint.
3. Hangers for copper pipe shall be placed at least every eight (8) feet, except pipes 3/4 inch and smaller shall have hangers at six (6) foot intervals.
4. Plastic and polypropylene piping systems 1 ¼” and smaller shall be provided with continuous pipe support using light gauge sheetmetal angles strapped to pipes.
5. Hangers shall be placed within one (1) foot of each horizontal and vertical elbow.

G. Where concentrated loads of valves, fittings and similar items occur, closer hanger spacing will be necessary.

H. Generally, hangers shall be clevis type, standard weight for lines 2-1/2 inch and larger.

I. Vibration hangers shall be provided as hereinafter specified in Division 23, Section “Mechanical
Vibration, Sound and Seismic Controls”.

J. Pipe Shields
1. On insulated piping 2” and larger, provide Pipe Shields, Inc. Model No. A3000 and A5000 for use on warm systems and Model No. A4000 and A6000 for use on cold systems. Contractor shall select appropriate shield for support application.
2. On insulated piping smaller than 2”, provide insulation protection shield equal to Anvil International Figure 167. Shield shall comply with Manufacturers Standardization Society (MSS) SP-58 (Type 40).

K. Hangers in direct contact with copper piping systems shall be copper plated.

L. All hangers shall be prime painted for interior locations and galvanized coated for exterior locations.

M. Hangers shall be provided with seismic restraints as required by IBC 2009 and ASCE 05-07.

2.2 IDENTIFICATION, VALVE TAGS AND CHARTS

A. A complete identification system shall be provided for all mechanical and electrical components which conform to the requirements published in ASME A13.1, NFPA 13 and the Fuel Gas Code.

B. Product Data and Samples: In accordance with Division 1 Section “Submittal Procedures”, submit the following:
 1. Manufacturer’s technical product data and installation instructions for each type of identification device specified. Include a list of all piping systems indicating a proposed nomenclature where a manufacturer's standard pre-printed nomenclature does not match up exactly with what is specified.
 2. Samples of each color, lettering style, and other graphic representation required for:
 b. Pipe contents and identification markers.
 c. Valve Schedules: For each piping system. Reproduce on standard-size bond paper. Tabulate valve number, piping system, system abbreviation as shown on tag, room or space location of valve, and variations for identification. Mark valves intended for emergency shut-off and similar special uses. Besides mounted copies, furnish copies from maintenance manuals specified in Division 1.
 d. Plastic equipment identification plates.
 e. Paint colors for piping systems.
 f. Stencils.

C. All control devices, i.e.; panels, switches, starters, pushbutton stations, relays, temperature controls, etc., shall be clearly identified as to their function and the equipment controlled. All equipment such as pumps, fans, heaters, etc., shall be marked to clearly identify equipment and space or duty they serve. Mechanical equipment shall be identified using engraved laminated black and white phenolic legend plates. Letters shall be minimum 3/4 inch high white on surrounding black. Plates shall be mounted by means of sheet metal screws. Submit nameplate list for approval.

D. Piping shall be identified with colored, prerolled, semirigid plastic labels as manufactured by Seton or approved equal. Labels shall be Seton “Set mark” system and shall be set around pipes with a field installed high strength cement compound applied along their longitudinal edge. Labels shall be placed around the piping or insulation every twenty (20) feet and with one (1) label on each pipe in rooms smaller than ten (10) feet. Provide labels on branch lines not more than 5 ft from main header. Provide labels on lines that penetrate walls or floors on each side of penetration not more than 5 ft from penetration. A label shall be placed at every major valve and at least six (6) feet from exit or entrance to an item of equipment. On exterior piping, utilize stencils to paint contrasting letters identifying pipe...
contents and direction of flow. Letter size and color shall comply with the requirements of adhesive pipe labels.

E. For supply and exhaust air terminal units located above the ceiling, in addition to a label on the device, labels are to be permanently affixed to the ceiling grid framing as near to the item as possible using epoxy glue. Where hard ceilings are used, the label is to be affixed to the frame of the access panel for the unit. Labels are to be black core white or beige Bakelite. The lettering is to be 3/8” inches high. The minimum label size is 3/4” wide by 1” long. Terminal units shall be identified as indicated on the mechanical drawings and ATC graphics. The thermostat that controls each air terminal unit shall be identified with an identical but appropriately sized label.

F. For fire, smoke and fire/smoke dampers located above the ceiling, labels are to be permanently affixed to the ceiling grid framing as near to the item as possible using epoxy glue. Where hard ceilings are used, the label is to be affixed to the frame of the access panel for the damper. Labels are to be black core white or beige Bakelite. The lettering is to be 3/8” inches high. The minimum label size is 3/4” wide by 1” long. Dampers shall be identified as “Fire Damper”, “Smoke Damper” or “Fire/Smoke Damper”.

G. Labels shall have minimum 3/4 inch high black letters for pipes one (1) inch and larger, and 1/2 inch letters for smaller pipes. All labels shall have flow arrows. Color coding and stencil designations shall be as follows:

<table>
<thead>
<tr>
<th>Service</th>
<th>Color</th>
<th>Stencil Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable Cold Water</td>
<td>Green</td>
<td>Potable Cold Water</td>
</tr>
<tr>
<td>Potable Hot Water</td>
<td>Green</td>
<td>Potable Hot Water</td>
</tr>
<tr>
<td>Potable Hot Water Recirc</td>
<td>Green</td>
<td>Potable Hot Water Recirc.</td>
</tr>
<tr>
<td>Sanitary</td>
<td>Brown</td>
<td>Sanitary Sewer</td>
</tr>
<tr>
<td>Storm Water</td>
<td>Brown</td>
<td>Storm Water</td>
</tr>
<tr>
<td>Condensate Drain, Drain</td>
<td>Brown</td>
<td>Drain Water</td>
</tr>
<tr>
<td>Refrigerant Liquid</td>
<td>Green</td>
<td>Refrigerant Liquid</td>
</tr>
<tr>
<td>Refrigerant Suction</td>
<td>Green</td>
<td>Refrigerant Suction</td>
</tr>
</tbody>
</table>

H. All valves, except as specified below, shall be provided with colored plastic valve tags with stamped-in numbers. Tags shall be secured to valve wheels with a metal chain. Stop valves on individual fixtures or equipment where their function is obvious, or where the fixture of equipment is immediately adjacent, need not be so equipped. Care shall be exercised in scheduling and selecting valve numbers to be indicated on a drawing. Drawing shall show locations, details of arrangements, identity, and function of all service and control valves. One (1) copy of each drawing and schedule shall be mounted and framed under plastic protection where directed. Blueprints are not acceptable. A copy of each drawing and schedule shall also be included as a part of the operations and maintenance manuals. Valve tags shall be Seton or approved equal minimum 1-1/2 inch round tags with white characters describing system and valve designation.

I. Use color scheme indicated below for painting exposed and insulated piping in the mechanical rooms. Colors for piping not identified below shall be as indicated by Owner. Exterior non-insulated piping shall be painted with two coats of rust inhibitive paint. Colors shall be approved by the Owner after a sample is provided for each service. Do not paint aluminum jackets. Do not paint exposed copper or galvanized piping.

<table>
<thead>
<tr>
<th>Service</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable Water</td>
<td>Green</td>
</tr>
<tr>
<td>Sanitary</td>
<td>Brown</td>
</tr>
<tr>
<td>Storm Water</td>
<td>Brown</td>
</tr>
<tr>
<td>Condensate Drain, Drain</td>
<td>Brown</td>
</tr>
<tr>
<td>Refrigerant Piping</td>
<td>Green</td>
</tr>
</tbody>
</table>
J. Identify fire protection systems (sprinkler and fire alarm) as hereinafter specified as required by NFPA Standards

2.3 PIPE, FITTINGS AND JOINTS

A. General: Items are referred to by type and shall conform to the latest editions of standards listed below:

B. Provide pipe and fittings for fire protection as hereinafter specified in Division 21, Sections “Fire Protection.”

C. All piping shall be new domestic pipe material, manufactured in the United States of America (USA) and be suitable for the specific use indicated on drawings and in the specifications.

D. Piping Material:

<table>
<thead>
<tr>
<th>Service</th>
<th>Piping</th>
<th>Fittings</th>
<th>Joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sanitary drainage:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Underground:</td>
<td>A</td>
<td>I</td>
<td>a</td>
</tr>
<tr>
<td>b. Above ground within building</td>
<td>J</td>
<td>VIII</td>
<td>i</td>
</tr>
<tr>
<td>c. Vent piping</td>
<td>J</td>
<td>VIII</td>
<td>i</td>
</tr>
<tr>
<td>2. Storm water and drain:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Underground</td>
<td>A</td>
<td>I</td>
<td>a</td>
</tr>
<tr>
<td>b. Above ground</td>
<td>J</td>
<td>VIII</td>
<td>i</td>
</tr>
<tr>
<td>3. Foundation drain:</td>
<td>H</td>
<td>VI</td>
<td>-</td>
</tr>
<tr>
<td>4. Cold Water:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Above ground - 4" and larger</td>
<td>F</td>
<td>III</td>
<td>e</td>
</tr>
<tr>
<td>b. Above ground - 3" and smaller</td>
<td>F</td>
<td>III</td>
<td>e</td>
</tr>
<tr>
<td>c. Underground - 3-1/2" and larger</td>
<td>K</td>
<td>IX</td>
<td>j</td>
</tr>
<tr>
<td>d. Underground - 3" and smaller</td>
<td>E</td>
<td>III</td>
<td>f</td>
</tr>
<tr>
<td>5. Domestic hot water, tempered water and hot water recirc:</td>
<td>F</td>
<td>III</td>
<td>e</td>
</tr>
<tr>
<td>6. Condensate Drain/Drain:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Optional</td>
<td>J</td>
<td>VIII</td>
<td>i</td>
</tr>
<tr>
<td>b. Optional</td>
<td>B</td>
<td>II</td>
<td>e</td>
</tr>
<tr>
<td>7. Refrigerant Relief:</td>
<td>F</td>
<td>III</td>
<td>f</td>
</tr>
<tr>
<td>8. Refrigerant Piping:</td>
<td>F</td>
<td>III</td>
<td>f</td>
</tr>
</tbody>
</table>

E. Piping Assembly:

<table>
<thead>
<tr>
<th>Type</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cast iron hub and spigot pipe, service weight ASTM A74. All pipe and fittings shall be marked with the collective trademark of the Cast Iron Soil Pipe Institute and listed by NSF International.</td>
<td>A</td>
</tr>
<tr>
<td>2. Copper drainage tubing, drain, waste, and vent, DWV, ASTM B306</td>
<td>B</td>
</tr>
<tr>
<td>3. Black steel pipe, ASTM A53/106 Grade B Seamless ANSI Schedule 40</td>
<td>C</td>
</tr>
<tr>
<td>4. Black steel pipe, ASTM A53/106 Grade B Seamless ANSI Schedule 80</td>
<td>D</td>
</tr>
<tr>
<td>5. Seamless copper water tube, ASTM B88, Type K, soft</td>
<td>E</td>
</tr>
</tbody>
</table>
6. Seamless copper water tube, ASTM B88, Type L, hard
7. Seamless copper water tube, ASTM B819 Type L, hard, prepared and labeled for oxygen service and sealed when delivered to the site
8. Corrugated and perforated black polyethylene drain pipe ASTM F-405 with three (3) rows of perforations and snap-lock ends
9. Cast iron soil pipe, service weight No-Hub, ASTM A-888. All pipe and fittings shall be marked with the collective trademark of the Cast Iron Soil Pipe Institute and listed by NSF International.
10. Ductile iron water pipe, outside coated, AWWA C104/A21.4 cement mortar-lined, ANSI/AWWA C151/A 21.51 pipe
11. Black steel pipe ASTM A53/106 Grade B seamless ANSI Schedule 40 with “X-Tru-Coat” Polyethylene or polypropylene coating (25 to 60 mils thickness)
12. Galvanized steel pipe ASTM A53/106, Grade B seamless ANSI Schedule 40
13. Enfield flame retardant polypropylene acid resistant drainage pipe, ASTM D635, Schedule 40
14. Polypropylene (PP) pipe by George Fischer, Asahi, or Orion, equal to George Fischer PPro-Seal, suitable for use in reverse osmosis/deionized (RO/DI) water systems. Natural virgin copolymer polypropylene with no added plasticizers, pigments or re-grind that is manufactured to schedule 80 wall thickness and is compliant with US Food and Drug Administration regulations 21.CFR 177.1520 Sections A1, B & C and conforms to ASTM D4101. Pipe shall be manufactured to the dimensions and tolerances of ASTM D1785. All pipes shall be packaged in polybags at the point of manufacturing to preserve pipe cleanliness.
15. Plenumline FR-PVDF flame retardant polyvinylidene fluoride (PVDF) acid resistant drainage pipe, ASTM F 1673, Schedule 40, meeting the requirements of ASTM E84 and UL723

F. Fitting Materials:

<table>
<thead>
<tr>
<th>Type</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cast iron soil pipe fittings, service weight, ASTM A74</td>
<td>I</td>
</tr>
<tr>
<td>2. Wrought copper and bronze drainage fittings, ANSI A16.29</td>
<td>II</td>
</tr>
<tr>
<td>3. Wrought copper solder joint fittings, 150 pound ANSI B16.22</td>
<td>III</td>
</tr>
<tr>
<td>4. Black malleable iron screwed fittings, 150 pound, ANSI B16.3 for less than seventy-five (75) pounds per square inch and 300 pounds for seventy-five (75) pounds per square inch or more</td>
<td>IV</td>
</tr>
<tr>
<td>5. Black malleable iron grooved fittings, ASTM A47, Victaulic Style 07, Zero Flex. Galvanized fittings shall be used for domestic water.</td>
<td>V</td>
</tr>
<tr>
<td>6. Corrugated polyethylene snap-lock drain fittings for snap-together assembly</td>
<td>VI</td>
</tr>
<tr>
<td>7. Steel butt-welding fittings ANSI B16.9 using long-turn ells, ANSI B16.5 weld neck or slip on flanges & Bonney Forge Wellolets and Threadolets. Wall thickness to match pipe.</td>
<td>VII</td>
</tr>
<tr>
<td>8. Cast iron soil pipe fittings, No Hub, ASTM A-888</td>
<td>VIII</td>
</tr>
</tbody>
</table>
9. Cast iron pressure fittings AWWA Class D, 250 pounds per square inch

10. Steel butt-welding fittings ANSI B16.9 using long-turn ells with field applied "X-Tru-Coat" coating in accordance with manufacturer's recommendations

11. Galvanized malleable cast iron screwed fittings, ANSI B16.3, 150 pounds for less than seventy-five (75) pounds per square inch and 300 pounds for seventy-five (75) pounds per square inch or more. Provide drainage fittings for drain pipe.

12. Black Cast iron screwed fittings, ANSI B16.4, 125 pounds for less than seventy-five (75) pounds per square inch and 250 pounds for seventy-five (75) pounds per square inch or more

14. Enfield mechanical joints and adapters. Connections containing EVA components are prohibited.

15. Polypropylene (PP) fittings by George Fischer, Asahi, or Orion, equal to George Fischer PPro-Seal, suitable for use in reverse osmosis/deionized (RO/DI) water systems. Natural virgin copolymer polypropylene with no added plasticizers, pigments or re-grind that is manufactured to schedule 80 wall thickness and is compliant with US Food and Drug Administration regulations 21.CFR 177.1520 Sections A1, B & C and conforms to ASTM D4101. Pipe shall be manufactured to the dimensions and tolerances of ASTM D1785. All fittings shall be packaged in polybags at the point of manufacturing to preserve pipe cleanliness.

16. Plenumline acid waste fittings and adapters. Fittings shall be third party certified to ASTM F 1673 and ASTM E84, and IAPMO approved. Connections containing EVA components are prohibited, meeting the requirements of ASTM E84 and UL723

G. Joint Materials:

<table>
<thead>
<tr>
<th>Type</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Premolded rubber gaskets Tyler Pipe Industries, TY-Seal or Multiple Seal, ASTM C564</td>
<td>a</td>
</tr>
<tr>
<td>3. Threaded: American Standard for Pipe Threads, ANSI B2.1</td>
<td>c</td>
</tr>
<tr>
<td>4. Mechanical: Grooved pipe joints: Victaulic Style 07, Zero Flex. Roll grooving shall be prohibited</td>
<td>d</td>
</tr>
<tr>
<td>5. Soldered: ASTM B32 tin-antimony 95-5</td>
<td>e</td>
</tr>
<tr>
<td>6. Brazed: Silver alloy brazing equal to Silfos and Easy-Flo by Handy and Harman. The use of flux is prohibited</td>
<td>f</td>
</tr>
<tr>
<td>7. Brazed: Silver alloy brazing equal to Silfos and Easy-Flo by Handy and Harman. The use of flux is prohibited</td>
<td>g</td>
</tr>
<tr>
<td>8. Tongue and groove joint sealed with mortar</td>
<td>h</td>
</tr>
<tr>
<td>9. No-Hub neoprene gasket and stainless steel corrugated shield, Tyler No-Hub coupling</td>
<td>i</td>
</tr>
</tbody>
</table>
10. Mechanical: Specification for Mechanical Joint or cast iron pressure pipe and fittings, ANSI A21.10

11. Enfield mechanical joints and adapters. Connections containing EVA components are prohibited.

12. Butt-welded joint construction with an approved welding device, certified personnel and meeting the requirements of ASTM F1290/ASTM D2657 Section 9. All equipment should utilize electronically controlled heating elements for accurate welding temperatures. Tools should also incorporate planing units to face ends prior to heating. Butt-fusion equipment supplied shall weld joints based on force and/or pressure and not mechanical stops.

13. Plenumline mechanical joints and adapters meeting the requirements of ASTM E84 and UL723, XVII. Connections containing EVA components are prohibited.

H. Pre-Insulated Direct Buried Piping System

1. Refer to Division 23, Section “Underground Distribution Piping”.

2.4 VALVES

A. General:

1. Valves shall be provided where indicated on the drawings and as herein specified.
2. Valves shall be placed in such manner as to be easily accessible for hand wheel operation and stuffing maintenance.
3. Install shut-off valves in piping where shown or where listed below:
 a. To isolate all items of equipment.
 b. To isolate motorized flow control valves.
 c. To isolate branch lines and riser at mains.
4. Valve pipe connections shall be screw, solder or weld flange as required to be consistent with other parts of the piping system.
5. Where piping or equipment may subsequently need to be removed, provide valves with bodies having integral flanges or full lugs drilled and tapped to hold valve in place so that downstream piping or equipment can be disconnected and replaced with blank-off plate while valve is still in service.
6. Valves over ten (10) feet above standing level and above six (6) inches in size shall have chain wheel with chain extending to within six (6) feet of standing level. All wheel operated valves shall have an indicator to show the position of the disc or plug.
7. Where valves specified are not available in the pipe size noted on the drawing, the next larger size valve shall be provided.
8. Valves shall be provided for fire protection systems as specified in Division 21, Section “Fire Protection.”

B. Balancing Valves:

1. Provide balancing valves where indicated and required to balance water flow through the piping system.
2. Balancing valves, 1 1/4 inches and larger, for systems piping shall be DeZurik as follows: PEC, flanged above two (2) inches with Buna filled PTFE U-ring seal and isobutene-isoprene plug facing, suitable for 250 degrees Fahrenheit continuous operation. Valves in chilled water and tower water systems may have seal and plug facing suitable for 180 degrees Fahrenheit. Valves six (6) inches and smaller shall have lever actuators and valves eight (8) inches and larger shall have gear operators. All actuators shall have adjustable memory stops.
3. Balancing valves one (1) inch and smaller shall be Armstrong Model CBV or as manufactured by TA Hydronics or approved equal.
C. Ball Valves:
 1. Ball valves shall be used in all water systems size two (2) inches and smaller.
 2. Ball valves shall be Nibco, Jamesbury, Apollo or Watts.
 3. Two (2) piece ball valves sizes one (1) inch and smaller may be used for domestic water systems where replacement of internal parts is not critical. Valves shall be equal to Nibco Figure No. 585-70-66, bronze body, full port, stainless steel ball and stem (ASTM A-276, Type 316), TFE seat, blowout proof stem, extended stem for insulation thickness, and suitable for 150 pounds per square inch saturated steam service.
 4. Three (3) piece ball valves sizes 1/2 inch to two (2) inch shall be used for all water piping systems to accommodate replacement of internal parts. Valves shall be equal to Nibco Figure No. 595-Y-66, swing out design, bronze body, full port, stainless steel ball, and stainless steel stem (ASTM A-276 Type 316), reinforced TFE seats. Body bolts and nuts shall be zinc dichromate plated steel and valve shall be suitable for 150 pounds per square inch saturated steam service. Valves shall be threaded or soldered to suit piping systems which they are installed.
 5. Three (3) piece ball valves sizes 1/2 inch to four (4) inch shall be used for all medical gas piping systems to accommodate replacement of internal parts. Valves shall be equal to Nibco Figure No. 595-Y-66, swing out design, bronze body, full port, stainless steel ball, and stainless steel stem (ASTM A-276 Type 316), reinforced TFE seats. Body bolts and nuts shall be zinc dichromate plated steel and valve shall be suitable for 150 pounds per square inch saturated steam service. Valves shall be suitable in the line and supplied clean and prepared for oxygen service. Valves shall be packaged in a polyethylene bag to keep them clean on the job site.
 6. Three (3) piece ball valves size 1/2 inch to two (2) inch shall be used for all steam and condensate piping systems to accommodate replacement of internal parts. Valves shall be equal to Nibco Figure No. 590-CS-R-66, stainless steel trim (A-276 type 316) with threaded or socket weld ends to suit system wherein installed.
 7. Valves shall be equipped with lever handle with extended stem for insulation thickness which shall indicate position of ball orifice and have stops for fully open and closed position. Construction shall be such that power actuator can be used. Ball opening shall be full pipe size.
 8. Valve shall be suitable for flow in either direction and must be leak proof at all pressures up to 150 pounds per square inch gauge (psig) and temperatures from minus twenty (-20) degrees Fahrenheit to 350 degrees Fahrenheit in open or shut position.

D. Drain Valves:
 1. Drain valves shall be ball type as hereinbefore specified with hose end adapter and shall be provided at low points of all piping systems, and where indicated, 3/4 inch minimum.

E. Valve Schedule:
 1. Unless otherwise specified, valves shall be Nibco, Stockham, or Crane equal to the Nibco figure numbers indicated below:
 a. Domestic Hot, Cold, Tempered and Recirculated Water Systems:
 - Globe - Solder end: S-211-Y
 - Check - Solder end: S-413-Y
 - Gate - Flanged end: F-619

2.5 PIPING SPECIALTIES

A. Pressure regulating valves on water fill lines serving hydronic systems shall be designed for 125 pounds per square inch gauge (psig) working pressure and set as required and shall be Watts Series U5B. Relief valves shall be Watts Series 174A, ASTM stamped for HVAC water systems.

B. Backflow Prevention Assemblies
 1. The backflow prevention assembly selection and installation shall be meet the requirements set by
the University of Southern California Foundation for Cross-Connection Control and Hydraulic Research (USCFCCC & HR), SC Department of Health and Environmental Control (SC-DHEC), all current ICC plumbing codes and regulations, and local specifications.

2. Reduced pressure backflow prevention assembly shall be Watts Series 909 or approved equal for domestic water piping systems ¾” through 10”.

3. Double check valve backflow prevention assemblies shall be Watts Series 709 or approved equal for non-hazard domestic water piping systems 2 ½” and larger, Watts Series 007 or approved equal for non-hazard domestic water piping systems 2” and smaller, and Watts Series 709 or approved equal for fire protection systems.

4. Any reduced pressure or double check valve backflow prevention assembly installed in the vertical position must have been previously evaluated and approved by the University of Southern California Foundation for Cross-Connection Control and Hydraulic Research (USCFCCC & HR) for a vertical orientation.

5. Vacuum breakers shall be Watts Series 288A for equipment and No. 8A for hose bibbs.

C. Automatic air vents on water systems shall be Sarco, Bell and Gossett, Taco or Metraflex equal to Sarco Type 13W, 150 pounds per square inch (psi). Provide shut-off valve on each vent. Vents above suspended ceilings shall have 1/4 inch soft copper drain line extended to nearest floor drain or service sink.

D. Strainers shall be Mueller Steam Specialty Company, Inc., or approved equal, No. 351 for two (2) inch and smaller, No. 758 (125 lbs.) or No. 725 (250 lbs.) for 2-1/2 inch and larger. Basket strainers shall be Mueller Steam Specialty Company, Inc. or approved equal, No. 185. Provide valved blow-down connections on each strainer consisting of a ball valve set between two (2) short nipples. Blow-down valve shall be full size of strainer blow-down connection. Steam and condensate strainers shall be laid parallel to the floor to prevent the accumulation of condensate in the strainer body. Screens shall be stainless steel with perforations as follows:

- Water Service up to 2 inches: 1/32 inch perforations
- Water Service 2.5 inches to 4 inches: 1/16 inch perforations
- Water Service 5 inches and larger: 1/8 inch perforations

1. Contractor shall provide coarse construction strainers in each strainer or inline cone strainers in the piping system during equipment start-up periods. A list of construction strainers with their proposed location shall be submitted to the Architect for approval. After systems have been flushed clean and are fully operational construction strainers shall be removed and turned over to the Owner for accounting. Final strainer elements shall be installed after all construction strainers have been accounted for.

2.6 DIELECTRIC FITTINGS

A. General: Provide assembly or fitting with insulating material isolating joining of dissimilar metals, to prevent galvanic action and stop corrosion.

B. Description: Combination of copper alloy and ferrous; threaded, soldered, plain end, or weld neck types matching piping system materials.

C. Insulating Material: Suitable for system fluid, pressure, and temperature.

D. Dielectric Unions: Factory-fabricated, union assembly, for 250 psig minimum working pressure at 180 deg. F.

E. Dielectric Flange Insulating Kits: Field assembled, companion flange assembly, full face or ring type. Components include neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers. Provide Class 150 or Class 300 flanges to match system pipe requirements.
F. Dielectric Couplings: Galvanized steel coupling with inert and non-corrosive, thermoplastic lining, threaded with 300 psig minimum working pressure at 225 deg. F.

G. Dielectric Nipples: Electroplated steel nipple with inert and non-corrosive, thermoplastic lining, threaded with 300 psig minimum working pressure at 225 deg. F.

2.7 FLEXIBLE CONNECTORS

A. General: Provide stainless steel braided flexible connectors with design pressure and temperature rating meeting or exceeding the test pressures and operating temperatures of the systems in which they are installed. Pipe sizes 2-inch and smaller shall be socket welded or threaded matching system requirements. Pipe sizes above 2-inch shall be Class 150 or Class 300 flanged matching system requirements.

B. Stainless steel hose / Steel pipe, flexible connectors: Corrugated, stainless steel inner tubing covered with stainless steel single wire braid. Include steel nipples or steel flanges welded to hose. Minimum length shall be three times pipe diameter up to 4-inch pipe size and two times pipe diameter up to 18-inch pipe size.

2.8 PIPE ANCHORS

A. All pipe lines shall be anchored where specified herein, indicated on drawings and where required to prevent uncontrolled movement. Anchors shall be constructed of steel sections and plates, assembled by bolting or welding and secured to the building structure by means of bolts, clamps or welding. Anchors shall prevent both axial and lateral movement of the lines. Anchor vertical pipes by means of clamps welded to pipe and secured to wall or floor construction. Submit details of anchors for approval.

B. Anchor piping adjacent to flexible pipe connectors to prevent connector from expanding against its restraining bolts and also to keep the pipe on both sides of the connector in alignment.

2.9 EXPANSION

A. All piping shall be so installed that it will in no way be distorted or strained by expansion or contraction. Except as noted, all expansion and contraction shall be taken up by means of swing joints, loops, bends or long offsets. Swing joints made up with at least three (3) elbows shall be provided in branches from mains in runouts. Size loops for the total pipe expansion without cold springing, but field cold spring 1/2 the pipe on expansion corrected for ambient temperature.

B. Where expansion joints are indicated or required, select joints with a traverse of 150 percent of the pipe expansion from an ambient of forty (40) degrees Fahrenheit to the maximum system operating temperature.

C. Expansion joints two (2) inches and larger shall have flanged ends, except when installed in copper piping systems.

D. All expansion joints shall be suitable for minimum operating pressure and temperature of 150 pounds per square inch (psi) and 300 degrees Fahrenheit respectively.

E. Expansion joints shall be of the following types:

1. Corrugated Type - Flexonics "Low-Corr" joints for pipes three (3) inches and larger. Flexonics Model H or HB for pipes smaller than three (3) inches.
2. Slip Type - Flexonics "Slip Pakt" with anchor base.

F. Submit, for approval, manufacturers’ shop drawings of each expansion joint provided depicting length of pipe, location of anchors and guides, calculated expansion offset and type of joint employed.
2.10 PIPE GUIDES

A. Install pipe guides where indicated on drawings or where required for proper installation of expansion loop. Limit use of guides with expansion loop to points shown or where required to prevent buckling of pipe whether indicated or not.

B. Do not use pipe guides as pipe supports.

C. Provide factory made cast semi-steel or other heavy fabricated steel consisting of a bolted two (2)-section outer cylinder and base with a two (2)-section guiding spider welded or bolted tight to the pipe, of sufficient size to clear pipe insulation and long enough to prevent over-travel of spider in cylinder. Furnish a guide sleeve of a length not less than the length of pipe expansion plus the spider length.

D. When installed in cooling systems, guides must permit the application of thermal insulation.

2.11 MISCELLANEOUS MATERIALS FOR SUPPORTS, HANGERS, ANCHORS AND GUIDES

A. The Contractor shall provide all miscellaneous materials required to properly install all supports, hangers, anchors and guides, including:
 1. Steel Plates, Shapes and Bars: Provide products complying with ASTM A36.
 2. Cement Grout: Portland Cement (ASTM C 150, Type I or Type III) and clean uniformly graded, natural sand (ASTM C 404, Size No. 2). Mix at a ratio of 1.0 part cement to 3.0 parts sand, by volume, with minimum amount of water required for placement and hydration.
 3. Heavy-Duty Steel Trapezes: Fabricate from steel shapes selected for loads required; weld steel in accordance with AWS standards.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

L. Install refrigerant piping in protective conduit where installed belowground.

M. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

N. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

O. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

P. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

Q. Install sleeves for piping penetrations of walls, ceilings, and floors.

R. Install sleeve seals for piping penetrations of concrete walls and slabs.

S. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.2 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."

F. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.

G. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:
 1. Comply with ASME B31.5, Chapter VI.
 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 3. Test high- and low-pressure side piping of each system separately at not less than the pressures...
indicated in Part 1 "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.4 CLEANING, FLUSHING, INSPECTING

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Refill and vent water systems being sure to add water after venting to completely fill system.

C. Disinfect new or repaired water mains and water service piping in accordance with AWWA A601 and section 610 of the 2006 International Plumbing Code

D. Install refrigerant piping according to ASHRAE 15.

E. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

F. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

G. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

H. Install piping adjacent to machines to allow service and maintenance.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

M. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

N. Install refrigerant piping in protective conduit where installed belowground.

O. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

P. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

Q. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats,
and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

S. Identify refrigerant piping and valves.

T. Install sleeves for piping penetrations of walls, ceilings, and floors.

U. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.5 PIPING INSTALLATION

A. Install piping without undue stress or strain in locations shown and run parallel to the lines of the building, except to grade them as specified in neat and workmanlike manner using a minimum of fittings. Provide such fittings, valves and accessories as may be required to meet the conditions of installation. Contractor shall inform himself fully regarding any peculiarities and limitations of space available for installation of material under each section of specifications. Install piping to suit necessities of clearance with ducts, conduits, and other work, and so as not to interfere with any passages or doorways and allow sufficient head room at all places. Use proper reducing fittings for changing piping sizes.

B. Cut pipes accurately to measurements established in the field in a neat and workmanlike manner without damage or without forcing or springing. Perform cutting by means of an approved type of mechanical cutter of the wheel type where practicable. Ream pipe after cutting to remove all burrs.

C. Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings and accessories that may be required. Carefully investigate the architectural and structural conditions affecting the work, and arrange such work accordingly, providing such fittings, and accessories as may be required to meet such conditions. Drawings (plans, schematics, and diagrams) indicate the general location arrangement and restrictions of the piping systems. Location and arrangement of piping layout shall take into consideration pipe sizing and friction loss, expansion, pump sizing, and other design considerations. So far as practical, install piping as indicated on the Contract Drawings unless deviations to layout are approved on the Coordination Drawings. The Contract Drawings are diagrammatic in nature and are not welding fit-up documents. The Contractor is responsible for a complete installation. Refer to individual system specifications for requirements for coordination drawing submittals.

D. Install at low points of gas piping and at the foot of each riser and each drip, a "T" fitting and six (6) inch long capped drip pocket of same size and riser or drip. Grade horizontal gas pipe to prevent traps. Pipe all green gas vents to the exterior as required by Code. Make all joints with graphite and oil and in accordance with National Fuel Gas Code requirements.

E. Install unions and flanges where shown and on each side of all pieces of equipment and other similar items, and in such a manner that the unions can be readily disconnected. Do not place any union or flange in a location which will be inaccessible after completion of the project unless so shown on drawings or specified.

1. Unions in steel pipe 2 1/2 inches and smaller, shall be 250 pound malleable iron, brass seat type. Use 150 pound forged steel flanges for piping three (3) inches and larger. Gaskets shall be 1/8 inch thick.

2. Unions in copper pipe two (2) inches and smaller shall be wrought copper with red bronze ring nut. Use 150 pound ASME copper flanges for piping 2 1/2 inches and larger. Use dielectric unions or couplings where nonferrous metal is joined to ferrous metal.

F. Use reducing fittings, eccentric where required to prevent pocketing of air and water or both, to make changes to pipe sizes.
G. HVAC piping shall be installed plumb, level, and square with low point drains and high point vents. Steam, condensate, drain and sanitary waste and vent piping shall be sloped per code.

H. Contractor shall fully coordinate the installation of all piping systems with all other trades including sheet metal, electrical, sprinkler, ceiling systems, etc.

3.6 JOINTS

A. Steel Pipe Joints:

1. Threaded Pipe Joints, 2” and Smaller: Thread pipe with tapered pipe threads in accordance with ANSI B1.20.1. Cut threads full and clean using sharp dies. Ream threaded ends to remove burrs and restore full inside diameter. Apply pipe joint lubricant or sealant suitable for the service for which the pipe is intended on the male threads at each joint and tighten joint to leave not more than 3 threads exposed. Align threads at point of assembly. Tighten joint with wrench. Do not use pipe or pipe fittings with threads that are damaged or corroded. Do not use pipe sections that have cracked or open welds. Comply with the provided pipe material classification requirements for allowance of threaded pipe within each service type. Threaded pipe will not be allowed for high temperature hot water service.

2. Pipe Larger Than 2”:
 b. Install flanges on all valves, apparatus, and equipment. Weld pipe flanges to pipe ends in accordance with ASME Code for Building Services Piping. Clean flange faces and install gaskets. Tighten bolts gradually and uniformly using a torque wrench to torque specified by manufacturer or flange and sequence flange bolts, to provide uniform compression of gaskets. Use suitable lubricants on bolt threads.

B. Non-Ferrous Pipe Joints:

2. Thoroughly clean tube surface and inside surface of the cup of the fittings, using very fine emory cloth, prior to making soldered or brazed joints. Wipe tube and fittings clean and apply flux. Flux shall not be used as the sole means for cleaning tube and fitting surfaces.

C. Weld pipe joints in accordance with ASME Code for Building Services Piping, B31.9. Weld piping in accordance with recognized industry practice and as follows:

1. Weld pipe joints only when ambient temperature is above 0 degree F.

2. Bevel pipe ends at a 37.5 degree angle, smooth rough cuts, and clean to remove slag, metal particles, and dirt.

3. Use pipe clamps or tack-weld joints with 1” long welds; 4 welds for pipe sizes to 10”, 8 welds for pipe sizes 12” to 20”.

4. Build up welds with stringer-bead pass, followed by hot pass, followed by cover or filler pass. Eliminate valleys at center and edges of each weld. Weld by procedures which will ensure elimination of unsound or unfused metal, cracks, oxidation, blow-holes, and non-metallic inclusions.

5. Do not weld out piping system imperfections by tack-welding procedures; refabricate to comply with requirements.

D. Flanged Joints: Match flanges within piping system, and at connections with valves and equipment. Clean flange faces and install gaskets. Tighten bolts to provide uniform compression of gaskets.

E. Hubless Cast-Iron Joints: Comply with coupling manufacturer’s installation instructions.
3.7 WORKMANSHIP

A. Cut pipes accurately to measurements established at structure. Install pipes without springing or forcing.

B. Clear windows, doors, and other openings with all pipes and ductwork.

C. Arrange pipes to permit expansion and contractions without misalignment or damage.

D. During construction all openings in piping and equipment shall be closed with caps or plugs to keep out all foreign matter and to prevent leakage.

E. All piping in finished spaces shall be run concealed unless otherwise indicated.

3.8 WELDING

A. Refer to Division 23, Section “Mechanical and Electrical General Provisions”.

3.9 SLEEVES AND PLATES

A. Sleeves shall be provided by the trade installing the pipes for which sleeves are to be used. The sleeves shall be carefully located in advance of the construction of walls and floors where new construction is involved. All cutting and patching necessary to set sleeves which are not placed prior to construction shall be the responsibility of the trade providing the sleeves.

B. Sleeves shall be provided for all piping passing through all floor slabs and concrete, plaster, gypsum, or masonry wall construction.

C. Where pipe motion due to expansion and contraction will occur, make sleeves of sufficient diameter to permit free movement of pipe. Where sleeves pass insulated pipes, the sleeves shall be large enough to pass the pipe and the insulation. Check floor and wall construction to determine proper length for various locations; make actual lengths to suit the following:
 1. Terminate sleeves flush with wall.
 2. Terminate sleeves two (2) inches above finished floors.

D. Submit for approval shop drawings showing size, type, and location of all sleeves and penetrations through poured concrete walls. See Architectural Drawings for extent and location of such walls.

E. All pipe sleeves shall be constructed of Schedule 40 steel pipe unless otherwise indicated on the drawings.

F. See drawings for additional sleeve requirements.

G. Fasten sleeves securely in floors and walls so that they will not become displaced when concrete is poured or when other construction is built around them. Take precautions to prevent concrete, plaster or other materials from being forced into space between pipe and sleeve during construction. Caulk the annular space with elastic caulk compound or as noted to make tight.

H. Where watertight sleeves are indicated, provide Link Seal rubber seals, as manufactured by Thunderline Corporation, between pipes and sleeves, or provide sleeves as detailed.

3.10 TESTS

A. The following tests shall be conducted by the Contractor and all piping shall be proven tight in the presence of the Architect or his representative. These tests shall be conducted before any insulation is installed and any insulation installed prior to tests shall be removed. Provide all equipment and labor...
required. Tests shall be at least four (4) hours in duration, after all piping has been proven tight. Piping may be tested in sections as approved by the Architect. Tests shall be as specified herein and a written test report shall be submitted to the Architect within two (2) days following each individual test. All test reports shall be included in the operation and maintenance manuals.

B. The domestic water piping shall be hydrostatically tested to 150 pounds per square inch gauge (psig). All openings in the water piping shall be plugged; the system, or portion thereof, filled with water, and tested with a pump to a pressure of 150 pounds per square inch gauge (psig). Domestic water system piping shall be disinfected after tests in accordance with Baltimore City and Maryland State Health Department Requirements.

C. The sanitary and miscellaneous drain systems shall be hydrostatically tested. Tests shall be as required by code and as a minimum shall comprise of the plugging of all openings in the lines, filling the system (or portion thereof), with water until all joints are proven tight. Piping shall be tested with a minimum head of ten (10) feet of water.

D. Fire protection system shall be tested in accordance with applicable NFPA Standards. Refer to Division 15, Section “Fire Protection”.

E. Refrigerant piping shall be cleaned, dehydrated, and evacuated. Piping shall be evacuated and held to less than 2.5 MM HG vacuum for a period of not less than twelve (12) hours without appreciable pressure rise. Vacuum shall then be broken with refrigerant or dry nitrogen and re-evacuated to 2.5 MM HG vacuum for an additional twelve (12) hours. Systems shall then be charged and piping tested with halide torch to assure no leaks. All procedures shall be in accordance with air conditioning equipment manufacturer's recommendations.

3.11 STERILIZATION

A. Domestic water system piping shall be disinfected in accordance with State of South Carolina Health Department requirements and Section 610 of the 2006 International Plumbing Code. A written test report shall be submitted to the Owner and Architect within five (5) days following the sterilization process and before occupancy is granted. All written reports shall be included in the operation and maintenance manuals.

B. After final testing for leaks, all new domestic water lines shall be thoroughly flushed by Contractor to remove foreign material. Before placing the systems in service, Contractor shall engage a qualified water service Contractor to sterilize the new water lines. Sterilization shall include as a minimum the following procedure:

1. Through a 3/4" hose connection in the main entering the building, pump in sufficient sodium hypochlorite to produce a free available chlorine residual of not less than 200 parts per million. The Contractor shall provide plumbing connections and power for pumping chlorine into the system.

2. Proceed upstream from the point of chlorine application opening all faucets and taps until chlorine is detected. Close faucets and taps when chlorine is evident.

3. When chlorinated water has been brought to every faucet and tap with a minimum concentration of 200 parts per million chlorine, retain this water in the system for three (3) hours. CAUTION: Over-concentration of chlorine and more than three (3) hours of retention may result in damage to piping system which shall be replaced by the Contractor at no additional cost.

4. At the end of the retention period, no less than 100 parts per million of chlorine shall be present at the extreme end of the system.

5. Proceed to open all faucets and taps and thoroughly flush all new lines until the chlorine residual in the water is less than 1.0 parts per million.

6. Obtain representative water samples, at least two (2), from the system for analysis by a recognized bacteriological laboratory.

7. If the samples tested for coliform organisms is negative, a letter and laboratory report shall be...
submitted by the water service organization to the Contractor, certifying successful completion of the sterilization.

8. If any samples tested indicate the presence of coliform organism, the entire sterilization procedure shall be repeated.

3.12 MOLD AND CONDENSATION PREVENTION

A. Piping Systems: Cold piping systems (such as cold water) shall not be operated prior to insulation and vapor barrier installation in order to prevent condensation on the piping.

B. Air Systems: Air handling systems shall not be operated at supply air temperatures below fifty (50) degrees F and all supply air ductwork shall be insulated prior to operation. Coils shall be insulated to prevent condensation when heating valve is closed. Air systems shall not be operated in portions of the building not yet fully enclosed, where systems can be exposed to warm, humid air conditions.

C. Room thermostats shall not be set lower than sixty-eight (68) degrees F. Programmable thermostats shall be set to prevent lower temperature setting from the exterior of the thermostat by room occupants.

D. Contractor shall notify the Architect immediately if signs of condensation or mold are discovered.

END OF SECTION 230530
SECTION 230548 - MECHANICAL VIBRATION, SOUND AND SEISMIC CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The drawings and general provisions of the Contract, including General and Supplementary Conditions, General Requirements and all other Specification Sections apply to the work specified in this section. In the event of conflict between specific requirements of the various documents, the more restrictive, the more extensive (i.e.: more expensive) requirement shall govern.

B. The 2012 International Building Code and SEI/ASCE 7-05 Standard apply to all work associated with the seismic installation of all new mechanical and electrical equipment. Refer to Architectural and Structural drawings for seismic loads and additional seismic information.

1.2 SCOPE

A. This section includes requirements for items of equipment, materials and procedures which are common to more than one section of Division 22 and 23. This section applies to all sections of Divisions 22 and 23.

1.3 SUMMARY

A. This Section includes the following:

1. Elastomeric isolation pads and mounts.
2. Restrained elastomeric isolation mounts.
3. Freestanding and restrained spring isolators.
4. Housed spring mounts.
5. Elastomeric hangers.
7. Spring hangers with vertical-limit stops.
8. Thrust limits.
9. Pipe riser resilient supports.
10. Resilient pipe guides.
11. Freestanding and restrained air spring isolators.
12. Restrained vibration isolation roof-curb rails.
15. Steel and inertia vibration isolation equipment bases.
17. Certification of seismic attachment of housekeeping pads.

B. Work includes vibration control devices, materials, and related items for mechanical and electrical systems. Perform all work as shown on the drawings and as specified herein to provide complete vibration isolation systems in proper working order.

C. The requirements of Division 15, Section “Mechanical and Electrical General Provisions” shall apply to work specified under this section.

1.4 DEFINITIONS

A. A_v: Effective peak velocity related acceleration coefficient.
B. OSHPD: Office of Statewide Health Planning & Development for the State of California. OSHPD assigns a unique anchorage preapproval "R" number to each seismic restraint it tests. The number describes a specific device applied as tested.

C. Positive Attachment: A positive attachment is defined as a cast-in anchor, a drill-in wedge anchor, a double sided beam clamp loaded perpendicular to a beam, or a welded or bolted connection to structure. Single sided "C" type beam clamps for support rods of overhead piping, ductwork, fire protection, electrical conduit, bus duct, or cable trays, or any other equipment are not acceptable on this project as seismic anchor points.

D. Transverse Bracing: Restraint(s) applied to limit motion perpendicular to the centerline of the pipe, duct or conduit.

E. Longitudinal Bracing: Restraint(s) applied to limit motion parallel to the centerline of the pipe, duct or conduit.

F. Failure: For the purposes of this project, failure is defined as the discontinuance of any attachment point between equipment or structure, vertical permanent deformation greater than 1/8" and/or horizontal permanent deformation greater than 1/4".

1.5 SUBMITTALS

A. Product Data: Include load deflection curves for each vibration isolation device.

B. Shop Drawings: Signed and sealed by the manufacturer’s qualified professional engineer. Before ordering any products, submit shop drawings of the items listed below. The shop drawings must be complete when submitted, be based on equipment actually purchased and must be presented in a clear, easily understood form. Incomplete or unclear presentation of shop drawings may be reason for rejection of the submittal. Include the following:

1. Product Description: A complete description of products to be supplied, including product data, dimensions, specifications, and installation instructions.

2. Selection Data: Detailed selection data for each vibration isolator supporting equipment, including:
 a. Equipment identification mark;
 b. Isolator type;
 c. Actual load;
 d. Static deflection expected under the actual load
 e. Specified minimum static deflection.

3. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases. Seismic restraint calculations must be provided for all connections of equipment to the structure. Calculations must be stamped by the manufacturer's registered professional engineer with at least five years of seismic design experience, licensed in the state of the job location.

4. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.

5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.

6. Seismic-Restraint Details: Detail fabrication and attachment of seismic restraints and snubbers. Show anchorage details and indicate quantity, diameter, and depth of penetration of anchors.

7. Submittals for Interlocking Snubbers: Include load deflection curves up to 1/2-inch deflection in x, y, and z planes.

8. Seismic restraint calculations.
9. Provide Approved Agencies Certificate of Compliance meeting Seismic Category D for all components. Tests shall include anchorage, structural and on line capability from analytical or shaker test method.

C. Submission of samples may be requested for each type of vibration isolation device. After approval, samples will be returned for installation at the job if requested. All costs associated with submission of samples shall be borne by the Contractor.

D. Welding certificates.

E. Manufacturer Seismic Qualification Certification: Submit certification that all specified equipment will withstand seismic forces identified in "Performance Requirements" Article above. Include the following:
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.6 MANUFACTURER RESPONSIBILITIES

A. Manufacturer of vibration isolation and seismic restraint equipment shall have the following responsibilities:
 1. Determine vibration isolation and seismic restraint sizes and locations.
 2. Provide piping and equipment isolation systems and seismic restraints as scheduled or specified.
 4. Provide installation instructions, drawings and field supervision to assure proper installation and performance.
 5. Provide certification by a licensed engineer employed by the manufacturer that all mounts and restraints meet the project requirements for seismic loading.

B. Substitution of internally isolated mechanical equipment in lieu of the specified isolation of this Section must be approved for individual equipment units and is acceptable only if above acceleration loads are certified in writing by the equipment manufacturer and stamped and sealed by a licensed civil or structural engineer.

1.7 RELATED WORK

A. Housekeeping Pads
 1. Housekeeping pad reinforcement and monolithic pad attachment to the structure details and design shall be prepared by the restraint vendor if not already indicated on the drawings.
 2. Housekeeping pads shall be coordinated with restraint vendor and sized to provide a minimum edge distance of ten (10) bolt diameters all around the outermost anchor bolt to allow development of full drill-in wedge anchor ratings. If cast-in anchors are to be used, the housekeeping pads shall be sized to accommodate the ACI requirements for bolt coverage and embedment.

B. Supplementary Steel
 1. Provide any incidental materials and supplementary support steel for all equipment, piping, ductwork, roof mounted equipment, etc., such as mounting brackets, attachments and other MECHANICAL VIBRATION, SOUND AND SEISMIC CONTROL 230548-3
accessories, that may be needed to meet the requirements stated herein, even if not expressly specified or shown on the drawings, at no additional cost.

C. Attachments
 1. Contractor shall supply restraint attachment plates cast into housekeeping pads, concrete inserts, double sided beam clamps, etc. in accordance with the requirements of the vibration vendor's calculations.

1.8 QUALITY ASSURANCE

A. Seismic-restraint devices shall have horizontal and vertical load testing and analysis performed according to OSHPD and shall bear anchorage preapproval "R" number, from OSHPD or another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer. Testing and calculations must include both shear and tensile loads and 1 test or analysis at 45 degrees to the weakest mode.

B. Seismic restraints for mechanical systems shall comply with 2009 IBC and ASCE 7-05.

C. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel."

D. Verify correctness of equipment model numbers and conformance of each component with manufacturer's specifications.

E. Should any rotating or electrical equipment cause excessive noise or vibration when properly installed on the specified isolators, the Contractor shall be responsible for rebalancing, realignment, or other remedial work required to reduce noise and vibration levels. Excessive is defined as exceeding the manufacturer's specifications for the unit in question.

F. Upon completion of the work, the Architect shall inspect the installation and shall inform the installing contractor of any further work that must be completed. Make all adjustments as directed by the Architect that result from the final inspection. This work shall be done before vibration isolation systems are accepted.

G. The contractor shall provide a quality assurance plan prepared by a registered design professional for all mechanical, plumbing and electrical equipment and systems. The plan shall include the provisions of the 2009 International Building Code, per section 1705.2 and 1705.3. The plan shall be submitted to the Architect for review and approval. The contractor shall coordinate the requirements of the plan with the Owner and shall cooperate with the Owner’s Seismic Quality Assurance coordinator.

1.9 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into base. Concrete, reinforcement, and formwork requirements are specified in Division 3.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

1.10 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Seismic Snubber Units: Furnish replacement neoprene inserts for all snubbers.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 VIBRATION ISOLATORS

A. Manufacturers:
1. Ace Mounting Co., Inc.
2. Amber/Booth Company, Inc.
4. California Dynamics Corp.
5. Isolation Technology, Inc.
7. Mason Industries, Inc.
8. Vibration Eliminator Co., Inc.
9. Vibration Isolation Co., Inc.

B. General:

1. Select vibration isolating units for the lowest operating speed of equipment, so designed that natural frequency of equipment and base mass is not less than 1.5 times the lowest operating frequency of the moving equipment, but not a multiple or harmonic of the base frequency. Furnish vibration isolation producing a uniform loading and deflection even when equipment weight is not evenly distributed, vibration isolation shall be stable during starting and stopping of equipment without excessive traverse and eccentric movement of equipment.

2. Concrete pads under the isolation units shall be reinforced. Use concrete having a minimum compressive strength of 2,500 pounds per square inch and structural reinforcing bars conforming to ASTM A-615 Grade 60.

3. The installed vibration isolation system for each floor or ceiling mounted item of equipment shall have a maximum lateral motion under equipment start up and shut down conditions of 1/4 inch. Motions in excess shall be restrained by approved spring type mounting.

4. All electrical connections, drain connections, etc., made to equipment which rests on vibration isolators, shall be sufficiently flexible to permit the equipment to be properly isolated.

5. The type of isolation, base, and minimum static deflection shall be as required for each specific equipment application, but not less than that specified herein when supported on a solid concrete structural slab having a thickness of not less than four (4) inches. If vibration isolators with a deflection greater than the minimum specified are required to meet the noise criteria for the adjacent spaces, suitable isolation system shall be submitted. Should vibration isolators installed for the equipment prove inadequate to prevent transmission of equipment vibrations to the building structure or limit equipment vibration originated noise in the building spaces to acceptable levels, the isolators shall be replaced with units having the largest deflection that can be practicably installed.

6. Where designated in the schedules, spring and combination rail and spring isolation supports are for installation with equipment structurally built or supported on a rigid structural steel frame suitable for these types of isolation. Where these types of isolation are not suitable for the equipment construction or operation, the equipment shall be mounted on a structural steel base as herein specified.

7. Equipment affected by wind pressure or with operating weight different from installed weight shall have built-in adjustable vertical stops to prevent rising of equipment when weight is
removed. (Equipment containing liquid such as boilers, cooling towers, and chilled water refrigeration units shall have vertical stops.)

8. All springs installed out-of-doors shall be cadmium-plated, zinc electroplated or powder-coated after fabrication. Hardware and other metal parts shall be cadmium-plated or galvanized. Galvanizing shall meet ASTM Salt Spray Test Standards and Federal Test Standard No. 14.

9. All isolators installed out-of-doors shall have base plates with bolt holes for fastening the isolators to the support members.

10. Isolator types are scheduled to establish minimum standards. At the Contractor's option, labor-saving accessories can be an integral part of isolators supplied to provide initial lift of equipment to operating height, hold piping at fixed elevations during installation and initial system filling operations, and similar installation advantages. Accessories and seismic restraint features must not degrade the isolation performance of the isolators.

11. Static deflection of isolators shall be as provided in the EXECUTION section and as shown on the drawings. All static deflections stated are the minimum acceptable deflection for the mounts under actual load. Isolators selected solely on the basis of rated deflections are not acceptable and will be disapproved.

C. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.

3. Number of Layers: 1 or 2.

D. Elastomeric Mounts: Double-deflection type, with molded, oil-resistant rubber or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code otherwise identify to indicate capacity range.

1. Durometer Rating: 40.

E. Restrained Elastomeric Mounts: All-directional elastomeric mountings with seismic restraint.

1. Materials: Cast-ductile-iron housing containing two separate and opposing, molded, bridge-bearing neoprene elements that prevent central threaded sleeve and attachment bolt from contacting the casting during normal operation.
2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

F. Spring Isolators: Freestanding, laterally stable, open-spring isolators.

1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 100 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

G. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic restraint.

1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to wind loads or if weight is removed; factory-drilled baseplate bonded to 1/4-inch thick, elastomeric isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

H. Housed Spring Mounts: Housed spring isolator with integral seismic snubbers.
1. Housing: Ductile-iron or steel housing to provide all-directional seismic restraint.
2. Base: Factory drilled for bolting to structure.
3. Snubbers: Vertically adjustable to allow a maximum of 1/4-inch travel before contacting a resilient collar.

I. Elastomeric Hangers: Double-deflection type, with molded, oil-resistant rubber or neoprene isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.

J. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.

K. Spring Hangers with Vertical-Limit Stop: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression and with a vertical-limit stop.
1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.

L. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression and with a load stop. Include rod and angle-iron brackets for attaching to equipment.
1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. **Coil Spring**: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

M. **Pipe Riser Resilient Support**: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch thick, 60-durometer neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.

N. **Resilient Pipe Guides**: Telescopic arrangement of 2 steel tubes separated by a minimum of 1/2-inch thick, 60-durometer neoprene. Factory set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.3 RESTRAINED VIBRATION ISOLATION ROOF-CURB RAILS

A. **Manufacturers**:
 1. Amber/Booth Company, Inc.
 2. California Dynamics Corp.
 3. Isolation Technology, Inc.
 5. Mason Industries, Inc.
 7. Vibration Isolation Co., Inc.

B. **Description**: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand 125-mph wind impinging laterally against side of equipment. The roof curbs shall be built to seismically contain the rooftop unit. Curb shall have anchorage preapproval "R" from OSHPD in the state of California attesting to the maximum certified horizontal and vertical load ratings.

C. **Lower Support Assembly**: Sheet-metal "Z" section containing adjustable and removable steel springs that support upper floating frame. Upper frame shall provide continuous support for equipment and shall be captive to resiliently resist wind and seismic forces. Lower support assembly shall have a means for attaching to building structure and a wood nailer for attaching roof materials, and shall be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly.

D. **Spring Isolators**: Adjustable, restrained spring isolators shall be mounted on 1/4-inch- thick, elastomeric vibration isolation pads and shall have access ports, for level adjustment, with removable waterproof covers at all isolator locations. Isolators shall be located so they are accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.

 1. **Restrained Spring Isolators**: Freestanding, steel, open-spring isolators with seismic restraint.
 a. **Housing**: Steel with resilient vertical-limit stops and adjustable equipment mounting and leveling bolt.
 b. **Outside Spring Diameter**: Not less than 80 percent of the compressed height of the spring at rated load.
 c. **Minimum Additional Travel**: 50 percent of the required deflection at rated load.
 d. **Lateral Stiffness**: More than 80 percent of the rated vertical stiffness.
 e. **Overload Capacity**: Support 200 percent of rated load, fully compressed, without deformation or failure.

 2. **Elastomeric Isolator Pads**: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of
supported equipment.
 b. Durometer Rating: 40.
 c. Number of Layers: 1 or 2.

E. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch thick.

F. Water Seal: Continuous galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflushed over roof materials.

G. The floating member of the roof curb shall have a perimeter angle cross members to support two layers of 5/8" waterproof sheetrock laid on with staggered joints. Sheetrock must surround ducts to provide a continuous sound break. This acoustical barrier shall be caulked to minimize sound transmission between the rooftop air handling unit and the building. Where the mechanical arrangement makes attachment to the floating member unfeasible, the barrier shall be attached at the highest practical elevation of the fixed curb with provision for 1" thick closed cell neoprene flexible seals around any ductwork. A four inch layer of 1.5 density fiberglass shall cover the entire solid roof surface under the unit. Ductwork shall be externally lined with sound absorbent material coated with a dampening compound such as Mason Industries MDC-10 or approved equal. Complete instructions shall be provided by the spring isolation curb manufacturer. Acoustical package shall be Mason Industries, Inc. Type RSC-dB or approved equal.

2.4 SEISMIC-RESTRAINT DEVICES

A. Manufacturers:
 1. Amber/Booth Company, Inc.
 2. B-Line Systems, Inc.
 3. California Dynamics Corp.
 5. Loos & Co., Inc.; Cableware Technology Division.
 6. Mason Industries, Inc.
 7. TOLCO Incorporated.
 8. Unistrut Diversified Products Co.; Wayne Manufacturing Division.
 10. Vibration Isolation Co., Inc.

B. Resilient Isolation Washers and Bushings: 1-piece, molded, bridge-bearing neoprene complying with AASHTO M 251 and having a durometer of 40, plus or minus 5, with a flat washer face.

C. Seismic Snubbers: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
 2. Resilient Isolation Washers and Bushings: 1-piece, molded, bridge-bearing neoprene complying with AASHTO M 251 and having a durometer of 40, plus or minus 5.

D. Restraining Cables: Galvanized steel aircraft cables with end connections made of steel assemblies that swivel to final installation angle and utilize two clamping bolts for cable engagement.

E. Anchor Bolts: Seismic-rated, drill-in, and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488/E 488M.

F. General Requirements:
1. Equipment, piping, ductwork and conduit shall be braced and supported in accordance with International Building Code, 2009 - Chapter 16.

2. This Contractor shall provide the services of a professionally registered Seismic consultant to perform duties indicated below. The Contractor shall submit with his bid, the hourly billing rate for their Seismic consultant to provide additional services beyond the specified scope.

G. Mechanical Equipment:
 1. All equipment bases and mounting tabs shall be provided integral to the equipment and designed to distribute Seismic loads without failure. Equipment bases mounting tabs shall be certified by the manufacturer to be in accordance with the requirements of this specification.
 2. The size, type and quantity of anchors and fasteners required to anchor the equipment will be provided in accordance with the Seismic consultant.
 3. Equipment submittals shall include Seismic anchoring details.

H. HVAC Ductwork:
 1. Attachments and supports for HVAC ductwork systems shall be designed to meet the force and displacement provisions of SEI/ASCE 7-05 Standard.

I. Piping
 1. Attachments and supports for piping systems shall be designed to meet the force and displacement provisions of SEI/ASCE 7-05 Standard.

J. Mechanical Equipment, Attachments and Supports
 1. Attachments and supports for mechanical equipment shall be designed to meet the force and displacement provisions of SEI/ASCE 7-05 Standard.

K. The Seismic details indicated on the drawings are not intended to limit the Contractor. Alternated methods of support, attachment and bracing must be designed by the Seismic Consultant and submitted to the Architect for review.

L. Sprinkler and standpipe system piping shall be supported and braced in accordance with NFPA 13 and NFPA 14.

2.5 VIBRATION ISOLATION EQUIPMENT BASES

A. Manufacturers:
 1. Amber/Booth Company, Inc.
 2. California Dynamics Corp.
 3. Isolation Technology, Inc.
 5. Mason Industries, Inc.
 7. Vibration Isolation Co., Inc.

B. Steel Base: Factory-fabricated, welded, structural-steel bases and rails.
 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails. Include supports for suction and discharge elbows for pumps.
 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 3. Support Brackets: Factory-welded steel angles on frame for outrigger isolation mountings and to
provide for anchor bolts and equipment support.

1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails. Include supports for suction and discharge elbows for pumps.

2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.

3. Support Brackets: Factory-welded steel angles on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

2.6 RESILIENT PENETRATION SLEEVE/SEAL

A. Resilient penetration sleeve/seals shall be field-fabricated from a pipe or sheet metal section that is 1/2 inch to 3/4 inch larger than the penetrating element in all directions around the element, and shall be used to provide a sleeve through the construction penetrated. The sleeve shall extend one (1) inch beyond the penetrated construction on each side. The space between the sleeve and the penetrating element shall be packed with glass fiber or mineral wool to within 1/4 inch of the ends of the sleeve. The remaining 1/4 inch space on each end shall be filled with acoustical sealant to form an airtight seal. The penetrating element shall be able to pass through the sleeve without contacting the sleeve. Alternatively, prefabricated sleeves accomplishing the same result are acceptable.

2.7 RESILIENT LATERAL SUPPORTS

A. These units shall either be a standard product of the vibration isolation mounting manufacturer, or be custom fabricated from standard components. These units shall incorporate neoprene isolation elements that are specifically designed to provide resilient lateral bracing of ducts or pipes.

2.8 FLEXIBLE DUCT CONNECTIONS

A. Flexible duct connections shall be made from coated fabric. The clear space between connected parts shall be a minimum of three (3) inches and the connection shall have a minimum of 1.5 inches of slack material.

2.9 FLEXIBLE PUMP CONNECTIONS

A. Install flexible connectors at all suction and discharge pump connections to relieve pump and piping stresses. Flexible hose section to be 304 stainless steel, close pitch, annular corrugated hose with a type 304 braided outer covering. End connections to be ANSI class 150 carbon steel plate flanges. Overall length to allow for a minimum of 1” intermittent flexing or per manufacturer's recommendations for additional motion.

B. Connectors mounted at the suction side of pumps shall be located upstream of the inlet elbow, and incorporate specially designed stationary vanes that impart a rotational motion as the fluid enters the elbow. Vanes to be capable of countereacting elbow induced turbulence, enabling the fluid to negotiate the turn uniformly, and exit with a flat velocity profile. Suction side flexible connectors shall be approved equal to model "CRV Flex" as manufactured by Metraflex.

C. Connectors at the discharge side of pumps shall incorporate internal flow straightening vanes to reduce turbulence prior to the balancing valve. Vanes to be capable of reducing discharge turbulence equal to 5-10 pipe diameters of straight pipe, while allowing full rated movement of the connector. Discharge side
flexible connectors shall be approved equal to model "Vane Flex" as manufactured by Metraflex.

2.10 FLEXIBLE PIPE CONNECTIONS

A. Flexible pipe connections shall be fabricated of multiple plys of nylon cord, fabric, and neoprene; and shall be vulcanized so as to become inseparable and homogeneous. Flexible connections shall be formed in a double sphere shape, and shall be able to accept compressive, elongating, transverse, and angular movements.

B. The flexible connections shall be selected and specially fitted, if necessary, to suit the system temperature, pressure, and fluid type. In addition, suitable flexible connections should be selected which do not require rods or cables to control extension of the connector.

C. Connectors for pipe sizes two (2) inches or smaller shall have threaded female union couplings on each end. Larger sizes shall be fitted with metallic flange couplings.

2.11 GROMMETS:

A. Grommets shall be specially formed to prevent bolts from directly contacting the isolator base plate, and shall be sized so that they will be loaded within the manufacturer's recommended load range.

B. Grommets shall either be custom made by combining a neoprene washer and sleeve, or a manufactured product:

2.12 ACOUSTICAL SEALANT:

A. Sealants for acoustical purposes as described in this specification shall be silicone or a nonsetting sealants.

2.13 FLEXIBLE ELECTRICAL CONNECTIONS

A. Type A:

1. Flexible Electrical Connection Type A shall be a prefabricated unit incorporating a flexible and watertight outer jacket, grounding strap, plastic inner sleeve to maintain smooth wire way, and end hubs with tapered electrical threads to fit standard threaded rigid metal conduit.

2. Flexible Electrical Connection Type A shall be Crouse-Hinds "XD Expansion/Deflection Coupling", Spring City Electrical Mfg. Co. "Type DF Expansion and Deflection Fitting", or approved equal.

B. Type B:

1. Flexible Electrical Connection Type B shall be field fabricated using a minimum two (2) foot length of flexible conduit or cable.

C. Type C:

1. Flexible Electrical Connection Type C shall be field fabricated using a minimum equal four (4) foot length of flexible conduit or cable.

2.14 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.

1. Powder coating on springs and housings.

2. All hardware shall be electrogalvanized. Hot-dip galvanized metal components for exterior use.
3. Baked enamel for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements, installation tolerances, and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATION:

A. General:
1. Refer to the PRODUCTS section of this specification for vibration isolation devices identified on the drawings or specified herein.
2. The static deflections of all isolators specified herein are the minimum acceptable deflections for the mounts under actual load. Isolators selected solely on the basis of rated deflection are not acceptable and will be disapproved.

B. Major Equipment:
1. Unless otherwise shown or specified, all floor-mounted major equipment shall be set on four (4) inch high concrete housekeeping pads provided under another Division. Housekeeping pads shall rest on a structural floor and shall be reinforced with steel rods and interconnected with floor. See Architectural or Structural drawings for details.
2. Types and minimum static deflections of vibration isolation devices for major equipment items shall be as specified hereinafter.
3. Flexible duct connections shall be installed at all fan unit intakes, fan unit discharges, and wherever else shown on the drawings.
4. Flexible pipe connections shall be installed at all pipe connections to equipment and machines with rotating parts.
5. Electrical connections to vibration-isolated equipment shall be flexible, as called for in the electrical portion of this specification.
6. Thrust restraints shall be installed on all suspended fans and on all floor-mounted fans developing three (3) inches or more of static pressure, unless the horizontal component of the thrust force can be demonstrated to be less than ten (10) percent of the equipment weight.
7. Each electric motor shall be mounted on the same foundation as the driven machine. Piping connections, including strainer at pumps, shall be supported on the same foundation as the pumps.

C. Miscellaneous Mechanical Equipment:
1. Miscellaneous pieces of mechanical equipment such as converters, pressure reducing stations, dryers, strainers, storage tanks, condensate receiver tanks, and expansion tanks which are connected to isolated piping systems shall be vibration-isolated from the building structure by neoprene pad or neoprene isolators (selected for 0.1” static deflection) unless their position in the piping system requires a higher degree of isolation as called for under Pipe Isolation.

D. Pipes:
1. All chilled water, heating water, reheat water, preheat water, steam, and drain piping that is connected to vibration-isolated equipment shall be isolated from the building structure at their first three support points.

2. Piping shall be isolated from the building structure by means of vibration isolators, resilient lateral supports, and resilient penetration sleeve/seals.

3. Isolators for the first three support points adjacent to connected equipment shall achieve one half the specified static deflection of the isolators supporting the connected equipment. When the required static deflection of these isolators is greater than 1/2 inch, spring neoprene isolators shall be used. When the required static deflection is less than or equal to 1/2 inch, neoprene isolators shall be used. All other pipe support isolators within the specified limits shall be either neoprene achieving at least 1/4 inch static deflection.

4. Where lateral support of pipes is required within the specified limits, this shall be accomplished by use of resilient lateral supports.

5. Pipes within the specified limits that penetrate the building construction shall be isolated from the building structure by use of resilient penetration sleeve/seals.

6. Provide flexible pipe connections as called for under Major Equipment above and wherever shown on the drawings.

7. All pipe risers within mechanical rooms over three (3) inches in diameter shall be isolated under each pipe riser floor support with either two layers of 3/4 inch thick, maximum 50 durometer neoprene pads or with load bearing plates or neoprene mounts with a minimum 0.2 inch static deflection.

E. Ductwork:

1. All sheet metal ducts and air plenums that are connected to vibration-isolated equipment shall be isolated from the building structure at their first three support points by neoprene isolators. All isolators shall achieve 0.1 inch minimum static deflection.

2. Ducts within the specified limits that penetrate the building construction shall be isolated from the building structure by use of resilient penetration sleeve/seals.

3. Flexible duct connections shall be provided as called for above under Major Equipment and wherever shown on the drawings.

F. Mechanical Equipment:

1. Electrical connections to vibration isolated mechanical equipment shall be made using flexible electrical connections Type A or Type C.

3.3 INSTALLATION

A. Install thrust limits at centerline of thrust, symmetrical on either side of equipment.

B. General:

1. Locations of all vibration isolation devices shall be selected for ease of inspection and adjustment as well as for proper operation.

2. Installation of vibration isolation equipment shall be in accordance with the manufacturer's instructions.

3. In all cases, isolated electrical equipment shall be positioned so that it is free standing and does not come in rigid contact with the building structure or other systems.

4. Isolators:
 a. All vibration isolators shall be aligned squarely above or below mounting points of the supported equipment.
 b. Isolators for equipment with bases shall be located on the sides of the bases which are parallel to the equipment shaft unless this is not possible because of physical constraints.
 c. Locate isolators to provide stable support for equipment, without excess rocking. Consideration shall be given to the location of the center of gravity of the system and the location and spacing of the isolators. If necessary, a base with suitable footprint shall be
provided to maintain stability of supported equipment, whether or not such a base is specifically called for herein.

d. If a housekeeping pad is provided, the isolators shall bear on the housekeeping pad and the isolator base plates shall rest entirely on the pad.

e. Hanger rods for vibration-isolated support shall be connected to structural beams or joists, not the floor slab between beams and joists. Provide suitable intermediate support members as necessary.

f. Vibration isolation hanger elements shall be positioned as high as possible in the hanger rod assembly, but not in contact with the building structure, and so that the hanger housing may rotate a full 360 degrees about the rod axis without contacting any object.

g. Parallel running pipes may be hung together on a trapeze that is isolated from the building. Isolator deflections must be the greatest required by the provisions for pipe isolation for any single pipe on the trapeze. Do not mix isolated and unisolated pipes on the same trapeze.

h. Pipes, ducts and equipment shall not be supported from other pipes, ducts and equipment.

i. Resiliently isolated pipes, ducts and equipment shall not come in rigid contact with the building construction or rigidly supported equipment.

j. The installed and operating heights of equipment vibration-isolated with floor spring and neoprene travel limited isolators or roof isolators or with roof curb or roof rail isolation bases shall be identical. Limit stops shall be out of contact during normal operation. Adjust isolators to provide 1/4 inch clearance between the limit stop brackets and the isolator top plate, and between the travel limit nuts and travel limit brackets.

k. Adjust all leveling bolts and hanger rod bolts so that the isolated equipment is level and in proper alignment with connecting ducts or pipes.

l. Roof isolators shall be installed in strict accordance with the manufacturer's instructions.

5. Bases:

a. No equipment unit shall bear directly on vibration isolators unless its own frame is suitably rigid to span between isolators and such direct support is approved by the equipment manufacturer. This provision shall apply whether or not a base frame is called for on the schedule. In the case that a base frame is required for the unit because of the equipment manufacturer's requirements and is not specifically called for on the equipment schedule, a base frame recommended by the equipment manufacturer shall be provided at no additional expense.

b. Unless otherwise indicated, there is to be a minimum operating clearance of one (1) inch between steel rails, steel frame bases or inertia bases and the floor beneath the equipment. The isolator mounting brackets shall be positioned and the isolators adjusted so that the required clearance is maintained. The clearance space shall be checked by the Contractor to ensure that no construction debris has been left to short circuit or restrict the proper operation of the vibration isolation system.

c. Roof curb and roof rail isolation bases shall be installed in strict accordance with the manufacturer's instructions.

6. Flexible Duct Connections:

a. Sheet metal ducts and plenum openings shall be squarely aligned with the fan discharge, fan intake, or adjacent duct section prior to installation of the flexible connection, so that the clear length is approximately equal all the way around the perimeter. Flexible duct connections shall not be installed until this provision is met. There shall be no metal-to-metal contact between connected sections, and the fabric shall not be stretched taut.

7. Flexible Pipe Connections:

a. Install flexible pipe connections in strict accordance with the manufacturer's instructions.

8. Thrust Restraints:

a. Thrust restraints shall be attached on each side of the fan at the vertical centerline of thrust. The two rods of the thrust restraint shall be parallel to the thrust force. This may require custom brackets or standoffs. The body of the thrust restraint shall not come in contact with the connected elements. Thrust restraints shall be adjusted to constrain equipment
movement to the specified limit.

9. Grommets:
 a. Where grommets are required at hold down bolts of isolators, bolt holes shall be properly sized to allow for grommets. The hold down bolt assembly shall include washers to distribute load evenly over the grommets. Bolts and washers shall be galvanized.

10. Resilient Penetration Sleeve/Seals:
 a. Maintain an airtight seal around the penetrating element and prevent rigid contact between the penetrating element and the building structure. Fit the sleeve tightly to the building construction and seal airtight on both sides of the construction penetrated with acoustical sealant.

11. Flexible Electrical Connections:
 a. Type C connections shall be installed in a grossly slack "U" shape or a 360 degree loop.
 b. Rigid conduit on the isolated-equipment side of the flexible connection, and the flexible connection itself, shall not be tied to the building construction or other rigid structures.

C. Install seismic snubbers on isolated equipment. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.

D. Install restraining cables at each trapeze and individual pipe hanger. At trapeze anchor locations, shackle piping to trapeze. Install cables so they do not bend across sharp edges of adjacent equipment or building structure.

E. Install steel angles or channel, sized to prevent buckling, clamped with ductile-iron clamps to hanger rods for trapeze and individual pipe hangers. At trapeze anchor locations, shackle piping to trapeze. Requirements apply equally to hanging equipment. Do not weld angles to rods.

F. Install resilient bolt isolation washers on equipment anchor bolts.

3.4 EQUIPMENT BASES

A. Fill concrete inertia bases, after installing base frame, with 3000-psi concrete; trowel to a smooth finish.
 1. Cast-in-place concrete materials and placement requirements are specified in Division 3.

B. Concrete Bases: Anchor equipment to concrete base according to supported equipment manufacturer's written instructions for seismic codes at Project site.
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 2. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use Setting Drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
 5. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 6. Cast-in-place concrete materials and placement requirements are specified in Division 3.

3.5 FIELD QUALITY CONTROL

A. Testing: Perform the following field quality-control testing:
 1. Isolator seismic-restraint clearance.
 2. Isolator deflection.
 3. Snubber minimum clearances.
 4. Air-Mounting System Leak Test: After installation, charge system and test for leaks. Repair leaks
and retest until no leaks exist.

5. Air-Mounting System Operational Test: Test the compressed-air leveling system. Remove malfunctioning units, replace with new units, and retest.

6. Test and adjust air-mounting system controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Air-Mounting System Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including piping connections. Report results in writing.

1. Isolator seismic-restraint clearance.
2. Isolator deflection.
3. Snubber minimum clearances.
4. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
5. Operational Test: Test the compressed-air leveling system. Remove malfunctioning units, replace with new units, and retest.
6. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.6 ADJUSTING

A. Adjust isolators after piping systems have been filled and equipment is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop.

D. Adjust air spring leveling mechanism.

E. Adjust active height of spring isolators.

F. Adjust snubbers according to manufacturer's written recommendations.

G. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.

H. Torque anchor bolts according to equipment manufacturer's written recommendations to resist seismic forces.

3.7 CLEANING

A. After completing equipment installation, inspect vibration isolation and seismic-control devices. Remove paint splatters and other spots, dirt, and debris.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-mounting systems. Refer to Division 1.

3.9 VIBRATION ISOLATOR AND SEISMIC-RESTRAINT SCHEDULE
Vibration Isolation Schedule

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Isolation Type</th>
<th>Base Deflection</th>
<th>Base Type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan in AHU's</td>
<td>Floor Spring Neoprene</td>
<td>1.5"</td>
<td>Base-Inertia Base</td>
<td>Thrust Restraints</td>
</tr>
<tr>
<td>Domestic Water Pump</td>
<td>Floor Neoprene</td>
<td>0.4"</td>
<td>---</td>
<td>Under Skid</td>
</tr>
<tr>
<td>Suspended Fans</td>
<td>Hanger Spring Neoprene</td>
<td>1.5"</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Roof Mounted Fans</td>
<td>Roof Isolator</td>
<td>1.5"</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Base-Mounted Pumps</td>
<td>Floor Spring Neoprene</td>
<td>0.75"</td>
<td>Base-Inertia Base</td>
<td>---------</td>
</tr>
<tr>
<td>In-Line Pumps</td>
<td>Flexible Neoprene</td>
<td>0.25"</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Piping Hangers Within 50 Feet of Isolated Equipment</td>
<td>Spring Hangers</td>
<td>1.5"</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>First Two (2) Pipe Hangers near Non-Isolated Equipment</td>
<td>Spring Hangers</td>
<td>1.0"</td>
<td>---</td>
<td>---------</td>
</tr>
</tbody>
</table>

3.10 SEISMIC INSTALLATION INSPECTION

A. On completion of installation of all vibration isolation and seismic restraint devices herein specified, a representative of the isolation materials manufacturer shall inspect the completed system and report in writing any installation errors, improperly selected isolation or restraint devices, or other faults that could affect the performance of the system. Contractor shall submit a report to the Architect, including the manufacturer’s representative’s final report, indicating all isolation reported as properly installed or requiring correction, and include a report by the Contractor on steps taken to properly complete the isolation work.

B. All special inspections must be performed in accordance with IBC 2009 and as specified herein.

C. Continuous inspection: The full-time observation of work by an approved special inspector pursuant to IBC 2009 section 1704. The following pieces of equipment require these inspections:
 1. All equipment using combustible or toxic energy sources.
 2. All electric motors, transformers, switchgear unit substations and motor control centers.
 3. Reciprocating and rotating type machinery.
 4. Pipe, 3” & larger.
 5. Tanks, heat exchangers & pressure vessels.

D. Periodic inspection: intermittent observation of work by an approved special inspector of the following pieces of equipment in compliance with IBC 2009 section 1704.
 1. Isolator units for seismic isolation systems.
 2. All flammable, combustible and highly toxic piping and their associated mechanical systems.
 3. All ductwork containing hazardous materials.
 4. All electrical components for standby or emergency power systems.

END OF SECTION 230548
SECTION 230593 - TESTING AND BALANCING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and General Requirements, apply to work specified in this Section.

1.2 SUMMARY

A. This Section includes TAB to produce design objectives for the following:

1. Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.

2. HVAC equipment quantitative-performance settings.

3. Space pressurization testing and adjusting.

5. Sound level measuring.

6. Smoke-control systems testing and adjusting.

7. Indoor-air quality measuring (LEED-NC Credit 3.2).

8. Existing systems TAB.

9. Verifying that automatic control devices are functioning properly.

10. Reporting results of activities and procedures specified in this Section.

1.3 DEFINITIONS

A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.

B. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to design quantities.

C. Barrier or Boundary: Construction, either vertical or horizontal, such as walls, floors, and ceilings that are designed and constructed to restrict the movement of airflow, smoke, odors, and other pollutants.

D. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.

E. NC: Noise criteria.

F. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.

G. RC: Room criteria.

H. Report Forms: Test data sheets for recording test data in logical order.

I. Smoke-Control System: An engineered system that uses fans to produce airflow and pressure differences across barriers to limit smoke movement.

J. Smoke-Control Zone: A space within a building that is enclosed by smoke barriers and is a part of a
zoned smoke-control system.

K. Stair Pressurization System: A type of smoke-control system that is intended to positively pressurize stair towers with outdoor air by using fans to keep smoke from contaminating the stair towers during an alarm condition.

L. Static Head: The pressure due to the weight of the fluid above the point of measurement. In a closed system, static head is equal on both sides of the pump.

M. Suction Head: The height of fluid surface above the centerline of the pump on the suction side.

N. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

O. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested.

P. TAB: Testing, adjusting, and balancing.

Q. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.

R. Test: A procedure to determine quantitative performance of a system or equipment.

S. Testing, Adjusting, and Balancing (TAB) Firm: The entity responsible for performing and reporting TAB procedures.

1.4 QUALIFICATIONS

A. Work included in this section must be performed by an independent testing and balancing agency and an approved member of the Associated Air Balance Council (AABC) or National Environmental Balancing Bureau (NEBB) who shall provide a complete and comprehensive total system balance process to test, adjust, and balance the air and water systems for this project. Submit the name of the air balance firm for approval within thirty (30) days after award of contract. See Section 15000 for approved Contractors.

B. If the Contractor fails to submit the name of an acceptable agency within the specified time, the (Architect/Engineer) will select a firm to accomplish the work, and the selection shall be binding at no additional cost to the Owner.

C. All work shall be performed under direct supervision of a qualified engineer. All instruments used shall be accurately calibrated and maintained in good working order. If requested, calibration tests of equipment to be used shall be performed in the presence of the (Architect/Engineer).

D. Submit for review and approval within ten (10) working days after the notice to proceed, the names of the personnel who will be responsible for the work and those who will actually perform the testing and balancing and their qualification, which shall demonstrate that they have balanced and tested systems of comparable size and complexity.

1.5 SUBMITTALS

A. Qualification Data: Submit evidence that TAB firm and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. Certified TAB Reports: Submit reports prepared, as specified in this Section, on approved forms certified by TAB firm.

E. Warranties specified in this Section.

1.6 QUALITY ASSURANCE

A. TAB Firm Qualifications: Engage a TAB firm certified by either AABC or NEBB.

B. TAB Conference: Meet with Owner's and Architect's representatives on approval of TAB strategies and procedures plan to develop a mutual understanding of the details. Ensure the participation of TAB team members, equipment manufacturers' authorized service representatives, HVAC controls installers, and other support personnel. Provide seven days' advance notice of scheduled meeting time and location.

1. Agenda Items: Include at least the following:
 a. Submittal distribution requirements.
 c. TAB plan.
 d. Work schedule and Project-site access requirements.
 e. Coordination and cooperation of trades and subcontractors.
 f. Coordination of documentation and communication flow.

C. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:

1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.

E. Instrumentation Type, Quantity, and Accuracy: As described in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" and NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems," Section II, "Required Instrumentation for NEBB Certification."

F. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by the instrument manufacturer.

1. Keep an updated record of instrument calibration that indicates date of calibration and the name of party performing instrument calibration.

1.7 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
1.8 COORDINATION

A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.

B. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.

C. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.9 WARRANTY

A. National Project Performance Guarantee: If AABC standards are used, provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions:

B. Special Guarantee: If NEBB standards are used, provide a guarantee on NEBB forms stating that NEBB will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents.

C. Guarantee includes the following provisions:
 1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
 2. Systems are balanced to optimum performance capabilities within design and installation limits.

1.10 TEST PROCEDURE

A. System may be tested in sections when approved by the (Architect/Engineer).

B. When testing and balancing involve the building temperature control systems, cooperate with the temperature control subcontractor to achieve the desired results.

C. At the time of final inspection, recheck in the presence and at the request of the (Architect/Engineer) not to exceed ten (10) percent of the previously recorded readings from the certified report selected at random from the log by the (Architect/Engineer).

D. Permanently mark the settings of valves, dampers, and other adjustment devices so that adjustment can be restored if disturbed at any time. Do not permanently mark devices before final acceptance.

E. Perform all tests in accordance with AABC standard procedures. Any deviation from same must be approved by the (Architect/Engineer).

F. Should the basic system or any of its components fail to meet contract requirements, and thereby make the testing and balancing work invalid, notify the (Architect/Engineer) and stop all tests until such time that the failure is corrected.

PART 2 - PRODUCTS

2.1 TEST INSTRUMENTS

B. Instruments used for balancing air and water systems must have been calibrated within a period of six (6) months prior to balancing.

C. List in the report types, serial numbers, and dates of calibration of all instruments used in the final air and water balance tests.

D. Instrumentation shall include, as a minimum, the following items of equipment:
 1. Pressure gauges and fittings.
 2. Dry bulb and wet bulb thermostats.
 3. Contact pyrometer.
 4. Portable flow meter and, if required, orifice plates.
 5. Pitot tube and manometers.
 6. Alnor Velometer with attachments.
 7. Amprobe.
 8. Tachometer.
 9. Special wrenches and tools.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
 1. Contract Documents are defined in the General and Supplementary Conditions of Contract.
 2. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.

B. Examine approved submittal data of HVAC systems and equipment.

C. Examine project record documents described in Division 1 Section "Project Record Documents."

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems’ output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce the performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.

F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Specification Sections have been performed.

G. Examine system and equipment test reports.

H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual
volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.

I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.

J. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

K. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning.

L. Examine strainers for clean screens and proper perforations.

M. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.

N. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

O. Examine system pumps to ensure absence of entrained air in the suction piping.

P. Examine equipment for installation and for properly operating safety interlocks and controls.

Q. Examine automatic temperature system components to verify the following:
 1. Dampers, valves, and other controlled devices are operated by the intended controller.
 2. Dampers and valves are in the position indicated by the controller.
 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
 4. Automatic modulating and shutoff valves, including two-way valves and three-way mixing and diverting valves, are properly connected.
 5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 6. Sensors are located to sense only the intended conditions.
 7. Sequence of operation for control modes is according to the Contract Documents.
 8. Controller set points are set at design values.
 9. Interlocked systems are operating.
 10. Changeover from heating to cooling mode occurs according to indicated values.

R. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system readiness checks and prepare system readiness reports. Verify the following:
 1. Permanent electrical power wiring is complete.
 2. Hydronic systems are filled, clean, and free of air.
 3. Automatic temperature-control systems are operational.
 4. Equipment and duct access doors are securely closed.
 5. Balance, smoke, and fire dampers are open.
 6. Isolating and balancing valves are open and control valves are operational.
 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
8. Windows and doors can be closed so indicated design conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to the insulation Specifications for this Project.

C. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. All air distribution systems including supply, return, outdoor air and exhaust ductwork shall be tested and balanced.

B. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

C. Prepare schematic diagrams of systems' "as-built" duct layouts.

D. For variable-air-volume systems, develop a plan to simulate diversity.

E. Determine the best locations in main and branch ducts for accurate duct airflow measurements.

F. Check the airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.

G. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

H. Verify that motor starters are equipped with properly sized thermal protection.

I. Check dampers for proper position to achieve desired airflow path.

J. Check for airflow blockages.

K. Check condensate drains for proper connections and functioning.

L. Check for proper sealing of air-handling unit components.

M. Check for proper sealing of air duct system.

N. Where the system cannot be properly balanced or equipment tested due to system deficiencies such as inability to properly adjust fan speeds, improperly sized motors, excessively noisy equipment, malfunctioning controls, excessively out of balance air distribution system branch runs, and similar items,
furnish to the (Architect/Engineer) in writing a list of the deficiencies prior to the submission of the test report.

O. Verify operation of each room thermostat serving variable air volume terminal units over full range of heating and cooling to insure proper sequence of control of the variable air volume operator and reheat coil valve.

P. Field test maximum and minimum air volumes of all variable air volume terminal units and record final settings. Check factory settings of regulators and controllers before tests. Reset to the scheduled air volumes if required.

Q. Air Outlets and Inlets: Adjust total to within plus or minus 10 percent of design to space. Adjust individual outlets and inlets in space to within plus or minus 10 percent of design.

R. Work in conjunction with the Automatic Temperature Control Contractor and Architect to establish maximum and minimum settings on all variable air volume fans.

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by the fan manufacturer.

1. Measure fan static pressures to determine actual static pressure as follows:
 a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

2. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.

3. Measure static pressures entering and leaving other devices such as sound traps, heat recovery equipment, and air washers under final balanced conditions.

4. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions.

5. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes.

6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.

1. Measure static pressure at a point downstream from the balancing damper and adjust volume dampers until the proper static pressure is achieved.
 a. Where sufficient space in submains and branch ducts is unavailable for Pitot-tube traverse
measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

2. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submains and branch ducts to design airflows within specified tolerances.

C. Measure terminal outlets and inlets without making adjustments.

1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust terminal outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than extractors and the dampers at air terminals.

1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.

2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a maximum set-point airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced airflow terminal units so they are distributed evenly among the branch ducts.

B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

1. Set outside-air dampers at minimum, and return- and exhaust-air dampers at a position that simulates full-cooling load.

2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge duct losses.

3. Measure total system airflow. Adjust to within indicated airflow.

4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.

5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow as described for constant-volume air systems.

a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.

6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.

7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure adequate static pressure is maintained at the most critical unit.

8. Record the final fan performance data.

C. Pressure-Dependent, Variable-Air-Volume Systems without Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
1. Balance systems similar to constant-volume air systems.
2. Set terminal units and supply fan at full-airflow condition.
3. Adjust inlet dampers of each terminal unit to indicated airflow and verify operation of the static-pressure controller. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.
4. Readjust fan airflow for final maximum readings.
5. Measure operating static pressure at the sensor that controls the supply fan, if one is installed, and verify operation of the static-pressure controller.
6. Set supply fan at minimum airflow if minimum airflow is indicated. Measure static pressure to verify that it is being maintained by the controller.
7. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow as described for constant-volume air systems.
 a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
8. Measure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.

D. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
1. Set system at maximum indicated airflow setting the required number of terminal units at minimum airflow. Select the reduced airflow terminal units so they are distributed evenly among the branch ducts.
2. Adjust supply fan to maximum indicated airflow with the variable-airflow controller set at maximum airflow.
3. Set terminal units at full-airflow condition.
4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to indicated airflow. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.
5. Adjust terminal units for minimum airflow.
6. Measure static pressure at the sensor.
7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.

3.7 PROCEDURES FOR DOMESTIC HOT WATER CIRCULATION SYSTEMS

A. Check the settings and operation of each hot water balancing valve to ensure design flow.
B. Test and record temperature and pressure drop across each balancing valve.

3.8 GENERAL PROCEDURES FOR EQUIPMENT

A. Conduct performance tests only after the air and water systems have been balanced and the proper flow rates established.
B. Test and record capacity of heat transfer equipment including all coils. Air side and water side capacities must agree within five (5) percent of each other. Include the manufacturer's rated capacity at the test operating conditions with the report. Perform tests where possible at design conditions. If tests are not performed under design conditions, interpolate results to determine capacity at full load operating conditions.
C. Calculate efficiency of pumps and fans by recognized methods using test data.

D. Test refrigeration equipment to determine heat extracted from or heat added to the building by the equipment and the heat ejected from the device. Record date, time and outside weather conditions including ambient dry bulb, wet bulb, wind speed and direction, cloud cover, rain, and any special conditions pertinent to the test.

3.9 PROCEDURES FOR HEAT EXCHANGERS

A. Measure water flow through all circuits.

B. Adjust water flow to within specified tolerances.

C. Measure inlet and outlet water temperatures.

D. Measure inlet steam pressure.

E. Check the setting and operation of safety and relief valves. Record settings.

3.10 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer, model, and serial numbers.
 4. Efficiency rating.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass for the controller to prove proper operation. Record observations, including controller manufacturer, model and serial numbers, and nameplate data.

3.11 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record compressor data.

3.12 PROCEDURES FOR HEAT-TRANSFER COILS

A. Refrigerant Coils: Measure the following data for each coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Wet-bulb temperature of entering and leaving air.
 3. Airflow.
 4. Air pressure drop.
 5. Refrigerant suction pressure and temperature.

3.13 PROCEDURES TEMPERATURE TESTING

A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-
control system.

B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.

C. Measure outside-air, wet- and dry-bulb temperatures.

3.14 PROCEDURES FOR SPACE PRESSURIZATION MEASUREMENTS AND ADJUSTMENTS

A. Before testing for space pressurization, observe the space to verify the integrity of the space boundaries. Verify that windows and doors are closed and applicable safing, gaskets, and sealants are installed. Report deficiencies and postpone testing until after the reported deficiencies are corrected.

B. Measure, adjust, and record the pressurization of each room, each zone, and each building by adjusting the supply, return, and exhaust airflows to achieve the indicated conditions.

C. Measure space pressure differential where pressure is used as the design criteria, and measure airflow differential where differential airflow is used as the design criteria for space pressurization.

 1. For pressure measurements, measure and record the pressure difference between the intended spaces at the door with all doors in the space closed. Record the high-pressure side, low-pressure side, and pressure difference between each adjacent space.

 2. For applications with cascading levels of space pressurization, begin in the most critical space and work to the least critical space.

 3. Test room pressurization first, then zones, and finish with building pressurization.

D. To achieve indicated pressurization, set the supply airflow to the indicated conditions and adjust the exhaust and return airflow to achieve the indicated pressure or airflow difference.

E. For spaces with pressurization being monitored and controlled automatically, observe and adjust the controls to achieve the desired set point.

 1. Compare the values of the measurements taken to the measured values of the control system instruments and report findings.

 2. Check the repeatability of the controls by successive tests designed to temporarily alter the ability to achieve space pressurization. Test overpressurization and underpressurization, and observe and report on the system's ability to revert to the set point.

 3. For spaces served by variable-air-volume supply and exhaust systems, measure space pressurization at indicated airflow and minimum airflow conditions.

F. In spaces that employ multiple modes of operation, such as normal mode and emergency mode or occupied mode and unoccupied mode, measure, adjust, and record data for each operating mode.

G. Record indicated conditions and corresponding initial and final measurements. Report deficiencies.

3.15 PROCEDURES FOR VIBRATION MEASUREMENTS

A. Use a vibration meter meeting the following criteria:

 1. Solid-state circuitry with a piezoelectric accelerometer.

 2. Velocity range of 0.1 to 10 inches per second.

 3. Displacement range of 1 to 100 mils.

 4. Frequency range of at least 0 to 1000 Hz.

 5. Capable of filtering unwanted frequencies.

B. Calibrate the vibration meter before each day of testing.
1. Use a calibrator provided with the vibration meter.
2. Follow vibration meter and calibrator manufacturer's calibration procedures.

C. Perform vibration measurements when other building and outdoor vibration sources are at a minimum level and will not influence measurements of equipment being tested.
 1. Turn off equipment in the building that might interfere with testing.
 2. Clear the space of people.

D. Perform vibration measurements after air and water balancing and equipment testing is complete.

E. Clean equipment surfaces in contact with the vibration transducer.

F. Position the vibration transducer according to manufacturer's written instructions and to avoid interference with the operation of the equipment being tested.

G. Measure and record vibration on rotating equipment over 3 hp.

H. Measure and record equipment vibration, bearing vibration, equipment base vibration, and building structure vibration. Record velocity and displacement readings in the horizontal, vertical, and axial planes.
 1. Pumps:
 a. Pump Bearing: Drive end and opposite end.
 b. Motor Bearing: Drive end and opposite end.
 c. Pump Base: Top and side.
 d. Building: Floor.
 e. Piping: To and from the pump after flexible connections.

2. Fans and HVAC Equipment with Fans:
 a. Fan Bearing: Drive end and opposite end.
 b. Motor Bearing: Drive end and opposite end.
 c. Equipment Casing: Top and side.
 d. Equipment Base: Top and side.
 e. Building: Floor.
 f. Ductwork: To and from equipment after flexible connections.
 g. Piping: To and from equipment after flexible connections.

3. Chillers and HVAC Equipment with Compressors:
 a. Compressor Bearing: Drive end and opposite end.
 b. Motor Bearing: Drive end and opposite end.
 c. Equipment Casing: Top and side.
 d. Equipment Base: Top and side.
 e. Building: Floor.
 f. Piping: To and from equipment after flexible connections.

I. For equipment with vibration isolation, take floor measurements with the vibration isolation blocked solid to the floor and with the vibration isolation floating. Calculate and report the differences.

J. Inspect, measure, and record vibration isolation.
 1. Verify that vibration isolation is installed in the required locations.
 2. Verify that installation is level and plumb.
 3. Verify that isolators are properly anchored.
 4. For spring isolators, measure the compressed spring height, the spring OD, and the travel-to-solid distance.
 5. Measure the operating clearance between each inertia base and the floor or concrete base below. Verify that there is unobstructed clearance between the bottom of the inertia base and the floor.
3.16 PROCEDURES FOR SOUND-LEVEL MEASUREMENTS

A. Perform sound-pressure-level measurements with an octave-band analyzer complying with ANSI S1.4 for Type 1 sound-level meters and ANSI S1.11 for octave-band filters. Comply with requirements in ANSI S1.13, unless otherwise indicated.

B. Calibrate sound meters before each day of testing. Use a calibrator provided with the sound meter complying with ANSI S1.40 and that has NIST certification.

C. Use a microphone that is suitable for the type of sound levels measured. For areas where air velocities exceed 100 fpm, use a windscreen on the microphone.

D. Perform sound-level testing after air and water balancing and equipment testing are complete.

E. Close windows and doors to the space.

F. Perform measurements when the space is not occupied and when the occupant noise level from other spaces in the building and outside are at a minimum.

G. Clear the space of temporary sound sources so unrelated disturbances will not be measured. Position testing personnel during measurements to achieve a direct line-of-sight between the sound source and the sound-level meter.

H. Take sound measurements at a height approximately 48 inches above the floor and at least 36 inches from a wall, column, and other large surface capable of altering the measurements.

I. Take sound measurements in dBA and in each of the 8 unweighted octave bands in the frequency range of 63 to 8000 Hz.

J. Take sound measurements with the HVAC systems off to establish the background sound levels and take sound measurements with the HVAC systems operating.

1. Calculate the difference between measurements. Apply a correction factor depending on the difference and adjust measurements.

K. Perform sound testing at three (3) locations on Project for each of the following space types. For each space type tested, select a measurement location that has the greatest sound level. If testing multiple locations for each space type, select at least one location that is near and at least one location that is remote from the predominant sound source.

1. Private office.
2. Open office area.
3. Conference room.
4. Auditorium/large meeting room/lecture hall.
5. Classroom/training room.
6. Patient room/exam room.
7. Sound or vibration sensitive laboratory.
8. Hotel room/apartment.
9. Each space with a noise criterion of RC or NC 25 or lower.
10. Each space with an indicated noise criterion of RC or NC 35 and lower that is adjacent to a mechanical equipment room or roof mounted equipment.
11. Inside each mechanical equipment room.

3.17 PROCEDURES FOR SMOKE-CONTROL SYSTEM TESTING

A. Before testing smoke-control systems, verify that construction is complete and verify the integrity of each
smoke-control zone boundary. Verify that windows and doors are closed and that applicable safing, gasket, and sealants are installed. Report deficiencies and postpone testing until after the reported deficiencies are corrected.

B. Measure and record wind speed and direction, outside-air temperature, and relative humidity on each test day.

C. Measure, adjust, and record airflow of each smoke-control system with all fans that are a part of the system operating as intended by the design.

D. Measure, adjust, and record the airflow of each fan. For ducted systems, measure the fan airflow by duct Pitot-tube traverse.

E. After air balancing is complete, perform the following pressurization testing for each smoke-control zone in the system:
 1. Verify the boundaries of each smoke-control zone.
 2. With the HVAC systems in their normal mode of operation and smoke control not operating, measure and record the pressure difference across each smoke-control zone. Make measurements after closing doors that separate the zones. Make one measurement across each door. Clearly indicate the high and low pressure side of each door.
 3. With the system operating in the smoke-control mode and with each zone in the smoke-control system activated, perform the following:
 a. Measure and record the pressure difference across each door that separates the smoke zone from adjacent zones. Make measurements with doors that separate the smoke zone from the other zones closed. Clearly indicate the high and low pressure side of the door. Doors that have a tendency to open slightly due to the pressure difference should have one pressure measurement made while held closed and another measurement made with the door open.
 b. Continue to activate each separate zoned smoke-control system and make pressure difference measurements.
 c. After testing a smoke zone's smoke-control system, deactivate the HVAC systems involved and return them to their normal operating mode before activating another zone's smoke-control system.
 d. Verify that controls necessary to prevent excessive pressure differences are functional.

F. Operational Tests:
 1. Check the proper activation of each zoned smoke-control system in response to all means of activation, both automatic and manual.
 2. Check automatic activation in response to fire alarm signals received from the building's fire alarm and detection system. Initiate a separate alarm for each means of activation to ensure that the proper operation of the correct zoned smoke-control system occurs.
 3. Check and record the proper operation of fans, dampers, and related equipment as outlined below for each separate zone of the smoke-control system.
 a. Fire zone in which a smoke-control system automatically activates.
 b. Type of signal that activates a smoke-control system, such as pull station, sprinkler water flow, or smoke detector.
 c. Smoke zone(s) where maximum mechanical exhaust to the outside is implemented and no supply air is provided.
 d. Positive pressure smoke-control zone(s) where maximum air supply is implemented and no exhaust to the outside is provided.
 e. Fan(s) "ON" as required to implement the smoke-control system. Multiple- or variable-speed fans should be further noted as "MAX. VOLUME" to verify that the intended control configuration is achieved.
 f. Fan(s) "OFF" as required to implement the smoke-control system.
 g. Damper(s) "OPEN" where maximum airflow must be achieved.
h. Damper(s) "CLOSED" where no airflow should take place.

i. Auxiliary functions to achieve the smoke-control system configuration such as changes or override of normal operating pressure and temperature-control set points.

j. If standby power is provided for the smoke-control system, test to verify that the system functions while operating under both normal and standby power.

G. Conduct additional tests required by authorities having jurisdiction. Unless required by authorities having jurisdiction, perform testing without the use of smoke or products that simulate smoke.

H. Prepare a complete report of observations, measurements, and deficiencies.

3.18 PROCEDURES FOR INDOOR-AIR QUALITY MEASUREMENTS (LEED CREDIT 3.2 - CONSTRUCTION IAQ MANAGEMENT PLAN - BEFORE OCCUPANCY)

A. After construction is complete (including air balancing and final cleaning) and prior to occupancy, with the HVAC systems operating at indicated conditions conduct baseline IAQ testing using protocols consistent with the United States Environmental Protection Agency Compendium of Methods for the Determination of Air Pollutants in Indoor Air and as additionally detailed in the U.S. Green Building Council (USGBC) LEED-NC (Version 2.2) Reference Guide.

B. Observe and record the following conditions for each HVAC system:

1. The distance between the outside-air intake and the closest exhaust fan discharge, cooling tower, flue termination, or vent termination.
2. Specified filters are installed. Check for leakage around filters.
3. Cooling coil drain pans have a positive slope to drain.
4. Cooling coil condensate drain trap maintains an air seal.
5. Evidence of water damage.
6. Insulation in contact with the supply, return, and outside air is dry and clean.

C. Measure and record the indoor conditions on each floor for each HVAC system serving the floor to satisfy the following:

1. Most remote area.
2. One location for every 20,000 sq. ft.
3. Area with the least ventilation
4. Area with the greatest presumed source strength

D. Measure and record the following indoor conditions for each location:

1. Temperature.
2. Relative humidity.
3. Concentration of carbon dioxide (ppm).
6. Formaldehyde (ppm)
7. Particulates
8. Total Volatile Organic Compounds (TVOC)
9. 4-Phenylcyclohexene (4-PCH) (This test is only required if carpets and fabrics with styrene butadiene rubber (SBR) latex backing material are installed as part of the base building systems.)

E. Demonstrate that the contaminant maximum concentrations listed below are not exceeded:

1. Carbon Monoxide (CO): 9 part per million and no greater than 2 parts per million above outdoor levels.
2. Formaldehyde: 50 parts per billion
3. Particulates (PM10): 50 micrograms per cubic meter
4. Total Volatile Organic Compounds (TVOC): 500 micrograms per cubic meter
5. 4-Phenylcyclohexene (4-PCH): 6.5 micrograms per cubic meter

F. The air sample testing shall be conducted as follows:
1. All measurements shall be conducted prior to occupancy, but during normal occupied hours, and with the building ventilation system starting at the normal daily start time and operated at the minimum outside air flow rate for the occupied mode throughout the duration of the air testing.
2. The building shall have all interior finishes installed, including but not limited to millwork, doors, paint, carpet and acoustic tiles. Non-fixed furnishings such as workstations and partitions are encouraged, but not required, to be in place for the testing.
3. Air samples shall be collected between 3 feet and 6 feet from the floor to represent the breathing zone of occupants, and over a minimum 4-hour period.

G. For each sampling point where the maximum concentration limits are exceeded, conduct additional flush-out with outside air and retest the specific parameter(s) exceeded to indicate the requirements are achieved. Repeat procedure until all requirements have been met. When retesting non-complying building areas, take samples from the same locations as in the first test.

H. Submit a copy of the proposed IAQ testing procedures, actual testing locations, and testing results.

3.19 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
1. Measure and record the operating speed, airflow, and static pressure of each fan.
2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
3. Check the refrigerant charge.
4. Check the condition of filters.
5. Check the condition of coils.
6. Check the operation of the drain pan and condensate drain trap.
7. Check bearings and other lubricated parts for proper lubrication.

B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished.
1. New filters are installed.
2. Coils are clean and fins combed.
3. Drain pans are clean.
4. Fans are clean.
5. Bearings and other parts are properly lubricated.
6. Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
1. Compare the indicated airflow of the renovated work to the measured fan airflows and determine the new fan, speed, filter, and coil face velocity.
2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
3. If calculations increase or decrease the airflow and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated airflow and water flow rates. If 5 percent or less, equipment adjustments are not required.
4. Air balance each air outlet.
3.20 TEMPERATURE-CONTROL VERIFICATION

A. Verify that controllers are calibrated and commissioned.

B. Check transmitter and controller locations and note conditions that would adversely affect control functions.

C. Record controller settings and note variances between set points and actual measurements.

D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).

E. Check free travel and proper operation of control devices such as damper and valve operators.

F. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water-flow measurements. Note the speed of response to input changes.

G. Check the interaction of electrically operated switch transducers.

H. Check the interaction of interlock and lockout systems.

I. Check main control supply-air pressure and observe compressor and dryer operations.

J. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply.

K. Note operation of electric actuators using spring return for proper fail-safe operations.

3.21 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.22 FINAL REPORT

A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.

B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 1. Include a list of the instruments used for procedures, along with proof of calibration.

C. Final Report Contents: In addition to the certified field report data, include the following:
 1. Pump curves.
 2. Fan curves.
 3. Manufacturers' test data.
 4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.

D. General Report Data: In addition to the form titles and entries, include the following data in the final report, as applicable:
 1. Title page.
 2. Name and address of TAB firm.
 3. Project name.
 4. Project location.
 5. Architect's name and address.
 6. Engineer's name and address.
 7. Contractor's name and address.
 9. Signature of TAB firm who certifies the report.
 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 11. Summary of contents, including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.

 12. Nomenclature sheets for each item of equipment.
 13. Data for terminal units, including manufacturer, type size, and fittings.
 14. Notes to explain why certain final data in the body of reports varies from indicated values.
 15. Test conditions for fans and pump performance forms, including the following:
 a. Settings for outside-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings, including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 1. Quantities of outside, supply, return, and exhaust airflows.
 2. Water and steam flow rates.
 3. Duct, outlet, and inlet sizes.
 4. Pipe and valve sizes and locations.
 5. Terminal units.

F. Air-Handling Unit Test Reports: For air-handling units with coils, include the following:
 1. Unit Data: Include the following:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
i. Sheave dimensions, center-to-center and amount of adjustments in inches.

j. Number of belts, make, and size.

k. Number of filters, type, and size.

2. Motor Data:
 a. Make and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Sheave dimensions, center-to-center and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat coil static-pressure differential in inches wg.
 g. Cooling coil static-pressure differential in inches wg.
 h. Heating coil static-pressure differential in inches wg.
 i. Outside airflow in cfm.
 j. Return airflow in cfm.
 k. Outside-air damper position.
 l. Return-air damper position.
 m. Vortex damper position.

G. Apparatus-Coil Test Reports:
 1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch
 f. Make and model number.
 g. Face area in sq. ft..
 h. Tube size in NPS.
 i. Tube and fin materials.
 j. Circuiting arrangement.
 2. Test Data: (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outside-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 h. Water flow rate in gpm.
 i. Water pressure differential in feet of head or psig.
 j. Entering-water temperature in deg F.
 k. Leaving-water temperature in deg F.
 l. Refrigerant expansion valve and refrigerant types.
 m. Refrigerant suction pressure in psig.
n. Refrigerant suction temperature in deg F.

o. Inlet steam pressure in psig.

H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Coil identification.
 d. Capacity in Btuh.
 e. Number of stages
 f. Connected volts, phase, and hertz.
 g. Rated amperage.
 h. Airflow rate in cfm.
 i. Face area in sq. ft.
 j. Minimum face velocity in fpm.

2. Test Data: (Indicated and Actual Values):
 a. Heat output in Btuh.
 b. Airflow rate in cfm.
 c. Air velocity in fpm.
 d. Entering-air temperature in deg F.
 e. Leaving-air temperature in deg F.
 f. Voltage at each connection.
 g. Amperage for each phase.

I. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Sheave dimensions, center-to-center and amount of adjustments in inches.

2. Motor Data:
 a. Make and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Sheave dimensions, center-to-center and amount of adjustments in inches.
 g. Number of belts, make, and size.

3. Test Data: (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing
the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling unit number.
 b. Location and zone.
 c. Traverse air temperature in °F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated airflow rate in cfm.
 h. Indicated velocity in fpm.
 i. Actual airflow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

K. Air-Terminal-Device Reports:

1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Test apparatus used.
 d. Area served.
 e. Air-terminal-device make.
 f. Air-terminal-device number from system diagram.
 g. Air-terminal-device type and model number.
 h. Air-terminal-device size.
 i. Air-terminal-device effective area in sq. ft.

2. Test Data: (Indicated and actual values):
 a. Airflow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary airflow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final airflow rate in cfm.
 f. Final velocity in fpm.
 g. Space temperature in °F.

L. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:

1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Room or riser served.
 d. Coil make and size.
 e. Flowmeter type.

2. Test Data: (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Entering-water temperature in °F.
 c. Leaving-water temperature in °F.
 d. Water pressure drop in feet of head or psig.
 e. Entering-air temperature in °F.
 f. Leaving-air temperature in °F.
1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Unit make and model number.
 d. Compressor make.
 e. Compressor model and serial numbers.
 f. Refrigerant weight in lb.
 g. Low ambient temperature cutoff in deg F.

2. Test Data: (Indicated and Actual Values):
 a. Inlet-duct static pressure in inches wg.
 b. Outlet-duct static pressure in inches wg.
 c. Entering-air, dry-bulb temperature in deg F.
 d. Leaving-air, dry-bulb temperature in deg F.
 e. Condenser entering-water temperature in deg F.
 f. Condenser leaving-water temperature in deg F.
 g. Condenser water temperature differential in deg F.
 h. Condenser entering-water pressure in feet of head or psig.
 i. Condenser leaving-water pressure in feet of head or psig.
 j. Condenser water pressure differential in feet of head or psig.
 k. Control settings.
 l. Unloader set points.
 m. Low-pressure-cutout set point in psig.
 n. High-pressure-cutout set point in psig.
 o. Suction pressure in psig.
 p. Suction temperature in deg F.
 q. Condenser refrigerant pressure in psig.
 r. Condenser refrigerant temperature in deg F.
 s. Oil pressure in psig.
 t. Oil temperature in deg F.
 u. Voltage at each connection.
 v. Amperage for each phase.
 w. Kilowatt input.
 x. Crankcase heater kilowatt.
 y. Number of fans.
 z. Condenser fan rpm.
 aa. Condenser fan airflow rate in cfm.
 bb. Condenser fan motor make, frame size, rpm, and horsepower.
 cc. Condenser fan motor voltage at each connection.
 dd. Condenser fan motor amperage for each phase.

N. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and size.
 e. Model and serial numbers.
 f. Water flow rate in gpm.
 g. Water pressure differential in feet of head or psig.
 h. Required net positive suction head in feet of head or psig.
 i. Pump rpm.
j. Impeller diameter in inches.
k. Motor make and frame size.
l. Motor horsepower and rpm.
m. Voltage at each connection.
n. Amperage for each phase.
o. Full-load amperage and service factor.
p. Seal type.

2. Test Data: (Indicated and Actual Values):
a. Static head in feet of head or psig.
b. Pump shutoff pressure in feet of head or psig.
c. Actual impeller size in inches.
d. Full-open flow rate in gpm.
e. Full-open pressure in feet of head or psig.
f. Final discharge pressure in feet of head or psig.
g. Final suction pressure in feet of head or psig.
h. Final total pressure in feet of head or psig.
i. Final water flow rate in gpm.
j. Voltage at each connection.
k. Amperage for each phase.

O. Air-to-Air Heat-Recovery Unit Reports:

1. Unit Data:
a. Unit identification.
b. Location.
c. Service.
d. Make and type.
e. Model and serial numbers.

2. Motor Data:
a. Make and frame type and size.
b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Sheave dimensions, center-to-center, and amount of adjustments in inches.

3. If fans are an integral part of the unit, include the following for each fan:
a. Make and type.
b. Arrangement and size.
c. Sheave make, size in inches, and bore.
d. Sheave dimensions, center-to-center, and amount of adjustments in inches.

4. Test Data (Indicated and Actual Values):
a. Total exhaust airflow rate in cfm.
b. Purge exhaust airflow rate in cfm.
c. Outside airflow rate in cfm.
d. Total exhaust fan static pressure in inches wg.
e. Total outside-air fan static pressure in inches wg.
f. Pressure drop on each side of recovery wheel in inches wg.
g. Exhaust air temperature entering in deg F.
h. Exhaust air temperature leaving in deg F.
i. Outside-air temperature entering in deg F.
j. Outside-air temperature leaving in deg F.
k. Calculate sensible and total heat capacity of each airstream in MBh.
P. Domestic Hot Water Circulation Systems:
 1. Schematic drawings/diagrams: Include plans and diagrams showing locations of all equipment included in the report.
 2. Listings of balancing manufacturer and model, balancing valve settings, and differential pressure readings across the balancing valve.

Q. Vibration Measurement Reports:
 1. Date and time of test.
 2. Vibration meter manufacturer, model number, and serial number.
 3. Equipment designation, location, equipment, speed, motor speed, and motor horsepower.
 4. Diagram of equipment showing the vibration measurement locations.
 5. Measurement readings for each measurement location.
 7. Description of predominant vibration source.

R. Sound Measurement Reports: Record sound measurements on octave band and dBA test forms and on an NC or RC chart indicating the decibel level measured in each frequency band for both "background" and "HVAC system operating" readings. Record each tested location on a separate NC or RC chart. Record the following on the forms:
 1. Date and time of test. Record each tested location on its own NC curve.
 2. Sound meter manufacturer, model number, and serial number.
 3. Space location within the building including floor level and room number.
 4. Diagram or color photograph of the space showing the measurement location.
 5. Time weighting of measurements, either fast or slow.
 6. Description of the measured sound: steady, transient, or tonal.
 7. Description of predominant sound source.

S. Indoor-Air Quality Measurement Reports for Each HVAC System:
 1. HVAC system designation.
 2. Date and time of test.
 3. Outdoor temperature, relative humidity, wind speed, and wind direction at start of test.
 4. Room number or similar description for each location.
 5. Measurements at each location.
 6. Observed deficiencies.

T. Instrument Calibration Reports:
 1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.23 INSPECTIONS

A. Initial Inspection:
 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report.
 2. Randomly check the following for each system:
 a. Measure airflow of at least 10 percent of air outlets.
b. Measure water flow of at least 5 percent of terminals.
c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
d. Measure sound levels at two locations.
e. Measure space pressure of at least 10 percent of locations.
f. Verify that balancing devices are marked with final balance position.
g. Note deviations to the Contract Documents in the Final Report.

B. Final Inspection:
1. After initial inspection is complete and evidence by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect.
2. TAB firm test and balance engineer shall conduct the inspection in the presence of Architect.
3. Architect shall randomly select measurements documented in the final report to be rechecked. The rechecking shall be limited to either 10 percent of the total measurements recorded, or the extent of measurements that can be accomplished in a normal 8-hour business day.
4. If the rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
6. TAB firm shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes and resubmit the final report.
7. Request a second final inspection. If the second final inspection also fails, Owner shall contract the services of another TAB firm to complete the testing and balancing in accordance with the Contract Documents and deduct the cost of the services from the final payment.

3.24 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspections, and adjusting during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 230700 - MECHANICAL SYSTEMS INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. The drawings and general provisions of the Contract, including General and Supplementary Conditions, General Requirements and all other Specification Sections apply to the work specified in this section. In the event of conflict between specific requirements of the various documents, the more restrictive, the more extensive (i.e.: more expensive) requirement shall govern.

1.2 SCOPE
A. Work included in this section is the thermal insulating done in the field, on the Division 21, 22 and 23 systems as specified herein.

B. Work excluded in this Section are the following:
1. Thermal building insulation.
2. Sound absorbing duct lining.

C. The requirements of Division 23, Section “Mechanical and Electrical General Provisions” shall apply to the work specified under this Section.

1.3 DEFINITIONS
A. The k factor means the number of British thermal units of heat transmitted per (sq. ft.) (Fahrenheit temperature difference) through a material with flat, parallel sides one (1) inch apart. The material shall be tested and rated according to ASTM Test Method C-177.

B. Unless otherwise specified, the term "concealed", as used in this specification, shall include all items hidden from normal sight. This includes items within furred spaces, pipe and duct shafts, above suspended ceilings and within return air plenums.

C. Unless otherwise specified, the work "exposed" shall refer to all work other than "concealed" work.

D. Unless otherwise specified, the term "exterior", as used in this specification, shall include all items being or situated outside. Items located within a crawl space shall be considered exterior.

E. Unless otherwise specified, the term "conditioned", as used in this specification, shall be a heated or cooled space, or both, within a building and, where required, provided with humidification or dehumidification means, so as to be capable of maintaining a space condition falling within the comfort envelope set forth in ASHRAE 55.

1.4 SUBMITTALS
A. Provide shop drawings in accordance with Division 23, Sections “Mechanical and Electrical General Provisions” and the General Requirements which shall include all insulation, jackets, finishes, corner beads, pump covers, etc. Shop drawings shall additionally describe each system or component to be insulated, insulation type and thickness, and method of installation.

B. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
C. LEED Submittals:
 1. Product Data for Credit EQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content and chemical components.

D. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.

1.5 MOCK-UPS

A. Mockups: Before installing insulation of any type, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups according to the following requirements, using materials indicated for the completed Work:
 1. Include the following mockups:
 a. One 10-foot section of 2” straight pipe and duct run.
 b. One 90-degree pipe and duct elbow.
 c. One pipe and duct tee fitting.
 d. One 2” valve.
 e. Four support hangers, including hanger shield and insert.
 2. Build mockups with cutaway sections to allow observation of application details for insulation materials, mastics, attachments, and jackets.
 3. Build mockups in the location indicated or, if not indicated, as directed by Architect.
 4. Notify Architect seven (7) days in advance of dates and times when mockups will be constructed.
 5. Obtain Architect’s approval of mockups before starting insulation application.
 6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 7. Demolish and remove mockups when directed.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields.
B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 GENERAL

A. All insulating materials, including adhesives, jackets and coatings, to be used on the project must be delivered to the building in the manufacturer's unopened container and must bear the manufacturer's stamp or label giving name of manufacturer, brand and description of material.

B. After the necessary tests have been conducted to prove the water and air systems tight, all piping, ductwork and equipment to be insulated shall be thoroughly cleaned and then covered. Insulation materials shall be the product of Owens Corning, CSG, Schuller or Armacell equal to the products specified herein.

C. All Insulation shall have ASTM E84 flame spread/smoke developed indices of ≤25/50 for use in air plenums of commercial buildings.

2.2 TYPES OF INSULATION

A. Type I - Pipe Insulation:
 1. Provide heavy density fiberglass pipe insulation with vapor barrier jacket. The k factor shall not be more than 0.23 at seventy-five (75) degrees Fahrenheit mean temperature. Insulation shall be equal to Johns Manville Micro-Lok meeting ASTM C 547 with FSK jacket.

B. Type II - Pipe Insulation:
 1. Provide closed cell elastomeric tubular insulation with built-in vapor barrier. The k factor shall not be more than 0.25 at seventy-five (75) degrees Fahrenheit mean temperature. Insulation shall be equal to Armacell AP Armaflex or AP Armaflex SS. The use of polyethylene, polyolefin or engineered polymer insulation is prohibited.

C. Type IV - Duct Insulation:
 1. Provide blanket type lightweight fiberglass duct insulation with vapor barrier facing. The compressed k-factor shall not exceed 0.27 at seventy-five (75) degrees Fahrenheit mean temperature and a minimum installed R-Value of 6.0 (hr*ft²°F)/Btu. Insulation shall be equal to Johns Manville flexible fiberglass blanket Microlite XG Formaldehyde-free Type 100 meeting ASTM C 553 with factory-applied FSK facing.

D. Type V - Duct and Equipment Insulation:
 1. Provide board type fiberglass insulation with vapor barrier facing. The k factor shall not exceed
0.22 at seventy-five (75) degrees Fahrenheit mean temperature, and the density shall not be less than 6.0 pounds per cubic foot (pcf). Insulation shall be equal to Johns Manville 817 Spin-Glas meeting ASTM C 612 with FSK facing.

E. Type VI - Equipment Insulation:
 1. Provide board type fiberglass insulation, unfaced. The k factor shall not exceed 0.23 at seventy-five (75) degrees Fahrenheit mean temperature and the density shall not be less than 3.0 pounds per cubic foot (pcf). Insulation shall be equal to Johns Manville 814 Series Spin-Glas meeting ASTM C 612.

F. Type VII - Equipment or Exterior Duct Insulation:
 1. Provide flexible elastomeric thermal sheet insulation with built-in vapor barrier. The k factor shall not exceed 0.27 at seventy-five (75) degrees Fahrenheit mean temperature. Insulation shall be equal to Armacell AP Armaflex or AP Armaflex SA.

G. Type IX - Equipment Insulation:
 1. Provide flexible board type fiberglass insulation, unfaced. The k factor shall not exceed 0.28 at 150 degrees Fahrenheit mean temperature. Insulation shall be equal to Johns Manville pipe and tank insulation.

H. Type XI – Fire Barrier Insulation
 1. Provide patented inorganic blanket encapsulated with scrim reinforced foil insulation with k-factor of 0.21. Wrap shall be rated as a shaft alternative per UL 1978. Insulation shall be equal to 3M Fire Barrier Insulation 15A.

I. Type XII – Piping Insulation
 1. Provide rigid closed-cell polyisocyanurate thermal insulation with vapor retarder over pipe insulation and 0.030 inch thick PVC (polyvinylchloride) rolled jacketing. The insulation shall have a density of 2 lb/ft³, the k factor shall not be more than 0.18 (aged 6-months) at seventy-five (75) degrees Fahrenheit mean temperature and the minimum R-value of 5.6 hr*ft²*F/BTU (aged 6-months). Polyisocyanurate pipe insulation shall be manufactured by Dyplast, Dow Chemical Company, Elliott Company, or Duna USA equal to Dyplast dP-ISO-C1.

2.3 ADHESIVES, SEALERS AND COATINGS

A. The vapor barrier on all insulation systems shall be maintained at all times. Any penetration into the vapor barrier shall be sealed vapor tight. All joints, fittings etc shall be sealed vapor tight.

B. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated. They shall not corrode, soften or otherwise attach such material in either the wet or dry state and must be suitable for the service temperatures.

C. Any cement, sealer or coating used shall be resistant to vermin and mold and shall be durable. It shall not discolor on aging; and where applied on the final surface of the insulation, it shall be light in color and be capable of being painted.

D. For indoor applications:
 1. Use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
E. Adhesives, coatings and compounds shall be equal to the following:

1. Vapor barrier adhesive for sealing joints on pipe and duct insulation - Foster 85-75.
2. Adhesive for installing canvas jackets - Foster 30-36.
3. Adhesive for installing duct insulation - Foster 85-20 and 81-91.
4. Adhesive for installing cellular-glass insulation - Foster Brand 81-84.
5. Adhesive for installing elastomeric insulation - Foster Brand 85-75, Armadex 520.
7. Adhesive for ASJ, FSK and PVDC jackets - Foster Brand 85-50, Childers CP-82.
8. Joint sealants for cellular-glass insulation - Foster Brand 30-45, Childers CP-76.
9. FSK and metal jacket flashing sealants - Foster Brand 95-44, Childers CP-76.
10. ASJ, vinyl, PVDC, and PVC jacket flashing sealants - Childers Brand CP-76
11. Two coats of WB Armadex finish or glass mesh with mastic for all Armadex located outside.

2.4 FABRIC JACKETS

A. All exposed piping, ductwork, and equipment in addition to the insulation jackets specified, shall be covered with an additional UL listed jacket of eight (8) ounce canvas. This shall be in addition to the insulation jackets specified.

2.5 PAINTING

A. All piping and insulation in the mechanical rooms shall be painted. Refer to Division 23 Section “Basic Materials and Methods” and Division 9 for more information.

2.6 FITTING AND VALVE COVERS

A. Pipe fittings and valves shall be insulated with one (1) piece pre-molded high impact PVC insulated fitting covers with factory precut insulation inserts and accessories. Fittings shall have edges of one (1) piece cover sealed with vapor barrier pressure sensitive tape. Fitting covers shall be 25/50 rated to meet meet fire and smoke safety requirements of federal, state and local building codes. Manufacturers shall be Knauf (Proto), Johns Manville (Zeston), Thomas Insulation or equal to Proto Fitting Cover System.

2.7 METALLIC COMPONENTS

A. Staples shall be outward clinching type of 304 or 316 stainless steel.

B. Bands shall be galvanized steel, aluminum, brass, or nickel-copper alloy, of 3/4 inch nominal width. The band thickness, exclusive of coating, shall be not less than 0.005 inch for steel and nickel copper alloy, 0.007 inch for aluminum, and 0.01 inch for brass.

C. Wire shall be fourteen (14) gauge, nickel-copper alloy or copper clad steel, or sixteen (16) gauge, soft annealed, galvanized steel.

D. Wire netting used for exposed surfaces of insulation that is to be cement finished shall be twenty-two (22) gauge, one (1) inch galvanized mesh, with continuous twenty-six (26) gauge galvanized steel corner beads having 2-1/2 inch wings.

E. Protect external corners on insulation of ducts and equipment exposed in occupied spaces by corner beads two (2) inches by two (2) inches, .016 inch thick aluminum adhered to heavy duty Kraft paper.

F. All exterior piping and ductwork shall be additionally covered with a sixteen (16) mil embossed aluminum weatherproof jacket. Jacketing shall be ITW's Lock-On (Childers) type with an integrally bonded polysurlyn moisture retarder over the entire surface in contact with the insulation. Jackets are to be fabricated with continuous modified Pittsburg Z-lock on the longitudinal seam and each butted section of jacketing shall be joined and sealed with factory fabricated butt strap and sealant. Fittings shall be
insulated and weatherproofed using similar materials.

2.8 INSULATION SCHEDULE:

<table>
<thead>
<tr>
<th>Service</th>
<th>Type</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Domestic Water Pipe (Hot, Cold, Tempered, & Recirc.,)</td>
<td>I</td>
<td>1”</td>
</tr>
<tr>
<td>Optional sizes 1” and smaller</td>
<td>I</td>
<td>½”</td>
</tr>
<tr>
<td>C. Domestic Water Piping Concealed in Walls and Cabinet Enclosures</td>
<td>II</td>
<td>½”</td>
</tr>
<tr>
<td>D. Storm Water Pipe (Horizontal Pipe Only)</td>
<td>I</td>
<td>1”</td>
</tr>
<tr>
<td>E. Roof Drain Bodies</td>
<td>IX</td>
<td>2”</td>
</tr>
<tr>
<td>Optional</td>
<td>VII</td>
<td>1”</td>
</tr>
<tr>
<td>F. Air Conditioning Condensate</td>
<td>I</td>
<td>1”</td>
</tr>
<tr>
<td>Optional</td>
<td>II</td>
<td>½”</td>
</tr>
<tr>
<td>G. Air Conditioning Supply and Outdoor Air Ductwork</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Concealed</td>
<td>IV</td>
<td>2”</td>
</tr>
<tr>
<td>2. Exposed or in Shafts</td>
<td>V</td>
<td>2”</td>
</tr>
<tr>
<td>3. Air Device Bodies</td>
<td>V</td>
<td>1”</td>
</tr>
<tr>
<td>H. Air Conditioning Return Ductwork</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Concealed (shafts only)</td>
<td>IV</td>
<td>2”</td>
</tr>
<tr>
<td>2. Exposed</td>
<td>V</td>
<td>1”</td>
</tr>
<tr>
<td>I. Air Conditioning Exhaust Ductwork</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 2-hr Fired Rated in Chase</td>
<td>XI</td>
<td>1 ½”</td>
</tr>
<tr>
<td>J. Refrigerant Piping</td>
<td>II</td>
<td>1”</td>
</tr>
<tr>
<td>K. Handicapped Lavatory Water and Sanitary Piping</td>
<td>II</td>
<td>½”</td>
</tr>
<tr>
<td>L. Provide Type XI high temperature fire wrap blanket for all laboratory exhaust ductwork located in chases, in shafts. Insulation blanket shall be provided from the point the ductwork leaves the floor it serves (enters the shaft) to the point the ductwork leaves the mechanical level to connect to the exhaust fan (outdoors).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART 3 - EXECUTION

3.1 GENERAL:

A. All insulation shall be installed by skilled workmen regularly engaged in this type of work.

B. Insulation shall be continuous at all hangers, hanger rods, supports, sleeves and openings. Continuous vapor barrier must be provided for all cold surfaces. Insulation shall be sealed where it terminates because of a valve, union, flange, etc.

C. Provide continuous insulation and jacketing when passing thru interior wall, floor, and ceiling construction.
 1. At Through Penetration Firestops: Coordinate insulation densities with the requirements of approved firestop system being installed.
 2. Insulation densities required by approved firestop system may vary with the densities specified in this Section. When this occurs use the higher density insulation.

D. Do not intermix different insulation materials on individual runs of piping or ductwork.

E. Arrange to permit expansion and contraction without causing damage to insulation or surface.

F. Actual insulation thickness must be at least equal to the minimum specified in the schedule at all locations including supports in contact with cold surfaces. Where the manufacturer's rated or nominal thickness is less than the minimum specified, a thicker material or more layers will be requested so that the stated minimum thickness will be attained or exceeded.

G. Install insulation materials in a first class manner with smooth and even surfaces. Scrap pieces of insulation shall not be used where a full length section will fit.

H. Unless otherwise specified herein, the application of all insulation materials, accessories and finishes shall be in accordance with the manufacturer's published recommendations.

I. Insulation materials shall not be applied until all surfaces to be covered are clean and dry; all foreign material, such as rust, scale, dirt, etc., has been removed, and where specified, surfaces have been painted. Insulation shall be clean and dry when installed and during the application of any finish. The insulation on pipe fittings, valves and pipe joints shall not be installed before the piping is tested and approved.

J. Omit insulation of the following unless directed otherwise.
 1. Brass or copper pipe specified to be chrome plated.
 2. Traps and pressure reducing valves, relief piping from safety valves, and unions, flanges and expansion joints on heating water system.
 3. All fire protection piping.
 4. Existing adjacent insulation.
 5. ASME stamps, manufacturer's nameplates.
 6. Access plates on fan housings.
 7. Cleanouts or handholes.
 8. Components within factory preinsulated HVAC equipment.

K. Replace and repair insulation disturbed by testing and balancing procedures required under Division 23, Section “Testing and Balancing”.

L. Repair existing insulation on piping, ductwork, and equipment, that is damaged by the contractor's work
3.2 PIPE INSULATION

A. High density pipe saddles shall be provided at all points of support as hereinbefore specified.

B. Insulate all valves and strainers. Use premolded covers and factory precut insulation where applicable. Unions and flanges shall not be insulated except on cold services.

C. Insulate valves up to and including bonnets, except for cold water valves which shall be insulated over packing nuts in a manner to permit removal for adjustment and repacking.

D. Insulate strainers in a manner to permit removal of the basket without disturbing the insulation of the strainer. Obtain Architect's approval of installation method.

E. Insulate all exposed piping under lavatories and sinks with a white, fitted/molded antimicrobial undersink pipe cover equal to Truebro Lav Guard 2. Cover shall have internal, E-Z Tear-To-Fit trim feature for square, clean trimming (internal ribs) and built-in, concealed E-Z Grip fasteners (no cable-tie fasteners allowed).

F. Application - Type I Insulation:
 1. Insulate all pipes in a neat and workmanlike manner. Seal all longitudinal laps of jackets and staple every six (6) inches. Where the piping operates below ambient temperature, the staples shall be coated with vapor barrier adhesive. All butt joints shall be wrapped with a three (3) inch minimum wide strip of jacketing material securely sealed in place.
 2. Insulate valves and fittings with pre-cut blanket type fiberglass insulation and PVC covers as specified. Insulation shall be of the same thickness as that on adjoining pipe. The ends of the insulation shall be tucked snugly into the throat of the fitting and the edges adjacent to the pipe covering tufted and tucked, fully insulating the pipe fitting. The one (1) piece PVC fitting cover shall then be secured by stapling, tack fastening, banding or taping the ends to the adjacent pipe covering. Chilled water supply and return piping and cold water systems piping shall be insulated as above and have all seam edges of the cover sealed with ZESTON vapor barrier adhesive mastic. The circumferential edges of cover shall be wrapped with ZESTON vapor barrier pressure sensitive color matching tape. The tape shall extend over the adjacent pipe insulation and overlap itself at least two (2) inches on the downward side.
 3. Where fittings are operating above ambient they may, in lieu of the proceeding paragraph, be covered with a three (3) hour, hydraulic setting, combination insulating and finishing cement having k factor not greater than 0.87 at a mean temperature of 200 degrees Fahrenheit. The thickness of this cement shall be such that the surface is substantially flush with the pipe covering. Where the insulation terminates at a fitting that is not covered, the end of the insulation shall be beveled off with this same cement. All fittings insulated in this manner shall be covered by a fabric jacket as specified, which shall be cemented down with lagging adhesive.
 4. Where expansion joints are required to be insulated, they shall be covered with readily removable sections of insulation of same composition and thickness as provided for adjacent piping.

G. Application - Type II Insulation:
 1. The material shall be slit lengthwise to permit installation or slipped over pipe before connections are made. Self-seal insulation may also be installed.
 2. All joints and seams must be thoroughly bonded, both mechanically and hermetically, by the adhesive recommended by the insulation manufacturer. Also, the manufacturer's recommendations shall be followed as to the adhesive to use where the insulation needs bonding to metal or other material used for any surface treatment where a finish coat of paint is required.
 3. All penetrations of the insulation must be thoroughly sealed so that the insulation itself will form a
complete vapor barrier. Insulation shall run continuous at hangers and supports to form a complete vapor barrier. Wherever the insulation terminates, the edges shall be sealed to the metal.

4. Insulation shall be extended to stop valves under plumbing fixtures and/or within cabinets. Water and waste lines serving handicap plumbing fixtures shall be insulated and painted to match adjacent surface.

H. Application -Type XII Insulation:

1. Insulation shall be fabricated in required shapes from bun stock in accordance with ASTM C-450 “Standard Practice for Prefabrication and Field Fabrication of Thermal Insulating Fitting Covers for NPS Piping, Vessel Lagging, and Dished Head Segments” and C-585 “Standard Practice for Inner and Outer Diameters of Rigid Thermal Insulation for Nominal Sizes of Pipe and Tubing (NPS System)”. Insulation shall be factory fabricated by a qualified fabricator from bun stock.

2. Fittings, such as valves, valve stations, flanges, 90° and 45° elbows, and tees shall be two piece flycut or routed as the preferred fabrication method. For diameters too large for flycutting or routing, the pieces shall be fabricated in two halves with each half made up of mitered sections. Both methods shall be in accordance with ASTM C-450 and ASTM C-585.

3. Adhesives, Joint Sealers and Mastics
 a. Solvent based adhesives, joint sealers and mastics may be used in contact with ISO-C1 insulation. Mastics shall remain flexible at the lowest expected ambient temperature.
 b. Joint sealers for sealing joints of insulation shall be vapor retarder type, moisture and water resistant, non hardening, and flexible with a service temperature range from -275°F to +200°F.
 c. A vapor retarder type joint sealer shall be applied on insulation longitudinal joints and butt joints to prevent moisture and moisture vapor infiltration. Such joint sealers are Fosters 95-50 sealer or approved equal. Please consult joint sealer manufacturer for recommended products.
 d. Solvent or water adhesives may be used to attach the vapor barrier to the outer surface of the ISO-C1. Refer to the vapor barrier installation guidelines. Consult adhesive manufacturer's literature for instructions on handling adhesives including required operating temperatures. Potential adhesives for use in this application include:
 1) Childers CP 88 adhesive (solvent based)
 2) Foster 81-05 adhesive (solvent based)
 3) Foster 85-50 adhesive (water based)
 4) Foster 85-60 adhesive (water based)

4. Vapor Retarder
 a. The Vapor Retarder be factory or field applied to the outer surface of the pipe insulation. A double layer vapor retarder design shall be used for cryogenic and LNG applications, with the secondary vapor retarder applied between the outer most foam insulation layer and the next inner layer of foam insulation. Refer to Figure 2 in Appendix B for details.
 b. Vapor retarder shall have a maximum permeance of 0.01 perm and shall be equivalent to Venture Wrap or Venture Clad products or Insulrap 50 Laminated Vapor Retarder for Pipe Insulation. Refer to ASTM standards C-755 and C-1136 for information on selection and specification of vapor retarders. Refer to product literature and installation guidelines from the vapor retarder manufacturer for recommended application instructions.
 c. Elbows and fittings shall be wrapped with vapor retarder tape with a 50% overlap.
 d. For other laminated membrane type vapor retarders, consult manufacturer’s literature and installation guidelines.

5. Installation
 a. Dyplast recommends insulation shall be fabricated with shiplap or tongue and groove longitudinal joints and shiplap ends.
 b. Install pre-fabricated insulation fittings on elbows, tees, and valves. Insulation shall be the same thickness as pipe sections and fabricated with shiplap and shiplap or tongue and groove longitudinal joints.
 c. Insulation shall be secured to the pipe with 3/4” wide fiber reinforced tape.
d. Insulation shall be secured with fiber reinforced tape prior to installation of the vapor retarder material when vapor retarder is field applied.

e. Outer layer insulation and vapor retarder shall be secured with fiber reinforced tape. Use a 25% circumferential overlap on 12" centers when vapor retarder is factory applied to insulation. Fiber tape shall be applied to the exterior of the insulation/vapor retarder system.

f. All insulation shall be tightly butted and free of voids and gaps at all joints. Vapor retarder must be continuous. All fasteners and bands shall be neatly aligned and overall work must be of high quality appearance and workmanship.

g. Vapor stops shall be used on either side of valves frequently removed for servicing, valve stations left exposed, or odd fittings, elbows, tees, etc. where the chance of moisture infiltration is high.

h. The vapor retarder shall have a maximum permeance of 0.01 perm and shall be equivalent to Venture wrap or Venture Clad products or Insulrap 50 Laminated Vapor Retarder.

i. Vapor Retarder Film should be cut to length longitudinally and wrapped around the circumference of the pipe with lap joint and installed facing downward avoiding the placement of the joint at the top or bottom of the pipe. Lap joint to be sealed using liquid adhesive. Butt joints shall be covered with Vapor Retarder Tape. Spiral wrap configuration can be used in lieu of the above installation. Spiral wrapping will require adhesive placed on one edge of the vapor retarder as it is wrapped over the previous layer.

j. Elbows and fittings shall be wrapped with Vapor Retarder Tape or covered with a mastic type vapor retarder product. Vapor Retarder Tape is to be wrapped in a spiral configuration. If using mastic type vapor retarder at fittings and elbows, form mastic so that fitting covers can be applied true and tight.

k. On factory applied Vapor Retarder Film, lap joint to be sealed with SSL tape. All vapor retarder surfaces should be cleaned and free of dust, grease, oil, etc before application of the SSL tape to ensure good adhesion between the tape and vapor retarder. Refer to Figure 7 in Appendix. For other types of factory applied vapor retarders, consult manufacturer’s recommendations on installation.

l. Before jacketing can be installed on a portion of the piping, the vapor retarder system on that portion must be complete and continuous.

3.3 DUCT INSULATION

A. Provide accessories as required to prevent distortion and sagging of duct insulation. Provide welded pins, adhesive clips and wire ties as recommended by the manufacturer and directed by the Architect.

B. Insulation shall cover all standing seams and metal surfaces. Provide corner beading on all exposed ducts.

C. Staples shall be sealed to maintain vapor barrier.

D. Neatly cut insulation at dampers, temperature control sensors, and controllers. Butter exposed edges with approved mastic coating.

E. Use 24” minimum length Type V board type insulation, of specified thickness, on the bottoms of ducts at each trapeze hanger location.

F. Application - Type IV Insulation:

1. Insulation shall be cut slightly longer than perimeter of duct to insure full thickness at corners. All insulation shall be applied with edges tightly stitched with staples. Provide vapor barrier mastic sealer at seam. The insulation shall be additionally secured to the bottom of all square ducts eighteen (18) inches or wider by means of welded pins and speed clips. The protruding ends of the pins shall be cut off flush after the speed clips have been applied. The vapor barrier facing shall be thoroughly sealed where the pins have pierced through with a tape of the same material by
applying a vapor barrier adhesive to both surfaces as recommended by the manufacturer.

2. All hanger rods, support members, joints and penetrations of the vapor barrier shall be sealed with full thickness insulation and vapor barrier mastic sealer. All cuts or tears shall be sealed with strips of the aluminum foil tape and vapor barrier adhesive.

G. Application - Type V Insulation:

1. All insulation shall be applied with edges tightly butted. Insulation shall be impaled on pins welded to the duct and secured with speed clips. Spacing of pins shall be as required to hold insulation firmly in place but not less than one (1) pin per square foot, and pins shall be placed within three (3) inches of each corner of insulation. All joints and penetrations of the vapor barrier shall be sealed with a three (3) inch wide strip of the same material, applied with Foster 85-75, or to both surfaces as recommended by the adhesive and vapor barrier mastic sealer manufacturer.

2. If, through space or size restriction or other causes, the welded pin method is impossible, the insulation shall be secured to the duct with adhesive such as Foster 81-91 or equal. The adhesive shall cover the entire surface of the sheet metal when applied to underside of horizontal duct but may be applied in strips or spots for application to top and sides with a minimum of fifty (50) percent coverage.

3.4 EQUIPMENT INSULATION

A. Cut or score insulation to fit shape and contour of equipment. Stagger all joints.

B. Provide permanently fastened angles or plates, where required to support insulation.

C. Apply insulation on access openings and cover plates as separate sections with insulation cut back for access to bolt heads and other fasteners.

D. Do not cover nameplates. Cut back the insulation and line edges with twenty-six (26) gauge galvanized steel.

E. Application – Type VI & IX Insulation:

1. Insulation shall be applied with staggered joints firmly butted and joined. The insulation shall be held in place by steel bands. Bands shall be placed on not over twelve (12) inchcenters. All joints and voids shall be filled with cement, well trowled into openings. Apply over the insulation surface one (1) inch galvanized wire netting laced together at all edges and wired to the steel bands with sixteen (16) gauge soft annealed wire. Over this shall be applied 2-inch thick layer of insulating cement, applied in two (2) layers. Install metal corner beads at all corners and edges to provide a permanent installation.

F. Application – Type VII Insulation:

1. Apply a brush coat of manufacturer's recommended adhesive to dry, clean metal surface, covering an area equal to the size of one (1) sheet. Apply a brush coat of adhesive to the back of the sheet, except for a 2 inch wide border around the edges. After adhesive on metal surface and sheet has dried to a non-tacky state, position sheet so that the edges overlap the previously installed sheets by 1/8 inch. Apply light pressure to adhere a spot in the center of the sheet only and compress butt edges into place. Spread joints and coat with adhesive.

G. Application – Type VIII Insulation:

1. Apply a brush coat of manufacturer's recommended adhesive to dry, clean 3/4 inch high V-rib, stand-off expanded metal lath to provide an air space between the covered surface and insulation, covering and area equal to the size of one (1) sheet, except for a 2 inch wide border around the edges. After adhesive on metal ribs and sheet has dried to a non-tacky state, position sheet so that the edges overlap the previously installed sheets by 1/8 inch. Apply light pressure to adhere a spot
in the center of the sheet only and compress butt edges into place. Spread joints and coat with adhesive.

3.5 FABRIC JACKET

A. Apply jacket to insulated breeching and equipment. Onto the dry cement surface apply a brush coat of Foster Sealfas 30-36 at the rate of sixty (60) to seventy (70) square feet per gallon. Embed into wet coating the canvas jacket, smoothed out to avoid wrinkles and overlap all seams a minimum of two (2) inches. Apply a second brush coat of Sealfas 30-36 to the entire surface at the rate of sixty (60) to seventy (70) square feet per gallon.

B. Where jacket is to be installed on piping, apply Foster 30-36 adhesive to the canvas jacket by dipping to completely wet and saturate the canvas. While wet, position on the pipe insulation and pull tight, bond, lap and smooth out all wrinkles. Finish with a sealer coat of adhesive.

END OF SECTION 230700
SECTION 230900 - BUILDING AUTOMATION AND TEMPERATURE CONTROL SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The drawings and general provisions of the Contract, including General and Supplementary Conditions, General Requirements and all other Specification Sections apply to the work specified in this section.

1.2 SCOPE

A. This section includes the controls, instrumentation and associated piping and wiring required to make the mechanical systems provided under Division 23 perform as described in these specifications and as shown. Provide a complete system of automatic temperature control of the direct digital type as manufactured only by Harris Integrated Solutions. The system shall be complete in all respects including all labor, materials, equipment, and service necessary, and shall be installed by personnel regularly employed by the manufacturer. Provide a distributed process network control system complete with all necessary hardware and software including all programming. System shall be PC microprocessor based. The DDC systems for the Halbert Hall Kennel Addition shall be compatible with the Tri-County Technical College campus DDC system. The Harris Representative for the project is Shane Vanhoose who can be reached at 304 Parnell Street West Columbia, South Carolina 29169; 803-794-8808.

B. The Building Automation System (BAS) manufacturer shall furnish and install a fully integrated building automation system, incorporating direct digital control (DDC) for energy management, equipment monitoring and control, and subsystems with open communications capabilities as herein specified.

C. The new system shall be an extension of and connected to the existing Tri-County Technical College Harris Integrated Solutions management system which is used for energy management. All setpoints and programs must be able to be modified and changed through the Harris user interface without additional hardware or gateways.

D. The installation of the control system shall be performed under the direct supervision of the controls manufacturer with the shop drawings, flow diagrams, bill of materials, component designation or identification number and sequence of operation all bearing the name of the manufacturer. The installing manufacturer shall certify in writing, that the shop drawings have been prepared by the equipment manufacturer and that the equipment manufacturer has supervised their installation. In addition, the equipment manufacturer shall certify, in writing, that the shop drawings were prepared by their company and that all temperature control equipment was installed under their direct supervision.

E. All materials and equipment used shall be standard components, regularly manufactured for this and/or other systems and not custom designed especially for this project. All systems and components shall have been thoroughly tested and proven in actual use for at least two years.

F. BAS manufacturer shall be responsible for all BAS and Temperature Control wiring, including power, for a complete and operable system. All wiring shall be done in accordance with all local and national codes.

1.3 WORK BY OTHERS

A. Mechanical contractor installs all wells, valves, taps, dampers, flow stations, etc. furnished by BAS manufacturer.

B. Air handling unit manufacturer shall factory install all end devices furnished by the BAS manufacturer. Control contractor shall provide data sheets on all components to be mounted, indicating component
dimensions, mounting hardware, and methods, as well as wiring and piping diagrams for each application identified by unit tag per the schedule in the drawings, to the air handling unit manufacturer.

C. Electrical Contractor provides:
 1. 120V power to all BAS and/or Temperature control panels. Where not shown on plans, locations shall be determined by the BAS contractor and coordinated with the Architect and electrical contractor.
 2. Wiring of all power feeds through all disconnect starters to electrical motor.
 3. Wiring of any remote start/stop switches and manual or automatic motor speed control devices not furnished by BAS manufacturer
 4. Wiring of electrical sub-metering devices furnished by BAS manufacturer.

D. Products furnished but not installed under this section
 1. Flow Switches
 2. Pressure and Temperature Sensor Wells and Sockets
 3. Automatic Dampers
 4. Airflow Stations

E. Products installed but not furnished under this section
 1. Smoke Detectors

F. Products integrated to but not furnished or installed under this section
 1. Variable Refrigerant System Controls

G. The control manufacturer shall cooperate with the air and water balancing agency in the performance of their work as required or directed.

1.4 QUALITY ASSURANCE

A. The BAS system shall be designed and installed, commissioned and serviced by manufacturer employed, factory trained personnel. Manufacturer shall have an in-place support facility within 20 miles of the site with technical staff, spare parts inventory and necessary test and diagnostic equipment.

B. The manufacturer shall provide full time, on site, experienced project manager for this work, responsible for direct supervision of the design, installation, start up and commissioning of the BAS.

C. The Bidder shall be regularly engaged in the manufacturing, installation and maintenance of BAS systems and shall have a minimum of ten (10) years of demonstrated technical expertise and experience in the manufacture, installation and maintenance of BAS systems similar in size and complexity to this project.

D. Materials and equipment shall be the catalogued products of manufacturers regularly engaged in production and installation of automatic temperature control systems and shall be manufacturer's latest standard design that complies with the specification requirements.

E. This system shall have a documented history of compatibility by design for a minimum of 15 years. Future compatibility shall be supported for no less than 10 years. Compatibility shall be defined as the ability to upgrade existing field panels to current level of technology, and extend new field panels on a previously installed network.

1.5 SUBMITTALS

A. Submit 10 complete sets of documentation in the following phased delivery schedule:
1. Valve and damper schedules
2. Equipment data cut sheets
3. System schematics, including:
 a. Sequence of operations
 b. Point names
 c. Point addresses
 d. Interface wiring diagrams
 e. Panel layouts.
 f. System riser diagrams
4. Auto-CAD compatible as-built drawings

B. Upon project completion, submit operation and maintenance manuals, consisting of the following:
1. Index sheet, listing contents in alphabetical order
2. Manufacturer's equipment parts list of all functional components of the system, Auto-CAD disk of system schematics, including wiring diagrams
3. Description of sequence of operations
4. As-Built interconnection wiring diagrams
6. Trunk cable schematic showing remote electronic panel locations, and all trunk data
7. List of connected data points, including panels to which they are connected and input device (ionization detector, sensors, etc.)
8. Conduit routing diagrams

1.6 WARRANTY
A. Provide all services, materials and equipment necessary for the successful operation of the entire BAS system for a period of one year after substantial completion.
B. The adjustment, required testing, and repair of the system includes all computer equipment, transmission equipment and all sensors and control devices.
C. The on-line support services shall allow the local BAS subcontractor to dial out over telephone lines to monitor and control the facility's building automation system. This remote connection to the facility shall be within 2 hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekends and holidays.

1.7 IDENTIFICATION
A. Identify control wires and compressed air piping with a distinctive number on a nonconducting tag attached to each end or at junction points or by color coding of that wire or tube. Designate on control diagram the identifying color and/or number or other identifying designation used.
B. Identify all control equipment and devices, including panels, controllers, valves, and automatic dampers, firestats, etc., by a method approved by the Architect. Designations shall match those used on control diagrams and shop drawings.

PART 2 - PRODUCTS

2.1 NETWORKING COMMUNICATIONS
A. The design of the BAS shall network operator workstations and stand alone DDC Controllers. The network architecture shall consist of multiple levels for communication efficiency, a site-wide (Management Level Network) Ethernet network based on TCP/IP protocol, high performance peer to
peer building level network(s) and DDC Controller floor level local area networks with access being totally transparent to the user when accessing data or developing control programs.

B. Peer to Peer Building Level Network:
1. All operator devices either network resident or connected via dial up modems shall have the ability to access all point status and application report data or execute control functions for any and all other devices via the peer to peer network. No hardware or software limits shall be imposed on the number of devices with global access to the network data at any time.
2. The peer-to-peer network shall support a minimum of 100 DDC controllers and PC workstations
3. Each PC workstation shall support a minimum of 4 peer to peer networks hardwired.
4. The system shall support integration of third party systems (boiler, chiller). This system shall exchange data between the two systems for interprocess control. All exchange points shall have full system functionality as specified herein for hardwired points.

2.2 DDC CONTROLLER FLOOR LEVEL NETWORK:
A. This level communication shall support a family of application specific controllers and shall communicate with the peer to peer network through DDC Controllers for transmission of global data.

2.3 DDC & HVAC MECHANICAL EQUIPMENT CONTROLLERS
A. The DDC & HVAC Mechanical Equipment Controllers shall reside on the Building Level Network.
B. DDC & HVAC Mechanical Equipment Controllers shall use the same programming language and tools. DDC & HVAC Mechanical Equipment Controllers which require different programming language or tools on a network are not acceptable.
C. DDC & HVAC Mechanical Equipment Controllers which do not meet the functions specified for DDC Controllers or for HVAC Mechanical Equipment Controllers are not acceptable.

2.4 DDC CONTROLLER
A. DDC Controllers shall be a 16-bit stand-alone, multi tasking, multi user, real time digital control processors consisting of modular hardware with plug in enclosed processors, communication controllers, power supplies and input/output point modules. Controller size shall be sufficient to fully meet the requirements of this specification and the attached point I/O schedule. Each controller shall support a minimum of three (3) Floor Level Application Specific Controller Device Networks.
B. Each DDC Controller shall have sufficient memory to support its own operating system and databases, including:
1. Control processes
2. Energy management applications
3. Alarm management applications including custom alarm messages for each level alarm for each point in the system.
4. Historical/trend data for points specified
5. Maintenance support applications
6. Custom processes
7. Operator I/O
8. Dial up communications
9. Manual override monitoring
C. Each DDC Controller shall support firmware upgrades without the need to replace hardware.
D. Provide all processors, power supplies and communication controllers so that the implementation of a
point only requires the addition of the appropriate point input/output termination module and wiring.

E. DDC Controllers shall provide a minimum two RS 232C serial data communication ports for operation of operator I/O devices such as industry standard printers, operator terminals, modems and portable laptop operator's terminals. DDC Controllers shall allow temporary use of portable devices without interrupting the normal operation of permanently connected modems, printers or terminals.

F. As indicated in the point I/O schedule, the operator shall have the ability to manually override automatic or centrally executed commands at the DDC Controller via local, point discrete, on board hand/off/auto operator override switches for digital control type points and gradual switches for analog control type points.
 1. Switches shall be mounted either within the DDC Controllers key accessed enclosure, or externally mounted with each switch keyed to prevent unauthorized overrides.
 2. DDC Controllers shall monitor the status of all overrides and inform the operator that automatic control has been inhibited. DDC Controllers shall also collect override activity information for reports.

G. DDC Controllers shall provide local LED status indication for each digital input and output for constant, up to date verification of all point conditions without the need for an operator I/O device. Graduated intensity LEDs or analog indication of value shall also be provided for each analog output. Status indication shall be visible without opening the panel door.

H. Each DDC Controller shall continuously perform self diagnostics, communication diagnosis and diagnosis of all panel components. The DDC Controller shall provide both local and remote annunciation of any detected component failures, low battery conditions or repeated failure to establish communication.

I. Isolation shall be provided at all peer to peer network terminations, as well as all field point terminations to suppress induced voltage transients consistent with:
 1. RF-Conducted Immunity (RFCI) per ENV 50141 (IEC 1000-4-6) at 3 V
 2. Electro Static Discharge (ESD) Immunity per EN 61000-4-2 (IEC 1000-4-2) at 8 kV air discharge, 4 kV contact
 3. Electrical Fast Transient (EFT) per EN 61000-4-4 (IEC 1000-4-4) at 500 V signal, 1 kV power
 4. Output Circuit Transients per UL 864 (2,400V, 10A, 1.2 Joule max)

J. Isolation shall be provided at all peer to peer panel's AC input terminals to suppress induced voltage transients consistent with:
 2. UL 864 Supply Line Transients
 3. Voltage Sags, Surge, and Dropout per EN 61000-4-11 (EN 1000-4-11)

K. In the event of the loss of normal power, there shall be an orderly shutdown of all DDC Controllers to prevent the loss of database or operating system software. Non volatile memory shall be incorporated for all critical controller configuration data and battery backup shall be provided to support the real time clock and all volatile memory for a minimum of 60 days.
 1. Upon restoration of normal power, the DDC Controller shall automatically resume full operation without manual intervention.
 2. Should DDC Controller memory be lost for any reason, the user shall have the capability of reloading the DDC Controller via the local RS 232C port, via telephone line dial in or from a network workstation PC.
2.5 HVAC MECHANICAL EQUIPMENT CONTROLLERS

A. HVAC Mechanical Equipment Controllers shall be a 12-bit stand-alone, multi tasking, multi user, real time digital control processors consisting of modular hardware with plug in enclosed processors.

B. Each HVAC Mechanical Controller shall have sufficient memory to support its own operating system and databases, including:

1. Control processes
2. Energy management applications
3. Alarm management applications including custom alarm messages for each level alarm for each point in the system.
4. Historical/trend data for points specified
5. Maintenance support applications
6. Custom processes
7. Operator I/O
8. Dial up communications

C. Each HVAC Mechanical Equipment Controller shall support firmware upgrades without the need to replace hardware.

D. HVAC Mechanical Equipment Controllers shall provide a RS 232C serial data communication port for operation of operator I/O devices such as industry standard printers, operator terminals, modems and portable laptop operator's terminals.

E. HVAC Mechanical Equipment Controllers shall provide local LED status indication for each digital input and output for constant, up to date verification of all point conditions without the need for an operator I/O device.

F. Each HVAC Mechanical Equipment Controller shall continuously perform self diagnostics, communication diagnosis and diagnosis of all components. The HVAC Mechanical Equipment Controller shall provide both local and remote annunciation of any detected component failures, low battery conditions or repeated failure to establish communication.

G. Isolation shall be provided at all peer to peer network terminations, as well as all field point terminations to suppress induced voltage transients consistent with:

1. RF-Conducted Immunity (RFCl) per ENV 50141 (IEC 1000-4-6) at 3 V
2. Electro Static Discharge (ESD) Immunity per EN 61000-4-2 (IEC 1000-4-2) at 8 kV air discharge, 4 kV contact
3. Electrical Fast Transient (EFT) per EN 61000-4-4 (IEC 1000-4-4) at 500 V signal, 1 kV power
4. Output Circuit Transients per UL 864 (2,400V, 10A, 1.2 Joule max)

H. Isolation shall be provided at all peer to peer panel's AC input terminals to suppress induced voltage transients consistent with:

2. UL 864 Supply Line Transients
3. Voltage Sags, Surge, and Dropout per EN 61000-4-11 (EN 1000-4-11)

I. In the event of the loss of normal power, there shall be an orderly shutdown of all HVAC Mechanical Equipment Controllers to prevent the loss of database or operating system software. Non volatile memory shall be incorporated for all critical controller configuration data and battery backup shall be provided to support the real time clock and all volatile memory for a minimum of 72 hours.

1. Upon restoration of normal power, the HVAC Mechanical Equipment Controller shall automatically resume full operation without manual intervention.
2. Should HVAC Mechanical Equipment Controller memory be lost for any reason, the user shall have the capability of reloading the HVAC Mechanical Equipment Controller via the local RS 232C port, via telephone line dial in or from a network workstation PC.

2.6 DDC & HVAC MECHANICAL EQUIPMENT CONTROLLER RESIDENT SOFTWARE FEATURES

A. General:
 1. The software programs specified in this Section shall be provided as an integral part of DDC and HVAC Mechanical Equipment Controllers and shall not be dependent upon any higher level computer for execution.
 2. All points shall be identified by up to 30 character point name and 16 character point descriptor. The same names shall be used at the PC workstation.
 3. All digital points shall have user defined two-state status indication (descriptors with minimum of 8 characters allowed per state (i.e. summer/winter).

B. Control Software Description:
 1. The DDC and HVAC Mechanical Equipment Controllers shall have the ability to perform the following pre tested control algorithms:
 a. Two position control
 b. Proportional control
 c. Proportional plus integral control
 d. Proportional, integral, plus derivative control
 e. Automatic tuning of control loops

C. DDC and HVAC Mechanical Equipment Controllers shall provide the following energy management routines for the purpose of optimizing energy consumption while maintaining occupant comfort.
 1. Start Stop Time Optimization (SSTO) shall automatically be coordinated with event scheduling. The SSTO program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by time of occupancy. The SSTO program shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period, and still maintain desired comfort conditions.
 a. The SSTO program shall operate in both the heating and cooling seasons. It shall be possible to apply the SSTO program to individual fan systems. The SSTO program shall operate on both outside weather conditions as well as inside zone conditions and empirical factors.
 b. The SSTO program shall meet the local code requirements for minimum outside air while the building is occupied.
 2. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or groups of points according to a stored time.
 a. It shall be possible to individually command a point or group of points.
 b. For points assigned to one common load group, it shall be possible to assign variable time delays between each successive start or stop within that group.
 c. The operator shall be able to define the following information:
 1) Time, day
 2) Commands such as on, off, auto, and so forth.
 3) Time delays between successive commands.
 4) There shall be provisions for manual overriding of each schedule by an appropriate operator.
 d. It shall be possible to schedule events up to one year in advance.
 1) Scheduling shall be calendar based.
 2) Holidays shall allow for different schedules.
 3. Enthalpy switchover (economizer): The Energy Management Control Software (EMCS) will control the position of the air handler relief, return, and outside air dampers on units provided with
economizer capability. If the outside air dry bulb temperature falls below changeover set point the
EMCS will modulate the dampers to provide 100 percent outside air. The user will be able to
quickly changeover to an economizer system based on dry bulb temperature and will be able to
override the economizer cycle and return to minimum outside air operation at any time.

4. Automatic Daylight Savings Time Switchover: The system shall provide automatic time
adjustment for switching to/from Daylight Savings Time.

5. Night setback control: The system shall provide the ability to automatically adjust setpoints for
night control.

6. The Peak Demand Limiting (PDL) program shall limit the consumption of electricity to prevent
electrical peak demand charges.
 a. PDL shall continuously track the amount of electricity being consumed, by monitoring one
or more electrical kilowatt-hour/demand meters. These meters may measure the electrical
consumption (kWh), electrical demand (kW), or both.
 b. PDL shall sample the meter data to continuously forecast the demand likely to be used
during successive time intervals.
 c. If the PDL forecasted demand indicates that electricity usage is likely to exceed a user
 preset maximum allowable level, then PDL shall automatically shed electrical loads.
 d. Once the demand peak has passed, loads that have been shed shall be restored and returned
to normal control.

D. DDC and HVAC Mechanical Equipment Controllers shall be able to execute custom, job specific
processes defined by the user, to automatically perform calculations and special control routines.

1. A single process shall be able to incorporate measured or calculated data from any and all other
DDC and HVAC Mechanical Equipment Controllers on the network. In addition, a single
process shall be able to issue commands to points in any and all other DDC and HVAC
Mechanical Equipment Controllers on the network. Database shall support 30 character, English
language point names, structured for searching and logs.

2. Processes shall be able to generate operator messages and advisories to operator I/O devices. A
process shall be able to directly send a message to a specified device or cause the execution of a
dial up connection to a remote device such as a printer or pager.

3. DDC and HVAC Mechanical Equipment Controller shall provide a HELP function key, providing
enhanced context sensitive on-line help with task orientated information from the user manual.

4. DDC and HVAC Mechanical Equipment Controller shall be capable of comment lines for
sequence of operation explanation.

E. Alarm management shall be provided to monitor and direct alarm information to operator devices. Each
DDC and HVAC Mechanical Equipment Controller shall perform distributed, independent alarm
analysis and filtering to minimize operator interruptions due to non critical alarms, minimize network
traffic and prevent alarms from being lost. At no time shall the DDC and HVAC Mechanical Equipment
Controllers ability to report alarms be affected by either operator or activity at a PC workstation, local I/O
device or communications with other panels on the network.

1. All alarm or point change reports shall include the point's English language description and the
time and date of occurrence.

2. The user shall be able to define the specific system reaction for each point. Alarms shall be
prioritized to minimize nuisance reporting and to speed operator response to critical alarms. A
minimum of six priority levels shall be provided for each point. Point priority levels shall be
combined with user definable destination categories (PC, printer, DDC Controller, etc.) to provide
full flexibility in defining the handling of system alarms. Each DDC and HVAC Mechanical
Equipment Controller shall automatically inhibit the reporting of selected alarms during system
shutdown and start up. Users shall have the ability to manually inhibit alarm reporting for each
point.

3. Alarm reports and messages will be directed to a user defined list of operator devices or PCs based
on time (after hours destinations) or based on priority.

4. In addition to the point's descriptor and the time and date, the user shall be able to print, display or
store a 200 character alarm message to more fully describe the alarm condition or direct operator
response.
5. In dial up applications, operator selected alarms shall initiate a call to a remote operator device.

F. A variety of historical data collection utilities shall be provided to manually or automatically sample, store and display system data for points as specified in the I/O summary.

1. Any point, physical or calculated may be designated for trending. Any point, regardless of physical location in the network, may be collected and stored in each DDC and HVAC Mechanical Equipment Controllers point group. Two methods of collection shall be allowed: either by a pre defined time interval or upon a pre defined change of value. Sample intervals of 1 minute to 7 days shall be provided. Each DDC and HVAC Mechanical Equipment Controller shall have a dedicated RAM based buffer for trend data and shall be capable of storing a minimum of 60 data samples. All trend data shall be available for transfer to a Workstation without manual intervention.

2. DDC and HVAC Mechanical Equipment Controllers shall also provide high resolution sampling capability for verification of control loop performance. Operator initiated automatic and manual loop tuning algorithms shall be provided for operator selected PID control loops as identified in the point I/O summary.
 a. Loop tuning shall be capable of being initiated either locally at the DDC and HVAC Mechanical Equipment Controller, from a network workstation or remotely using dial in modems. For all loop tuning functions, access shall be limited to authorized personnel through password protection.

G. DDC and HVAC Mechanical Equipment Controllers shall be capable of automatically accumulating and storing run time hours for digital input and output points and automatically sample, calculate and store consumption totals for analog and digital pulse input type points, as specified in the point I/O schedule.

H. The peer to peer network shall allow the DDC and HVAC Mechanical Equipment Controllers to access any data from or send control commands and alarm reports directly to any other DDC and HVAC Mechanical Equipment Controller or combination of controllers on the network without dependence upon a central or intermediate processing device. DDC and HVAC Mechanical Equipment Controllers shall send alarm reports to multiple workstation without dependence upon a central or intermediate processing device. The peer to peer network shall also allow any DDC and HVAC Mechanical Equipment Controller to access, edit, modify, add, delete, back up, and restore all system point database and all programs.

I. The peer to peer network shall allow the DDC and HVAC Mechanical Equipment Controllers to assign a minimum of 50 passwords access and control priorities to each point individually. The logon password (at any PC workstation or portable operator terminal) shall enable the operator to monitor, adjust and control the points that the operator is authorized for. All other points shall not be displayed on the PC workstation or portable terminal (e.g. all base building and all tenant points shall be accessible to any base building operators, but only tenant points shall be accessible to tenant building operators). Passwords and priorities for every point shall be fully programmable and adjustable.

2.7 FLOOR LEVEL NETWORK APPLICATION SPECIFIC CONTROLLERS (ASC)

A. Each DDC Controller shall be able to extend its performance and capacity through the use of remote application specific controllers (ASCs) through Floor Level LAN Device Networks.

B. Each ASC shall operate as a standalone controller capable of performing its specified control responsibilities independently of other controllers in the network. Each ASC shall be a microprocessor based, multi tasking, real time digital control processor. Each ASC shall be capable of control of the terminal device independent of the manufacturer of the terminal device.

C. Terminal Equipment Controllers:
 1. Provide for control of each piece of equipment, including, but not limited to, the following:
2. Controllers shall include all point inputs and outputs necessary to perform the specified control sequences. Analog outputs shall be industry standard signals such as 24V floating control, 3-15 psi pneumatic, 0-10v, allowing for interface to a variety of modulating actuators.

3. All controller sequences and operation shall provide closed loop control of the intended application. Closing control loops over the FLN, BLN or MLN is not acceptable.

D. Digital Energy Monitors:

1. Provide three phase digital watt-meters with pre-wired CTs. All watt-meter electronics shall be housed within the CTs. CTs shall include sizes capable of mounting directly on a power bus. Diagnostics visible to the installing electrician (without a operator tool) shall indicate: proper operation, mis-wiring or low power-factor, device malfunction, and over-load condition. The meters shall include the following:
 a. The device shall be UL Listed, and shall comply with ANSI C12.1 accuracy specification. The minimum CT/meter combined accuracy shall be no greater than 1% of reading over the range of 5% to 100% of rated load. The meter shall not require calibration
 b. The wattmeter shall directly connect to power from 208 through 480 with no potential transformer. In-line fuses for each voltage tap phase shall be included.
 c. The wattmeter CTs shall be split-core and at minimum be sized to accommodate loads ranging from 100 to 2400 Amps. The CTs shall be volt-signal type, and shall not require shorting blocks.
 d. The wattmeter shall reside directly on the Floor Level Network along with other FLN devices. Data transferred shall include:
 1) kW & kWH
 2) Consumption
 3) Demand
 4) Power Factor
 5) Current
 6) Voltage
 7) Apparent Power
 8) Reactive Power

2.8 PERSONAL COMPUTER OPERATOR WORKSTATION HARDWARE

A. All new system software, graphics, point database information, and programming shall be added to the existing Personal computer operator workstation.

2.9 WORKSTATION OPERATOR INTERFACE

A. Basic Interface Description

1. Operator workstation interface software shall minimize operator training through the use of English language prompting, 30 character English language point identification, on-line help, and industry standard PC application software. The software shall provide, as a minimum, the following functionality:
 a. Real-time graphical viewing and control of environment.
 b. Scheduling and override of building operations.
 c. Collection and analysis of historical data.
 d. Point database editing, storage and downloading of controller databases.
 e. Alarm reporting, routing, messaging, and acknowledgment.
B. Dynamic Color Graphic Displays

1. Color graphic floor plan displays and system schematics for each piece of mechanical equipment shall be installed under this contract. Graphics to be created include:
 a. Building floor plan with area temperatures displayed.
 b. Each air handling unit.
 c. Each air terminal unit.
 d. Chilled water system, including components and temperatures
 e. Hot water system, including components and temperatures

2.10 FIELD DEVICES

A. Provide instrumentation as required for monitoring, control or optimization functions.

B. Room Temperature Sensors

1. Digital room sensors shall have LCD display, day / night override button, and setpoint slide adjustment override options. The setpoint slide adjustment can be software limited by the automation system to limit the amount of room adjustment.

 Temperature monitoring range: +20°F to 120°F
 Output signal: Changing resistance
 Accuracy at Calibration point: +0.5°F
 Set Point and Display Range: 55° to 95° F

2. Liquid immersion temperature:

 Temperature monitoring range: +30°F to 250°F
 Output signal: Changing resistance
 Accuracy at Calibration point: +0.5°F

3. Duct (single point) temperature:

 Temperature monitoring range: +20°F to 120°F
 Output signal: Changing resistance
 Accuracy at Calibration point: +0.5°F

4. Duct Average temperature:

 Temperature monitoring range: +20°F to 120°F
 Output signal: 4 – 20 mA DC
 Accuracy at Calibration point: +0.5°F
 Sensor Probe Length: 25 feet long

5. Outside air temperature:

 Temperature monitoring range: -58°F to 122°F
 Output signal: 4 – 20 mA DC
 Accuracy at Calibration point: +0.5°F

C. Liquid Differential Pressure Transmitter

 Ranges:
 0-5/30 inches H₂O
 0-25/150 inches H₂O
 0-125/750 inches H₂O

 Output signal: 4 – 20 mA DC
 Accuracy at Calibration point: Zero and span
 Accuracy: ± 0.2% of span
 Linearity: ±0.1% of span
Hysteresis \(\pm 0.05\% \) of span

D. Differential pressure:

1. Unit for fluid flow proof shall be Penn P74.
 Range 8 to 70 psi
 Differential 3 psi
 Maximum differential pressure 200 psi
 Maximum pressure 325 psi

2. Unit for air flow shall be Siemens Building Technologies SW141.
 Set point ranges:
 \(0.5'' \) WG to \(1.0'' \) WG
 \(1.0'' \) WG to \(12.0'' \) WG

E. Static Pressure Sensor:
 Range
 \(0 \) to \(0.5'' \) WG
 \(0 \) to \(1'' \) WG
 \(0 \) to \(2'' \) WG
 \(0 \) to \(5'' \) WG
 \(0 \) to \(10'' \) WG
 Output Signal 4 – 20 mA VDC
 Combined static error 0.5\% full range
 Operating Temperature \(-40^\circ\)F to \(175^\circ\)F

F. Air Pressure Sensor:
 Range
 \(0 \) to \(0.1'' \) WG
 \(0 \) to \(0.25'' \) WG
 \(0 \) to \(0.5'' \) WG
 \(0 \) to \(1'' \) WG
 \(0 \) to \(2'' \) WG
 \(0 \) to \(5'' \) WG
 \(0 \) to \(10'' \) WG
 Output Signal 4 – 20 mA VDC
 Accuracy \(\pm 1.0\% \) of full scale

G. Humidity Sensors:
 Range
 0 to 100\% RH
 Sensing Element Bulk Polymer
 Output Signal 4 – 20 mA VDC
 Accuracy \(\pm 2\%\) RH at 77\(^\circ\)F

H. Insertion Flow Meters (Equal to Onicon Series F-1200 or FB-1200)
 Type: Dual turbine. Provide bi-directional where required.
 Sensing Method Impedance Sensing
 Accuracy \(\pm 2\% \) of Actual Reading
 Maximum Operating Pressure 400 PSI
 Output Signal 4 – 20 mA
I. Pressure to Current Transducer
 Range 3 to 15 psig or 3 to 30 psig
 Output Signal 4 – 20 mA VDC
 Accuracy ± 1% of full scale (± 0.3 psig)

J. Carbon Dioxide:
 1. Sensor shall be remote mounted non dispersive infrared carbon dioxide optical diffusion gas cell type with pulsed source and non-free air optical path. Sensing cell shall be provided with thirty (30) inch cable for duct mounting. Sensor shall produce linear analog 0-1 Volt DC, 4-20 MA, and binary adjustable switch point form C outputs. Range shall be 0-2000 parts per million with accuracy of three (3) percent. Sensor shall be mounted in weather tight enclosure with forty-one (41) degree Fahrenheit to 104 degree Fahrenheit operating temperature.

K. Control Valves (all control valves shall have electric actuators)
 Rangeability 40:1
 Flow Characteristics Modified. Equal percentage
 Control Action Normal open or closed as selected
 Medium Steam, water, glycol
 Body Type Valves 2” and smaller- screwed ends
 Valves 2½” and larger – flanged
 Body Material Bronze
 Body Trim Bronze
 Stem Stainless Steel
 Actuator 0-10 VDC Floating or 2 position 24 VAC/120VAC

L. Damper Actuators
 1. Electric control shall be Siemens Building Technologies OpenAir™ direct coupled actuators.
 2. Damper actuators shall be Brushless DC Motor Technology with stall protection, bi-directional, fail safe spring return, all metal housing, manual override, independently adjustable dual auxiliary switch.
 a. The actuator assembly shall include the necessary hardware and proper mounting and connection to a standard ½” diameter shaft or damper blade.
 3. Actuators shall be designed for mounting directly to the damper shaft without the need for connecting linkages.
 4. All actuators having more than 100 lb-in torque output shall have a self-centering damper shaft clamp that guarantees concentric alignment of the actuator’s output coupling with the damper shaft. The self-centering clamp shall have a pair of opposed “V” shaped toothed cradles; each having two rows of teeth to maximize holding strength. A single clamping bolt shall simultaneously drive both cradles into contact with the damper shaft.
 5. All actuators having more than a 100 lb-in torque output shall accept a 1” diameter shaft directly, without the need for auxiliary adapters.
 6. All actuators shall be designed and manufactured using ISO900 registered procedures, and shall be Listed under Standards UL873 and CSA22.2 No. 24-93 l.

2.11 FIREFIGHTERS’ SMOKE CONTROL STATION

A. A Fireman’s Smoke Control Panel (FSCP) shall be provided for firefighter control and monitoring of the building's mechanical system. The FSCP shall provide individual manual command (start-stop) switches and pilot lamps for all air handling unit supply/return fans and all exhaust fans on a custom building graphic panel. Panel face arrangement shall be similar to that shown on the building automatic system control schematics, and shall be submitted for review and approval prior to fabrication.

B. The FSCP shall communicate and interface to the HVAC control system and central operator's computer
through the local area network (LAN).

C. The FSCP shall have pilot lights to indicate the following:
 1. Area of the building in alarm
 2. Mode each fan system is current operating at time of alarm
 3. On/off status of each fan

D. The FSCS shall consist of the following assemblies:
 1. Steel Enclosure with Hinged Locking Front Panel
 2. Graphic Panel with Pilot Lamps and Switches
 3. DIN Rail for Installation of PXC Modular
 4. Controller
 5. Plug-in Cabling
 6. Trunk and Input Power Terminals

E. A diagram on the panel face shall show the location of each AHU.

F. A general HVAC alarm light shall be provided on the panel face. The building automation system shall energize the light for high priority HVAC alarms (as defined by the owner).

G. A pilot lamp test shall be provided for testing all pilot lamps on the FSCP. The FSCP shall be equipped with an audible annunciator to sound upon specific monitored conditions.

H. A tamper switch shall also be provided to cause remote annunciation if the front cover panel is opened.

I. When used for fire fighting and smoke control applications, the FSCP shall have the highest operational priority of all smoke control equipment within a building. Use of FSCP switches to control building supply, return and exhaust fans shall override all other sources of program control over the affected equipment.

2.12 MISCELLANEOUS DEVICES

A. Thermostats
 1. Room thermostats shall be of the gradual acting type with adjustable sensitivity.
 2. They shall have a bi-metal sensing element capable of responding to a temperature change of one-tenth of one degree. (Provide all thermostats with limit stops to limit adjustments as required.)
 3. Thermostats shall be arranged for either horizontal or vertical mounting.
 4. In the vertical position thermostat shall fit on a mullion of movable partitions without overlap.
 5. Mount the thermostat covers with tamper-proof socket head screws.

B. Freezestats:
 1. Install freezestats as indicated on the plans and provide protection for every square foot of coil surface area with one linear foot of element per square foot of coil.
 a. Upon detection of low temperature, the freezestats shall stop the associated supply fans and return the automatic dampers to their normal position. Provide manual reset.

C. Firestats:
 1. Provide manual reset, fixed temperature line voltage type with a bi-metal actuated switch.
 a. Switch shall have adequate rating for required load.

D. Electronic Airflow Measurement Stations and Transmitters (At Duct Locations).
 1. Each insertion station shall contain an array of velocity sensing elements and straightening vanes.
The velocity sensing elements shall be of the RTD or thermistor type. The sensing elements shall be distributed across the duct cross section in a quality to provide accurate readings. The resistance to airflow through the airflow measurement station shall not exceed 0.08 inches water gage at an airflow of 2,000 fpm. Station construction shall be suitable for operation at airflow of up to 5,000 fpm over a temperature range of 40 to 120 degrees F, and accuracy shall be plus or minus 3 percent over a range of 125 to 2,500 fpm scaled to air volume. Each transmitter shall produce a linear, temperature compensated 4 to 40 mA DC, output corresponding to the required velocity pressure measurement.

E. Fan Inlet Airflow Measuring Station
 1. Each station shall contain parallel air straightener, total and static pressure sensing manifolds, internal piping and external pressure transmission ports with flexible tubing and quick-connect fittings. Fabricate of galvanized steel, size for fan inlet in which mounted. Maximum pressure loss through station of 0.08 inches water gage at 1500 fpm. Station shall have accuracy of 2%. Identify by model number, size, area, and specified airflow capacity.

F. Current Sensing Relay:
 1. Provide solid-state, adjustable, current operated relay. Provide a relay which changes switch contact state in response to an adjustable set point value of current in the monitored A/C circuit.
 2. Adjust the relay switch point so that the relay responds to motor operation under load as an “on” state and so that the relay responds to an unloaded running motor as an “off” state. A motor with a broken belt is considered an unloaded motor.
 3. Provide for status device for all fans and pumps.

G. Fire and Smoke Control Devices

PART 3 - EXECUTION

3.1 PROJECT MANAGEMENT
 A. Provide a designated project manager who will be responsible for the following:
 1. Construct and maintain project schedule
 2. On-site coordination with all applicable trades, subcontractors, and other integration vendors
 3. Authorized to accept and execute orders or instructions from owner/architect
 4. Attend project meetings as necessary to avoid conflicts and delays
 5. Make necessary field decisions relating to this scope of work
 6. Coordination/Single point of contact

3.2 INSTALLATION
 A. Provide control/power wiring and conduit to connect the automatic temperature control system and all HVAC system components for a complete operational system.
 1. Provide wiring in accordance with the NFPA 70.
 2. Do not bury or conceal wiring beneath insulation.
 3. Locate wiring clear of access doors, accessible ceilings, lighting fixtures, walkways, or any location subject to damage or abrasion.

 B. Label or code each field wire at each end, and each controller and controlled device.
 1. Identification shall be permanent, not subject to fading, flameproof, and approved by the
2. Permanently mark terminal blocks at wire termination points.
3. Identify each control device with an engraved laminated phenolic nameplate, white on black, lettering not less than 1/8 inch high, on 1 1/2 inch by 1 inch tag and brass interlocked chain secured to the control device. Name shall correspond with identification on the shop drawings.
4. Identify sensors, controllers, relays, either mounted in local or central control panels, or remote mounted with a similar name tag as specified above. Attach to or adjacent to controllers with stainless steel or brass screws or rivets. Adhesives will not be acceptable. Do not attach to removable controller covers.

C. Mount strap on sensors using helical screw stainless steel band clamps install strap on thermostats, aquastats and other temperature sensors on new piping only after the pipe surface is cleaned to bright metal. Strap on sensor may be used on piping up to 2 1/2 inch diameter. On pipe three (3) inches and larger pipe wells shall be used.

D. Install valves in piping with stems as vertical as possible but in no case less than forty-five (45) degrees from vertical. For soldered or welded connections, remove valve internals before installation.

E. Wire electric valves in accordance with NFPA 70 with not less than two (2) feet of flexible liquidtight connector with watertight bushings at the valve actuator and conduit termination. Brace conduit to the building structure to prevent movement and damage.

F. Install pressure and temperature sensors as follows.
 1. Locate pressure and temperature sensing points sufficiently downstream from the control device to increase control loop time constant and minimize hunting.
 2. Locate shut off valves and three (3) valve bypasses as specified and as required to service sensors.
 3. Locate sensors where accessible for maintenance and replacement.
 4. Do not cover or conceal sensors with insulation.

G. Locate each controller inside local field cabinets with instrumentation, pressure gauges, voltmeters or milliampmeters to show, at the controller location, the condition of input power supply, input controller signal, and branch line signal. Indicators shall be permanently mounted.

H. Provide wells for all sensors and indicators measuring temperatures in pressure vessels and piping.
 1. Wells shall be stainless steel or bronze to match media requirements.
 2. Verify working pressure of each sensor well installed.
 3. Do not install wells in extension couplings.
 4. Where pipe diameters are smaller than the well length, provide wells at piping elbow or tees to affect flow across the entire well area.
 5. Wells may face upstream or downstream.
 6. Install pipe wells above the horizontal to retain liquid heat transfer fluid in the well during assembly and maintenance.
 7. If pipe wells restrict cross sectional pipe area to less than seventy (70) percent free area, provide pipe increases at the well not less than 150 percent pipe diameter.

I. Dampers
 1. Mount dampers with the pivot rods in a horizontal position, except where suitable thrust bearings are provided, damper blade pivot rods may be a position other than horizontal.
 2. Mount operators outside of the duct or casing, on support plates that are completely outside the insulation and lagging. On casings or ducts handling cold air, install support plates in a manner that will prevent condensation on damper operator or on supports.
3.3 START-UP AND COMMISSIONING

A. When installation of the system is complete, calibrate equipment and verify transmission media operation before the system is placed on-line. All testing, calibrating, adjusting and final field tests shall be completed by the manufacturer. Verify that all systems are operable from local controls in the specified failure mode upon panel failure or loss of power.

B. Provide any recommendation for system modification in writing to owner. Do not make any system modification, including operating parameters and control settings, without prior approval of owner.

C. After manufacturer has completed system start-up and commissioning. Joint commissioning of integrated system segments shall be completed.

D. A total of 80 man-hours shall be included in the project for the purpose of project commissioning.

3.4 ELECTRICAL WIRING AND MATERIALS

A. Install, connect and wire the items included under this Section. This work includes providing required conduit, wire, fittings, and related wiring accessories. All wiring shall be installed in conduit.

B. Electrical work required for the control system shall be performed by and under the direction of the control manufacturer. All electrical work shall be performed in accordance with the requirements of Division 26, ELECTRICAL of this specification. Use materials specified in Division 26, ELECTRICAL for comparable application.

C. Provide 120 volt, single phase, 60 hertz power to every BAS DDC Controller panel, HVAC/Mechanical Equipment Controller, PC console, power supply, transformer, annunciator, modems, printers and to other devices as required. The power supplies are to be extended in conduit and wire from normal power circuit breakers.

D. Provide status function conduit and wiring for equipment covered under this Section.

E. Provide conduit and wiring between the BAS panels and the temperature, humidity, or pressure sensing elements, including low voltage control wiring in conduit.

F. Provide conduit and signal wiring between motor starters in motor control centers and high and/or low temperature relay contacts and remote relays in BAS panels located in the vicinity of motor control centers.

G. Provide conduit and wiring between the PC workstation, electrical panels, metering instrumentation, indicating devices, miscellaneous alarm points, remotely operated contractors, and BAS panels, as shown on the drawings or as specified.

H. All wiring to be compliant to local building code and the NEC.

I. Provide electrical wall box and conduit sleeve for all wall mounted devices.

3.5 PERFORMANCE

A. Unless stated otherwise, control temperatures within plus or minus 2°F, and humidity within plus or minus 2% of the set point and static pressure within 10% of set point.

3.6 COMMISSIONING, TESTING AND ACCEPTANCE

A. Perform a three-phase commissioning procedure consisting of field I/O calibration and commissioning,
system commissioning and integrated system program commissioning. Document all commissioning information on commissioning data sheets which shall be submitted prior to acceptance testing. Commissioning work which requires shutdown of system or deviation from normal function shall be performed when the operation of the system is not required. The commissioning must be coordinated with the owner and construction manager to ensure systems are available when needed. Notify the operating personal in writing of the testing schedule so that authorized personnel from the owner and construction manager are present throughout the commissioning procedure.

1. Prior to system program commissioning, verify that each control panel has been installed according to plans, specifications and approved shop drawings. Test, calibrate and bring on line each control sensor and device. Commissioning to include, but not be limited to:
 a. Sensor accuracy at 10, 50 and 90% of range.
 b. Sensor range.
 c. Verify analog limit and binary alarm reporting.
 d. Point value reporting.
 e. Binary alarm and switch settings.
 f. Actuator ranges.
 g. Fail safe operation on loss of control signal, electric power, network communications.

B. After control devices have been commissioned (i.e. calibrated, tested and signed off), each BMS program shall be put on line and commissioned. The contractor shall, in the presence of the owner and construction manager, demonstrate each programmed sequence of operation and compare the results in writing. In addition, each control loop shall be tested to verify proper response and stable control, within specified accuracy's. System program test results shall be recorded on commissioning data sheets and submitted for record. Any discrepancies between the specification and the actual performance will be immediately rectified and retested.

C. After all BMS programs have been commissioned, the contractor shall verify the overall system performance as specified. Tests shall include, but not be limited to:
 1. Data communication, both normal and failure modes.
 2. Fully loaded system response time.
 3. Impact of component failures on system performance and system operation.
 4. Time/Date changes.
 5. End of month/ end of year operation.
 7. Global application programs and point sharing.
 8. System backup and reloading.
 10. Diagnostic functions.
 11. Power failure routines.
 12. Battery backup.
 13. Smoke Control, stair pressurization, stair, vents, in concert with Fire Alarm System testing.
 14. Testing of all electrical and HVAC systems with other division of work.

D. Submit for approval, a detailed acceptance test procedure designed to demonstrate compliance with contractual requirements. This Acceptance test procedure will take place after the commissioning procedure but before final acceptance, to verify that sensors and control devices maintain specified accuracy's and the system performance does not degrade over time.

E. Using the commissioning test data sheets, the contractor shall demonstrate each point. The contractor shall also demonstrate all system functions. The contractor shall demonstrate all points and system functions until all devices and functions meet specification.

F. The contractor shall supply all instruments for testing and turn over same to the owner after acceptance testing.
1. All test instruments shall be submitted for approval.

2. Test Instrument Accuracy:
 - Temperature: \(\frac{1}{4}^\circ F\) or \(\frac{1}{2}\%\) full scale, whichever is less.
 - High Pressure: \(\frac{1}{2}\) psi or \(\frac{1}{2}\%\) full scale, whichever is less.
 - Low Pressure: \(\frac{1}{2}\%\) full scale
 - Humidity: 2% RH
 - Electrical: 1/4% full scale

G. After the above tests are complete and the system is demonstrated to be functioning as specified, a thirty day performance test period shall begin. If the system performs as specified throughout the test period, requiring only routine maintenance, the system shall be accepted. If the system fails during the test, and cannot be fully corrected within eight hours, the owner may request that performance tests be repeated.

3.7 TRAINING

A. The manufacturer shall provide factory trained instructor to give full instruction to designated personnel in the operation of the system installed. Instructors shall be thoroughly familiar with all aspects of the subject matter they are to teach. The manufacturer shall provide all students with a student binder containing product specific training modules for the system installed. All training shall be held during normal working hours of 8:00 am to 4:30 PM weekdays.

B. Provide 40 hours of training for Owner’s designated operating personnel. Training shall include:
 1. Explanation of drawings, operations and maintenance manuals
 2. Walk-through of the job to locate control components
 3. Operator workstation and peripherals
 4. DDC controller and ASC operation/function
 5. Operator control functions including graphic generation and field panel programming
 6. Explanation of adjustment, calibration and replacement procedures
 7. Student binder with training modules

C. Since the Owner may require personnel to have more comprehensive understanding of the hardware and software, additional training must be available from the Manufacturer. If such training is required by the Owner, it will be contracted at a later date.

3.8 TEMPERATURE CONTROL

A. The sequences on the drawings describe the general intent of the control systems. Provide all devices, equipment, and wiring as required to perform the sequences described.

B. Unless otherwise noted, size all automatic control valves for maximum ten (10) feet water pressure drop at maximum design flow rate.

C. See plans for locations of all room thermostats, panels, dampers, valves, and equipment; where such devices are not indicated, however required by the sequences they shall be provided and located in the field by the Architect.

D. Division 26 shall provide all detection devices (heat/smoke) as required by NFPA Standard 90A and the International Building and Mechanical Codes. The installation of detection devices and all control/power wiring for smoke detection devices and smoke dampers shall be provided under this section. Detection devices shall provide automatic shutdown of the HVAC systems in accordance with NFPA 90A.

E. All pumps and fans shall be provided with a current sensors installed around the pump or fan. Sensors shall provide status for pump and fan operation.
F. Adjustable freezestats shall be provided at all preheat and heating coils and shall de-energize their respective air handling system when their setting of thirty-five (35) degrees Fahrenheit is reached. Freezestats for water coils shall be installed in coil leaving air stream.

G. All temperature, humidity, pressure, and time set points shall be fully adjustable from the BAS.

H. Where used to control both comfort heating and cooling, zone thermostatic controls shall be capable of providing a temperature range or dead band of at least 5°F within which the supply of heating and cooling energy to the zone is shut off or reduced to a minimum. Variable air volume (VAV) terminal units shall be programmed to operate at the minimum airflow setting without addition of reheat when the zone temperature is within the set deadband.

I. Provide all hardware, software, devices, equipment, and wiring as required to interface with the BAS.

J. All two (2) position dampers shall be proven open by the use of end switches.

K. Refer to input/output summary schedule for additional control items not described in the sequences. Input/output summary are minimum requirements, provide all required points for complete operation of system.

L. All variable frequency drives for fan shall be soft started at minimum speed and increased to operating speed by the BAS.

M. Carbon dioxide (CO₂) monitors shall be provided for each air handling system on this project to provide continuous monitoring of CO₂ levels. Abnormal levels of CO₂ shall be detected by the monitors and alarmed on the EMCS.

END OF SECTION 230900
SECTION 233110 - AIR DISTRIBUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The drawings and general provisions of the Contract, including General and Supplementary Conditions, General Requirements and all other Specification Sections apply to the work specified in this section. In the event of conflict between specific requirements of the various documents, the more restrictive, the more extensive (i.e.: more expensive) requirement shall govern.

1.2 SCOPE

A. This section includes the air distribution systems including those devices distributing the air to the spaces, and those items which collect, filter, control, and convey air.

B. Fans which are not an integral part of a factory fabricated air handling unit are included under this section.

C. The requirements of Division 23, Section “Mechanical and Electrical General Provisions” shall apply to the work specified under this section.

D. Except for duct pressure tests, all testing and balancing of the air distribution systems shall be performed under Division 23, Section “Testing and Balancing” of the Specifications.

PART 2 - PRODUCTS

2.1 AIR DEVICES

A. Provide air devices of the minimum sizes and quantities indicated and of the types specified. Contractor shall carefully study the drawings and the field conditions to ascertain the air device requirements as to suitability, location, air capacity, required accessories, border and finish. Devices shall be selected to provide draft-free air distribution over entire area served and sound rating shall not exceed Noise Criteria (NC) 25.

B. Border types shall be compatible with Architectural ceiling type for the room for which the air device is located. All devices shall have plaster frames when installed in plaster or drywall construction.

C. Margins shall be as indicated or directed to suit field conditions.

D. Provide Titus, Kreuger, Price, Metalaire, Nailor or Tuttle & Bailey air devices in accordance with the schedule below and on the drawings.

E. Air Device Schedule:

<table>
<thead>
<tr>
<th>Device</th>
<th>Type</th>
<th>Finish</th>
<th>Basis of Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling Supply Diffuser</td>
<td>A</td>
<td>#26 white</td>
<td>Titus/TDCA</td>
</tr>
<tr>
<td>Ceiling Supply Diffuser</td>
<td>B</td>
<td>#26 white</td>
<td>Titus/TDC-AA</td>
</tr>
<tr>
<td>Return Register</td>
<td>C</td>
<td>#26 white</td>
<td>Titus/PAR</td>
</tr>
<tr>
<td>Return/Exhaust Grille</td>
<td>D</td>
<td>#26 white</td>
<td>Titus/PAR</td>
</tr>
<tr>
<td>Exhaust Grille</td>
<td>E</td>
<td>#26 white</td>
<td>Titus/PAR-AA</td>
</tr>
<tr>
<td>Return/Exhaust Grille</td>
<td>F</td>
<td>#26 white</td>
<td>Titus/350-FL</td>
</tr>
</tbody>
</table>
1. Type A: Ceiling diffusers shall be Titus Model TDCA (steel) or prior approved equal for adjustable discharge pattern. These diffusers shall consist of an outer frame assembly of the sizes and mounting types shown on the plans and outlet schedule. A square or rectangular inlet shall be an integral part of the frame assembly and a transition piece shall be available to facilitate attachment of round duct. An inner core assembly consisting of fixed deflection louvers shall be available in one-, two-, three- or four-way horizontal discharge patterns. Diffuser shall include adjustable vanes to provide full vertical projection as well as horizontal projection. The inner core assembly must be removable in the field without tools for easy installation, cleaning or damper adjustment.
 a. The finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering, or deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.
 b. Opposed blade volume damper shall not be provided. Throw Reducing Vanes (TRV) must be available to deflect a horizontal discharge airstream from each side of the TDC diffuser into diverging airstreams.
 c. The manufacturer shall provide published performance data for the diffuser. The diffuser shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

2. Type B: Ceiling diffusers shall be Titus Model TDC-AA (aluminum) or prior approved equal for fixed, horizontal discharge pattern. These diffusers shall consist of an outer frame assembly of the sizes and mounting types shown on the plans and outlet schedule. A square or rectangular inlet shall be an integral part of the frame assembly and a transition piece shall be available to facilitate attachment of round duct. An inner core assembly consisting of fixed deflection louvers shall be available in one-, two-, three- or four-way horizontal discharge patterns. The inner core assembly must be removable in the field without tools for easy installation, cleaning or damper adjustment.
 a. The finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering, or deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.
 b. Opposed blade volume damper shall not be provided. Throw Reducing Vanes (TRV) must be available to deflect a horizontal discharge airstream from each side of the TDC diffuser into diverging airstreams.
 c. The manufacturer shall provide published performance data for the diffuser. The diffuser shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

3. Type C: Perforated ceiling diffusers shall be Titus Model PAR (steel, flush face) or approved equal for return. Diffusers shall have a perforated face with 3/16-inch diameter holes on ¼-inch staggered centers and no less than 51 percent free area. Perforated face shall be steel. The backpan shall be one piece stamped heavy gauge steel of the sizes and mounting types shown on the plans and outlet schedule. The diffuser neck shall have 1 1/8-inch depth for easy duct connection. Diffusers must discharge a uniform horizontal blanket of air into the room and protect ceiling against smudging. Pattern controllers in the supply models shall be mounted on the back of the perforated face and must be field adjustable to allow the discharged air to enter the room in either vertical or one-, two-, three- or four-way horizontal jets. The perforated face must be easily unlatchable from the backpan to facilitate option of the face for pattern controller adjustment.
 a. The finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F
for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour
ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or
deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test.
The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch
pound force applied.

b. Opposed blade volume damper shall not be provided.

c. The manufacturer shall provide published performance data for the perforated diffuser. The
diffuser shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

4. Type D: Perforated ceiling diffusers shall be Titus Model PAR (steel, flush face) or approved
equal for return. Diffusers shall have a perforated face with 3/16-inch staggered centers and no less than 51 percent free area. Perforated face shall be steel. The
backpan shall be one piece stamped heavy gauge steel of the sizes and mounting types shown on
the plans and outlet schedule. The diffuser neck shall have 1 1/8-inch depth for easy duct
connection. Diffusers must discharge a uniform horizontal blanket of air into the room and protect
ceiling against smudging. Pattern controllers in the supply models shall be mounted on the back of
the perforated face and must be field adjustable to allow the discharged air to enter the room in
either vertical or one-, two-, three- or four-way horizontal jets. The perforated face must be easily
unlatchable from the backpan to facilitate option of the face for pattern controller adjustment.

a. The finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F
for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour
ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or
deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test.
The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch
pound force applied.

b. Opposed blade volume damper shall not be provided.

c. The manufacturer shall provide published performance data for the perforated diffuser. The
diffuser shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

5. Type E: Perforated ceiling diffusers shall be Titus Model PAR-AA (aluminum, flush face) or
approved equal for exhaust. Diffusers shall have a perforated face with 3/16-inch diameter holes
on 1/4-inch staggered centers and no less than 51 percent free area. Perforated face shall be
aluminum. The backpan shall be one piece stamped heavy gauge steel of the sizes and mounting
types shown on the plans and outlet schedule. The diffuser neck shall have 1 1/8-inch depth for
easy duct connection. Diffusers must discharge a uniform horizontal blanket of air into the room and
protect ceiling against smudging. Pattern controllers in the supply models shall be mounted on
the back of the perforated face and must be field adjustable to allow the discharged air to enter the
room in either vertical or one-, two-, three- or four-way horizontal jets. The perforated face
must be easily unlatchable from the backpan to facilitate option of the face for pattern controller
adjustment.

a. The finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F
for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour
ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or
deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test.
The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch
pound force applied.

b. Opposed blade volume damper shall not be provided.

c. The manufacturer shall provide published performance data for the perforated diffuser. The
diffuser shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

6. Type F: Aluminum return/exhaust grilles shall be Titus Model 350FL (1/4-inch blade spacing) of
the sizes and mounting types shown on the plans and outlet schedule. The fixed deflection blades
shall be available parallel to the long dimension of the grille. Construction shall be of extruded
aluminum with a 1/4-inch wide border on all sides. Minimum border thickness shall be 0.040-
0.050 inch. Sizes 24 x 24 inches and smaller shall be constructed using a roll-formed frame.
Corners shall be welded with full penetration resistance welds. Sizes larger than 24 x 24 inches
shall be constructed by using heavy aluminum extrusions and shall be interlocked at the four
corners and mechanically staked to form a rigid frame. Screw holes shall be counter-sunk for a neat appearance. Deflection blades shall be contoured to a specifically designed and tested cross-section to meet published test performance data. Blades shall be firmly held in place by mullions from behind the grille and fixed in place by crimping or welding. Blade deflection angle shall be available at 35°.

a. Optional opposed blade volume damper shall not be provided.
b. The grille finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.
c. The manufacturer shall provide published performance data for the grille. The grille shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

7. Type G: Modulinear diffusers shall be Titus model ML-TZ (supply) TechZone Series linear slot diffusers with ¾-inch slot spacing of the sizes and mounting types shown on the plans and air device schedule, for installation in Armstrong TechZone ceiling system. Linear slot diffusers shall be available in standard one piece lengths up to 6 feet and 1 to 8 discharge slots. Diffuser lengths greater than 6 feet shall be furnished in multiple sections and will be joined together end-to-end with alignment pins to form a continuous slot appearance. All alignment components to be provided by the manufacturer. The return models shall be constructed the same as supply diffusers without the pattern controllers. The frame and support bars shall be constructed of heavy gauge extruded aluminum. The pattern controller shall be an aerodynamically curved “ice-tong” shaped steel deflector capable of 180° pattern adjustment from the face of the diffuser and shall allow dampering if required. Maximum pattern controller length shall be 3 feet, for diffusers longer than 3 feet pattern controllers shall be furnished in multiple sections.

a. The finish shall be #26 white on the face and #84 black on the pattern controllers. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test.
b. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied. Heavy gauge extruded aluminum end borders, end caps and mitered corners shall be available to close off the ends of the diffusers. Plenums shall be manufactured by the same manufacturer of the linear slot diffusers. Optional diffuser curving to a 6-foot minimum radius with fixed deflection shall be available as required.
c. The manufacturer shall provide published performance data for the linear slot diffuser. The diffuser shall be tested in accordance with ANSI/ASHRAE Standard 70-2006.

8. Type H: Steel supply grilles shall be Titus Model 300R (double deflection) of the sizes and mounting types shown on the plans and outlet schedule. The deflection blades shall be available parallel to the short dimension of the grille. Construction shall be of steel with a 1¼-inch wide border on all sides. Screw holes shall be countersunk for a neat appearance. Corners shall be welded with full penetration resistance welds. Deflection blades shall be contoured to a specifically designed and tested cross-section to meet published test performance data. Blades shall be spaced on ¾-inch centers. Blades shall have steel friction pivots on both ends to allow individual blade adjustment without loosening or rattling. Plastic blade pivots are not acceptable.

a. Optional opposed-blade volume damper shall not be provided.
b. The grille finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.
c. The manufacturer shall provide published performance data for the grille. The grille shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.
9. Type J: Aluminum linear and modular slot air diffusers shall be Titus Model FL-10-JT of the sizes and mounting types shown on the plans and outlet schedule. Provide all materials and equipment required for a complete installation of all linear and modular slot air distribution systems as shown on the architectural and mechanical drawings and/or indicated in the architectural or mechanical specifications. The slot diffusers shall integrate into the ceiling or wall system. The systems shall be complete in every respect and shall include all required appurtenances. Mechanical contractor shall furnish and install all plenums, hoods, blank-offs and associated sheet metal components including all duct connections thereto.

a. The linear slot diffusers shall have a single slot unless shown otherwise and shall be capable of being used for supply air, return air, exhaust air or any combination thereof.

b. Linear diffusers supported by screws in the flanges or from air plenums are unacceptable. For lay-in ceiling, provide hanger wire support clips that are integral with the linear slot diffusers allowing the linear slot diffusers to be supported from the building structure with ceiling wire. For hard ceilings or walls, provide clips that are integral with the linear slot diffusers allowing the diffusers to be secured directly to the ceiling/wall framing without the requirement for hanger supports. Provide spline clips to secure joints and ceiling tees to the diffusers.

c. Provide ends and corners as required. Ends shall be butt type, field installed, or mitered picture frame type factory installed, as indicated herein or shown on the drawings. Corners shall be mitered one piece unit.

d. Pattern controllers shall be one piece extruded aluminum, 24 inches long maximum, positioned between spring loaded spacers. Pattern controllers shall allow the airstream to be directed flat against the ceiling in either direction or downward as well as allowing throw reduction every two feet along the entire length of the linear slot diffusers. The airstream shall be maintained at the ceiling plane and shall not dump when volume is reduced. Only extruded aluminum pattern controllers are acceptable. Where shown or noted pattern controllers shall be designed to allow the airstream to be jetted into the occupied space and be adjustable to vector the airstream as required.

e. Material shall be minimum wall thickness 0.062 inches extruded aluminum. Spring steel retainers shall be used under the spacers to hold the slot diffusers assembly tightly together and allow the slot diffusers to be disassembled easily for field trimming. Materials other than extruded aluminum and spring steel will not be accepted.

f. Flanges exposed to view shall be painted factory standard white. All other surfaces shall be painted flat black.

g. All slot diffusers shall be manufactured by the same manufacturer of the plenums and hoods. No exceptions will be allowed. Plenum lengths and entry collar sizes shall be as indicated on the plan schedules.

h. Plenums shall be minimum 24-gauge galvanized steel and externally insulated with fiberglass insulation. Hoods shall be 51 percent free area and constructed of 24-gauge perforated sheet metal painted flat black.

i. Optional opposed-blade volume damper shall not be provided.

j. All slot diffusers shall be performance tested with air plenums as a composite assembly in full accordance with ASHRAE, and/or ARI standards.

k. Diffusers shall be selected to achieve a throw to room length ratio which meets the requirements of the ASHRAE 2001 Fundamentals Handbook, Chapter 32, Table 4, at both maximum design flow rate, and for VAV systems, at the minimum flow rate expected during partial occupancy. Diffusers shall be selected to achieve a minimum of 70 percent ADPI over the range of expected loads in the space. The diffusers’ reported performance shall be based on tests conducted in accordance with ASHRAE Standard 70–91. ADPI performance on at least one unit size of the selected diffuser shall have been tested in accordance with ASHRAE Standard 113–90, to validate conformance and applicability to the ASHRAE table.

10. Type K: Aluminum linear and modular slot air diffusers shall be Titus Model FL-30-JT of the sizes and mounting types shown on the plans and outlet schedule. Provide all materials and equipment required for a complete installation of all linear and modular slot air distribution
systems as shown on the architectural and mechanical drawings and/or indicated in the architectural or mechanical specifications. The slot diffusers shall integrate into the ceiling or wall system. The systems shall be complete in every respect and shall include all required appurtenances. Mechanical contractor shall furnish and install all plenums, hoods, blank-offs and associated sheet metal components including all duct connections thereto.

a. The linear slot diffusers shall have a single slot unless shown otherwise and shall be capable of being used for supply air, return air, exhaust air or any combination thereof.

b. Linear diffusers supported by screws in the flanges or from air plenums are unacceptable. For lay-in ceiling, provide hanger wire support clips that are integral with the linear slot diffusers allowing the linear slot diffusers to be supported from the building structure with ceiling wire. For hard ceilings or walls, provide clips that are integral with the linear slot diffusers allowing the diffusers to be secured directly to the ceiling/wall framing without the requirement for hanger supports. Provide spline clips to secure joints and ceiling tees to the diffusers.

c. Provide ends and corners as required. Ends shall be butt type, field installed, or mitered picture frame type factory installed, as indicated herein or shown on the drawings. Corners shall be mitered one piece unit.

d. Pattern controllers shall be one piece extruded aluminum, 24 inches long maximum, positioned between spring loaded spacers. Pattern controllers shall allow the airstream to be directed flat against the ceiling in either direction or downward as well as allowing throw reduction every two feet along the entire length of the linear slot diffusers. The airstream shall be maintained at the ceiling plane and shall not dump when volume is reduced. Only extruded aluminum pattern controllers are acceptable. Where shown or noted pattern controllers shall be designed to allow the airstream to be jetted into the occupied space and be adjustable to vector the airstream as required.

e. Material shall be minimum wall thickness 0.062 inches extruded aluminum. Spring steel retainers shall be used under the spacers to hold the slot diffusers assembly tightly together and allow the slot diffusers to be disassembled easily for field trimming. Materials other than extruded aluminum and spring steel will not be accepted.

f. Flanges exposed to view shall be painted factory standard white. All other surfaces shall be painted flat black.

g. All slot diffusers shall be manufactured by the same manufacturer of the plenums and hoods. No exceptions will be allowed. Plenum lengths and entry collar sizes shall be as indicated on the plan schedules.

h. Plenums shall be minimum 24-gauge galvanized steel and externally insulated with fiberglass insulation. Hoods shall be 51 percent free area and constructed of 24-gauge perforated sheet metal painted flat black.

i. Optional opposed-blade volume damper shall not be provided.

j. All slot diffusers shall be performance tested with air plenums as a composite assembly in full accordance with ASHRAE, and/or ARI standards.

k. Diffusers shall be selected to achieve a throw to room length ratio which meets the requirements of the ASHRAE 2001 Fundamentals Handbook, Chapter 32, Table 4, at both maximum design flow rate, and for VAV systems, at the minimum flow rate expected during partial occupancy. Diffusers shall be selected to achieve a minimum of 70 percent ADPI over the range of expected loads in the space. The diffusers’ reported performance shall be based on tests conducted in accordance with ASHRAE Standard 70–91. ADPI performance on at least one unit size of the selected diffuser shall have been tested in accordance with ASHRAE Standard 113–90, to validate conformance and applicability to the ASHRAE table.

11. Paint the ductwork behind registers with flat black enamel so that bright surface cannot be seen. Properly prime galvanized surface prior to painting.

12. The position of the pattern controllers for linear supply diffusers shall be verified and optimally adjusted by the contractor during Division 23, Section “Testing and Balancing”.

13. Provide integral EXTERNALLY insulated plenums for all linear slot supply diffusers. Plenums shall not be internally lined.
2.2 AIR FILTERS:

A. Air filters shall be Camfil Farr, Cambridge, or American Air Filter equal to the filters specified herein. Air filter capacities and bank sizes shall be as scheduled on the drawings.

B. Type "A" Filter Elements:
1. Air filters shall be Camfil Farr 30/30 or approved equal. Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic media, welded wire media support grid, and beverage board enclosing frame. Sizes shall be noted on drawings or other supporting materials.
2. Filter media shall be a cotton and synthetic blend, lofted to a uniform depth of 0.15”, and formed into a uniform radial pleat.
3. A welded wire grid, spot-welded on one-inch centers and treated for corrosion resistance shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation.
4. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.
5. The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2-2007. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter.
6. Initial resistance to airflow shall not exceed 0.31” w.g. at an airflow of 500 fpm on 2” deep models.
7. The filter shall have an Energy Cost Index (ECI) value of five stars.
8. The filter shall be classified by Underwriters Laboratories as UL Class 2.
10. Manufacturer shall guarantee the integrity of the filter pack to 2.0” w.g.

C. Type "B" Filter Elements:
1. Air filters shall be Camfil Farr Riga-Flo 100 or approved equal. Air filters shall be high-efficiency ASHRAE high lofted supported media disposable type assembled in a compact and secure enclosing frame. Sizes shall be as noted on drawings or other supporting materials.
2. Filter media shall be of microfine glass laminated to a reinforced backing to form a uniform lofted media blanket.
3. The media blanket shall be formed into uniform tapered radial pleats and bonded to a stiffened backing that is bonded to the downstream side of the media to preclude media oscillation.
4. The media shall be mechanically and chemically bonded within the frame to prevent air bypass.
5. The enclosing frame shall be constructed of corrosion resistant galvanized steel. The media pleat configuration shall be maintained by bridge style plastic contour stabilizers. There shall be a minimum of four contour stabilizers on the air entering side and four on the air exiting side.
6. The filter shall have a Minimum Efficiency Reporting Value of MERV 13 per ASHRAE Standard 52.2-2007. It shall have a MERV-A of 13 when tested under Appendix J of that standard.
7. Initial resistance to airflow shall not exceed 0.50” w.g. at an airflow of 500 fpm for filters having a nominal depth of 12”. For a 6” nominal depth model initial resistance to airflow shall not exceed 0.50 w.g. at an airflow of 300 fpm.
8. The filter shall be capable of withstanding 10” w.g. without failure of the media pack.
10. Filter shall be listed by Underwriters Laboratories as UL Class 2.

D. Type “C” Filter Elements:
1. HEPA filters shall be Cambridge Model X absolute filters as manufactured by Cambridge Filter Corporation. Each filter shall be individually tested and certified to have an efficiency not less
than 99.97 percent when tested with 0.3 micron thermally generated particulates. This test shall be run at the rated one (1) inch water gauge capacity of the filter with the upstream aerosol concentration of eighty (80) plus or minus twenty (20) micrograms per liter. The test aerosol shall have a mass median particle size of 0.3 microns with less than one (1) percent by mass under 0.12 or over 0.5 microns as determined by the laser spectrometer. The clean filter static pressure drop shall be no greater than one (1) inch water gauge when operating at an air flow rate of 1,000 cubic feet per minute (CFM). Filter media shall be waterproof all-glass paper. It shall have a minimum tensile strength of 3.0 pounds per inch of width and shall retain fifty (50) percent of its tensile strength when folded flat upon itself.

2. Filter shall be factory constructed of pleating a continuous sheet of media into closely spaced pleats with safe-edge aluminum separators. The filter's sealing system shall encapsulate the top and bottom of the filter pack and frame joints in a completely leak tight manner. The adhesive shall be a two (2) part urethane. The filter frame shall be all metal sixteen (16) gauge corrosion resistant zinc-coated steel which is capable of maintaining its structurally rigid shape without mechanical fasteners such as bolts, screws, or rivets. Overall dimensions shall be correct to within 1/8 inch, plus zero (0) inch and squareness shall be within 1/8 inch. Filters shall be supplied with closed cell neoprene gaskets.

3. Filters shall be Standard Series X high capacity series with glass media, aluminum separators, sixteen (16) gauge steel casings, urethane sealer, neoprene gaskets and suitable for operation at 200 degrees Fahrenheit and 100 percent humidity. Filter shall be fire resistant.

4. The absorber (carbon filter) shall be CSC Model 1662-NS; stainless steel frame, high efficiency carbon absorber. Sizes and capacities shall be as scheduled on the drawings. The absorber frame shall be constructed of T-304 stainless steel for corrosion resistance. The perforated stainless steel screens shall be supported by external spacers to prevent distortion during filling with carbon. Each absorber shall be factory tested in accordance with IES Designation RP-8, to insure a minimum mechanical efficiency of 99.9 percent.

5. The prefilter shall be Cambridge Aeropleat in the four (4) inch depth and shall have not than eleven (11) pleats per linear foot with an average effective media area of twenty (20) square feet per square foot of filter face area, size and capacities shall be as scheduled on the drawings. The filter shall be listed by Underwriters Laboratories and UL Class 1. The media shall be a self-extinguishing, non-woven cotton with polyester trace fibers, have an average efficiency of twenty-five (25) to thirty (30) percent by ASHRAE Standard 52-76 and efficiency of 1.0 micron size particles of not less than forty (40) percent using the laser particle counter. Media Backer: The filter media backer shall be electro-finish expanded metal with a ninety-three (93) percent open area, bonded to the media. The filter frame shall be heavy duty, wet strength beverage board, die cut for dimensional accuracy. The frame webbing is bonded to the filter pack, upstream and downstream. All ends of the filter are bonded to the inside of the frame to prevent air bypass.

E. Type “A” Filter Holding Frame:

1. Holding Frame shall be Farr Type 8 or approved equal. Air filter-holding frames shall be 16-gauge galvanized steel with filter sealing flange, centering dimples, sealing gasket and lances for appropriate air filter fasteners. Sizes shall be noted on drawings or other supporting materials.

2. Filter holding frame shall be constructed of 16-gauge galvanized steel. The frame shall be assembled from two corner sections and welded to assure a rigid and durable frame assembly.

3. The frame shall include a variety of pre-punched lances for filter fastener attachment. Fastener shall be capable of being installed without the use of tools, nuts or bolts. Lance penetrations shall be upstream of filter flange to assure leak-free integrity.

4. The frame shall include filter-centering dimples on each frame wall to facilitate ease of filter installation and assure filter centering against filter sealing flange.

5. A 3/4" filter-sealing flange shall be an integral component of the holding frame. All corners shall be flush mitered and a permanently mounted polyurethane foam gasket shall be mounted on the sealing flange to assure filter to frame sealing integrity.

F. Type “B” Filter Holding Frame:
1. Holding frames shall be Camfil Farr 3P Glide/Pack side access housing or approved equal. Filter housing shall be two-stage filter system consisting of 16-gauge galvanized steel enclosure, aluminum filter mounting track, universal filter holding frame, dual-access doors, static pressure tap, filter gaskets and seals. In-line housing depth shall not exceed 21”. Sizes shall be as noted on enclosed drawings or other supporting materials.

2. The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. The housing shall be weatherproof and suitable for rooftop/outdoor installation.

3. The housing shall incorporate the capability of two stages of filtration without modification to the housing. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall accommodate a 2” deep prefILTER, a 6” or 12” deep rigid final filter, or a pocket filter with header.

4. Dual access doors, swing-open type, shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable positive sealing UV-resistant star-style knobs and replaceable door hinges.

5. A universal holding frame constructed of 18-gauge galvanized steel, equipped with centering dimples, multiple fastener lances, and polyurethane filter sealing gasket, shall be included to facilitate installation of high-efficiency filters.

6. The housing shall include a pneumatic fitting to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter or any combination of installed filters.

7. Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0” w.g. Leakage in to or out of the housing shall be less than one half of 1% at 3.0” w.g.

8. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within ± 3% at 0.6” w.g.

G. Type "C Filter Holding Frame:

1. The filter housing shall be an N-Series Bag-In/Bag-Out housing and shall be manufactured from fourteen (14) gauge T-304 stainless steel unpainted. The housing shall be adequately reinforced to withstand a negative or positive pressure of ten (10) inches water gauge. The housing shall be side access for filter installation and change-out. Housing design and filter arrangement should allow air to enter and exit housing without changing direction. Housing shall accommodate standard gasketed HEPA filters or carbon absorbers, which do not require special attachments or devices to function properly in the housing.

2. All weld joints and seams shall be continuously welded. All weld joints shall be visually inspected for cracks, underfill, incomplete fusion, overlaps, surface porosity, gas pockets, crevices, crater pits and depressions. All joints and seams shall be ground smooth and all burrs and sharp edges shall be removed. All welding procedures, welders and welder operators shall be qualified in accordance with ASME Boiler and Pressure Vessel Code, Section IX.

3. All hardware on the housing and mechanical components of the filter clamping mechanism shall be 300 series stainless steel except for the threaded nuts, which shall be brass, and the access door knobs which shall be cast aluminum. Each tier of filters shall be fitted with a filter clamping mechanism that is operated from outside the housing. The filter clamping mechanism shall include pressure bars with pre-loaded springs that exert a minimum sealing force of 1,200 pounds per filter, applied as an even, uniform load along at least eighty (80) percent of the top and bottom of each filter frame.

4. Housings with more than one (1) filter shall have a filter removal rod to draw the filters to the change-out position. The filter removal rod shall be designated in a manner that allows the housing to be rotated 180 degrees on its’ airflow axis and serve as a left hand access unit or a right hand access unit at the users discretion. The removal rod shall operate from inside the change-out bag. Each housing shall have a bagging ring around the access port that is sealed by a removable, gasketed access door. The bagging ring shall have two (2) continuous ribs to secure the plastic change-out bag and each ring is hemmed on its outer edge to prevent the bag from tearing.
5. One (1) polyvinyl chloride (PVC) change-out bag shall be furnished with each access port. Bags shall be eight (8) mil thick and amber in color. Bags shall have a translucent, matte finish and a 1/4 inch diameter elastic shock cord hemmed into the mouth of the bag so when stretched around the bagging ring it is a secure, snug fit. Bag shall include approximately twelve (12) inches of transparent PVC at the mouth of the bag and shall have three (3) glove sleeves built into the bag to assist in the filter change-out. To prevent the bag from sliding off the bagging ring during the change-out operation, one (1) nylon security strap with a neoprene rubber gasket sewn on the inside shall be provided with each access port.

6. The filter housing shall be manufactured under a quality assurance program that addresses the requirements of ANSI N45.2, "Quality Assurance Program Requirements for Nuclear Power Plants". Housing shall be tested for filter fit, operation of the filter clamping mechanism and leak tightness before leaving the factory. Both the filter sealing surface and the complete assembly pressure boundary shall be leak tested by the "pressure decay method" in accordance with ANSI/ASME N510-1980 "Testing of Nuclear Air-Cleaning Systems", paragraph 6 & 7 and guaranteed to meet the leak tightness requirements of ANSI/ASME N509-1980, "Nuclear Power Plant Air-Cleaning Units and Components", Table 4-4 "Maximum Unit Leakage Rates" for ESF, leakage Class 1.

7. The filter housing shall be of the arrangement indicated on the drawings. Filter cartridges shall not be provided by the Contractor, but installed later by the Owner.

H. For each filter bank, provide a Dwyer Model 2001-AF magnahelic air filter gauge complete with static pressure types, tubing, and accessories. Mount gauge on exterior of unit casing.

I. Capacities, efficiencies, and size of filter units shall be as scheduled on the drawings. Provide each filter assembly with a complete set of spare filters.

2.3 FIRE, FIRE/SMOKE, AND SMOKE DAMPERS

A. Provide where indicated on the plans, fire dampers constructed and tested in accordance with UL Safety Standard 555. Each fire damper shall have 1-1/2 hour fire protection rating, 212 degrees Fahrenheit fusible link, and shall include a UL label in accordance with established UL labeling procedures and shall have Static Rating for HVAC systems that shut down automatically in a fire or smoke emergency or Dynamic Rating for HVAC systems that remain operational during a fire or smoke emergency. Three (3) hour dampers shall be installed where required by wall or floor rating. Damper Manufacturer's literature submitted for approval prior to installation shall include comprehensive performance data developed from testing in accordance with AMCA Standard 500 and shall illustrate pressure drops for all sizes or dampers required at all anticipated air flow rates. Fire dampers shall be equipped for vertical or horizontal installation as required by the locations indicated on the drawings. Fire dampers shall be installed in wall and floor openings utilizing steel sleeves, angles, other materials, and practices required to provide an installation equivalent to that utilized by the manufacturer when dampers were tested at UL. Fire damper installation shall also meet all requirements of the authority having jurisdiction. Installation shall be in accordance with the damper manufacturer's instructions. Fire dampers shall be Ruskin, Pottorff, United EnerTech or approved equal to Ruskin Type IBD, DIBD, FD of the following styles:

1. Low Pressure Rectangular Ducts - Style B.
2. Low Pressure Round Ducts - Style CR.
3. Medium Pressure Rectangular Ducts - Style C.
4. Medium Pressure Round Ducts - Style CR.
5. Medium Pressure Oval Ducts - Style CO.
6. Dampers for grilles, diffusers, registers, etc. - Thinline.

B. Fire damper assembly shall include fire damper and damper enclosure wall sleeve complete with duct attachment flanges, as detailed. Provide an access door at each fire damper located so as to permit easy maintenance of damper and fusible link. All fire dampers shall be installed in accordance with NFPA Requirements and the manufacturer's printed instructions.
C. Provide at locations shown on plans, combination fire/smoke dampers meeting or exceeding the following specifications. Each combination fire/smoke damper shall be 1-1/2 hour fire rated under UL Standard 555, and shall further be classified by Underwriters Laboratories as Leakage Rated Damper for Use in Smoke Control Systems under the latest version of UL555S, and bear a UL label attesting to same and shall have Dynamic Rating. Damper manufacturer shall have tested, and qualified with UL, a complete range of damper sizes covering all dampers required by this specification. Testing and UL qualifying a single damper size is not acceptable. The leakage rating under UL555S shall be no higher than leakage Class I. Fire/Smoke dampers shall be Ruskin, Pottorff, United Enertech or approved equal to Ruskin Type FSD 37, FSD-60.

1. As part of the UL qualification, dampers shall have demonstrated a capacity to operate (to open and close) under HVAC system operating conditions, with pressures of at least four (4) inch water gauge in the closed position, and at least 2000 feet per minute air velocity in the open position. Pressures of at least six (6) inch or eight (8) inch water gauge shall have velocity levels of 3000 or 4000 feet per minute respectively.

2. In addition to the leakage ratings already specified herein, the combination fire/smoke dampers and their operators shall be qualified under UL555S to an elevated temperature of 350 degrees Fahrenheit. Appropriate electric operators shall be installed by the damper manufacturer at time of damper fabrication; damper and operator shall be supplied as a single entity which meets all applicable UL555 and UL555S qualifications for both dampers and operators.

3. Each combination fire/smoke damper shall be equipped with a fusible link which shall melt at 212 degrees Fahrenheit causing damper to close and lock in a closed position. Damper shall be Ruskin Model FSD 37 or FSD60.

4. Each combination fire/smoke damper shall be furnished with factory sleeve of length and gauge required for satisfactory installation, and with damper operator factory installed on exterior of sleeve and properly linked to damper operating shaft. Smoke dampers shall be provided with a pneumatic operator and be controlled under Division 23, Section “Automatic Temperature Controls”.

5. Operators shall be of the spring-return fail safe type that will close damper upon power interruption or control air failure. Damper operators shall be UL listed as Fire Damper Operators, and shall bear the appropriate UL Operator label.

6. All wiring or piping material and labor required to interconnect the combination fire/smoke dampers and operators shall be under Division 23.

7. Duct smoke detectors shall be supplied by Division 26 and installed under Division 23 in accordance with NFPA and the manufacturer’s recommendations.

D. Provide at locations shown on plans smoke dampers similar to fire/smoke dampers specified hereinbefore equal to Ruskin, Pottorff United Enertech or approved equal to Ruskin Type SD60 and having a Dynamic Rating.

E. Submit samples for approval to the Architect of all fire, fire/smoke, and smoke damper assemblies for low pressure and medium pressure duct systems. Dampers shall not be installed prior to receiving written approval of submitted samples.

F. Fire, smoke and/or fire/smoke dampers in stainless steel duct systems shall be of stainless steel construction.

2.4 DUCTWORK

A. General:

2. Unless noted otherwise, ductwork shall be constructed of prime, first quality galvanized steel of gauges as called for in the Duct Manual. Reinforce all ducts to prevent buckling, breathing, vibrations, or unnecessary noise. Such reinforcing shall be as recommended in Duct Manual, plus
any additional reinforcing as required to meet job conditions. Longitudinal and cross joints, elbows, transitions, etc., shall be furnished as specified in Duct Manual, including recommended duct supports to suit job conditions.

3. All uninsulated rectangular ductwork shall be crossbroken on all four (4) sides of each panel section. All vertical and horizontal sheet metal barriers, duct offsets and elbows, as well as the panels of straight sections of ducts, shall be crossbroken. Crossbreaking shall be applied between the standing seams or reinforcing angles. The center of the crossbreak shall be of the required height to assure each panel section being rigid, to prevent vibrations and "breathing".

4. Ductwork and ductwork fittings for acid fume hood exhaust system shall be acid resistant fiberglass reinforced plastic ductwork.

5. Ductwork and ductwork fittings for fume hood, radio isotope, BL-3, glasswash, and tunnel/cagewash exhaust systems shall be fully welded type 304 stainless steel of gauges as called for in the Duct Manual.

6. Ductwork from kitchen exhaust hood to perimeter of kitchen shall be constructed of minimum 18 gauge stainless steel or 16 gauge black iron all welded construction with fully welded joints, and installed in accordance with the South Carolina State Health Department and the State Fire Marshals requirements. Kitchen hood exhaust ductwork from perimeter of kitchen to the exhaust fan shall be preengineered UL listed kitchen hood exhaust ductwork system with integral two (2) hour fire rating as specified herein. Provide access doors and fire rating around ductwork as required by code.

7. Dryer exhaust ductwork for clothes dryers shall terminate on the outside of the building with a hooded wall vent with integral backdraft damper. Screens shall not be installed at the duct termination. Ducts shall not be connected or installed with sheet metal screws or other fasteners that will obstruct flow. Dryer exhaust shall be provided in accordance with the dryer manufacturers written instructions.

8. Supply air ductwork from air handling units to the air terminal units shall be "medium pressure" ductwork. Supply ductwork from air terminal units to air devices shall be "low pressure" ductwork.

9. Laboratory exhaust air ductwork shall be "medium pressure" ductwork.

10. Outdoor air, ventilation air, return air, relief air and non-laboratory exhaust air ductwork shall be low pressure ductwork.

11. Exposed circular low pressure supply ductwork shall be provided with grip finish and painted. Refer to Division 9 specifications. Color shall be by Architect.

12. Duct cleaning and acceptable level of contaminants allowed in the HVAC system, otherwise known as the Duct Cleanliness Level, shall be equal to Level C - Advanced in accordance with SMACNA Duct Cleanliness for New Construction, 2000 Edition.

B. Low Pressure Ductwork (0" to 2" Water Gauge):

1. Ductwork shall conform to requirements and details, unless specified or indicated otherwise in the SMACNA “HVAC Duct Construction Standards – Metal & Flexible”, 3rd Edition, 2005. A copy of the duct manual shall be secured by the Contractor and shall be kept at the project for convenient reference.

2. Concealed circular low pressure supply and exhaust ductwork shall be United McGill low pressure spiral ductwork and fittings, equal to United Uni-seal spiral lockseam duct.

3. Exposed circular low pressure supply ductwork shall be acoustically insulated double-wall spiral ductwork and fittings. Double wall duct shall be constructed of a galvanized steel outer shell, a 1" thick layer of fiberglass insulation and an inner metal liner. Insulation shall have a thermal conductivity “K” factor of .27 BTU/hr/sq. ft.^°F or less. Double-wall spiral ductwork shall be United ACOUSTI-k27 spiral lockseam duct, Semco Industries SL95P, Lindab Safe, United Sheet Metal spiral pipe, or approved equal.

4. Flexible duct connections where indicated shall be "Ventglass" duct fabric as manufactured by Ventfabrics, Inc.

5. Low pressure ductwork shall conform to the requirements and details contained in the Duct Manual and shall be constructed to the requirements for two (2) inches water gauge. Construction shall conform to the following:
a. Material gauges (galvanized steel) & general construction - Tables 1-5, 1-10 thru 1-13 Seal Class B

b. Longitudinal seams - Fig. #1-5, Types L-1, L-3 & L-4
c. Corner Closures - Fig. #1-13 & # 1-14
d. Hangers - Fig. #4-1 & 4-4 & Tables 4-1 & 4-2
e. Radius Elbows - Fig. #2-2, Type RE-1 and RE-3
f. Vaned Elbows (Applied to Square elbows) - Fig. #2-2 Type Re-2 & Figs. #2-3 & #2-4, double thickness vanes only
g. Transitions & Offsets - Fig #2-9
h. Branch connections - Fig. #2-8, 45° only

6. Duct sizes indicated on the drawings are air side sizes. Where duct lining is indicated, increase sheet metal sizes accordingly to compensate for thickness of lining.

7. Seal all transverse joints in all low pressure supply ductwork with mineral impregnated woven fiber tape as manufactured by Hardcast, Inc.

8. Provide stand-offs on volume dampers installed in all insulated ductwork.

9. Flexible ductwork for connection to air devices shall be Casco Silent Flex II or FlexMaster Type 6B. Flexible duct shall have a minimum R-6 insulation, comply with NFPA Standard 90A and shall be U.L. listed as Class 1 Air Duct & Connector, Standard 181.

2.5 SUPPLY FAN ISOLATION DAMPER

A. Damper shall be equal to Ruskin CD-80, Series AF-2 industrial damper rated for ten (10) cubic feet per minute per square foot at ten (10) inches water gauge.

2.6 BUBBLE-TIGHT ISOLATION DAMPER

A. Bubble-Tight isolation dampers shall be provided for BL-3 laboratory exhaust systems or where otherwise noted on the drawings.

B. Damper shall be positive seal, isolation type which shall be bubble tight at a differential pressure of ten (10) inches water gage. Damper shall be constructed with a 14 Ga. T-304 stainless steel dish shaped disc with a knife edge that seats against a T-304 stainless steel frame. The frame shall have a closed-cell neoprene or silicone rubber gasket that creates a gasket-to-knife edge seal. The damper shall be all weld design. All "pressure retaining" weld joints and seams shall be continuously welded. Weld joints and seams requiring only intermittent welds by design shall not be continuously welded. As a minimum, all weld joints and seams shall be wire brushed and/or buffed to remove heat discoloration, burrs, and sharp edges. All welding procedures, welders, and welder operators shall be qualified in accordance with ASME Boiler and Pressure Vessel Code, Section Code, Section IX.

C. Flanges shall be minimum 1-1/2" wide with Factory drilled bolt holes not more than 4" apart as recommended in ERDA 76-21, "Nuclear Air Cleaning Handbook". Frame shall be 14 Ga. T-304 stainless
steel unpainted. Shaft & Linkage Components shall be manufactured from 300 Series stainless steel. Shafts shall be 3/4" diameter stainless steel rod with shaft seals.

D. Manual actuator where required shall be a 1/4 turn worm geared actuator with handwheel. Actuator shall have aluminum base and cover. Rated output torque shall be 2,000 inch pounds with a gear ratio of 30:1. Actuator shall be fully lubricated and self-locking to hold in any position.

E. Pneumatic actuator where required for automatic control functions shall be Raymond Control Systems pneumatic/hydraulic rotary actuators. Specific models and options shall be provided as required to effect operating sequences.

F. Damper shall be manufactured under a quality assurance program that addresses the requirements of ANSI/ASME NQA-1, "Quality Assurance Program Requirements for Nuclear Facilities". All production welds shall be visually inspected per CSC’s standard procedure number P-122. "Visual Inspection of Welds", which incorporates the workmanship acceptance criteria described in sections 4 and 5 of AWS D9.1, "Specification for Welding of Sheet Metal". The damper blade shall be tested in the closed position at 10" water gauge and shall be bubble tight when tested in accordance with ANSI/ASME N509 paragraph 5.9.7.3. The complete pressure boundary (damper housing) shall be leak tested by the "pressure decay method" in accordance with ANSI/ASME N510-1980, "Testing of Nuclear Air Cleaning Systems"

2.7 DUCT LINING

A. Armacell AP Coilflex conformable duct liner

B. Duct lining shall be provided where indicated and as herein specified. Duct lining shall be Solcoastic flexible polyimide foam coated duct liner, thickness at 1-inch unless otherwise indicated. Adhere liner, with coated side toward air stream, to all interior sides of duct with 100 percent coverage of manufacture approved fire-resistant insulation binding adhesive meeting ASTM C 916. Adhesive shall completely cover the sheet metal at each end of each section of ductwork. Where duct width exceeds twelve (12) inches, or height exceeds sixteen (16) inches further secure the liner to these surfaces with welded pin type mechanical fasteners as shown in the SMACNA duct manual. Pin length should be such as to limit compression of liner to 1/8 inch. Additionally, point all joints in liner and butter the edges of the liner where sections of ductwork will be jointed with adhesive meeting ASTM C 916. Provide leading edge protection as indicated in Duct Manual. Take every precaution to protect surface of liner as damaged liner will be rejected.

C. Duct lining shall have air surface coated with acrylic coating formulated with immobilized EPA registered anti-microbial agent and been tested to Industry Standards, UL 181 mold growth and humidity test, ASTM C1071 fungi resistance test, and ASTM G21 and G22 and have proven not to support microbial growth. When tested at two and one-half times (12,500 feet per minute) the maximum recommended service velocity, the duct liner shall meet the erosion requirements of UL 181. Approval labels shall be supplied with all liner material. All raw edges and tears shall be repaired in an EPA registered anti-microbial coating such as Johns-Manville Superseal or approved equal.

D. Linacoustic RC duct liner shall have temperature limit up to 250 degrees Fahrenheit and have fire hazard classification 25/50 per ASTM E84 and UL 723. Thermal conductance of insulation material shall be 0.24 BTU/HR Sq. Ft. Degrees Fahrenheit at seventy-five (75) degrees Fahrenheit mean temperature and one (1) inch thickness. Acoustical performance shall be tested in accordance with ASTM C423-90a and ASTM E795-83 and meet or exceed the following sound absorption coefficients:

<table>
<thead>
<tr>
<th>Thickness (Inches)</th>
<th>Frequency (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>NRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td></td>
<td>0.07</td>
<td>0.20</td>
<td>0.44</td>
<td>0.66</td>
<td>0.84</td>
<td>0.93</td>
<td>0.55</td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td>0.08</td>
<td>0.31</td>
<td>0.64</td>
<td>0.84</td>
<td>0.97</td>
<td>1.03</td>
<td>0.70</td>
</tr>
</tbody>
</table>
E. Solcousic duct liner shall have temperature limit up to 250 degrees Fahrenheit and have fire hazard classification 25/50 per ASTM E84 and UL 723. Thermal conductance of insulation material shall be 0.30 BTU/HR Sq. Ft. Degrees Fahrenheit at seventy-five (75) degrees Fahrenheit mean temperature and one (1) inch thickness. Acoustical performance shall be tested in accordance with ASTM C423-90a and ASTM E795-83 and meet or exceed the following sound absorption coefficients:

<table>
<thead>
<tr>
<th>Thickness (Inches)</th>
<th>Frequency (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>NRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.11</td>
<td>0.30</td>
<td>0.73</td>
<td>1.02</td>
<td>0.73</td>
<td>0.66</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>

2.8 AIR MEASURING DEVICES

A. Airflow/Temperature Measurement – General

1. The airflow/temperature measurement station (ASTMS) indicated on the plans shall be capable of monitoring airflow and temperature rates at each measurement location. Sensors shall use thermal dispersion technology with two “bead in glass,” hermetically sealed thermistor probes at each measurement point. The system shall be factory tested prior to shipment and not require calibration or adjustment over the life of the equipment when installed according to the manufacturer’s guidelines. Each sensor probe shall be provided with a UL plenum-rated connecting cable with circular terminal connectors and gold plates contacts. Connecting cable shall be a minimum of 20 feet in length for each probe. Sensor probes shall be “plug and play” design and do not have to be matched to a specific transmitter. All sensor calibration data shall be stored in the sensor probe. No additional devices or transducers shall be required to interface with the host controls.

2. Sensors shall be factory-calibrated at 16 airflow rates and 3 temperatures to NIST-traceable standards for both airflow and temperature. Each sensing point shall independently measure airflow and temperature. Each sensing point shall independently measure airflow and temperature prior to averaging. Installed accuracy shall be percent of reading and demonstrated at both maximum and minimum airflow rates for each measurement location.

B. Transmitter and Electronics Enclosure:

1. The transmitter shall be microprocessor-based and capable of processing up to 16 independent sensing points per location. All connectors and interconnects shall have gold plated contacts. The transmitter shall operate on 24 VAC and be internally fused and protected. The transmitter shall have a 16 character alphanumeric LCD display for airflow, temperature, and system diagnostics. Analog output signals shall be field selectable (0-10 VDC or 4-20 mA.) When required on the plans, a serial RS-485 interface will be made available with field selectable network protocols (N2 or ModBus RTU.) All inputs and outputs shall be fused, protected, and internally isolated from the 24 VAC power supply. The transmitter shall have a digital adjustment for output signal offset/gain and an adjustable digital filter for airflow output. The transmitter shall be capable of being field configured to display either I.P. or S.I. units. The transmitter shall accept a user-defined area for CFM or LPS display. The transmitter shall be capable of continuously performing sensor and transmitter diagnostics and perform a full system check on power-up. A sensor detection system shall ignore any malfunctioning sensors and set a visual alarm on the LCD display. The transmitter shall be capable of indicating individual airflow and temperature readings on the LCD display.

2. The enclosure shall be aluminum alloy for indoor use and capable of operating over a temperature range of +30 deg. F to +120 deg. F. The electronics shall be installed inside and protected from the weather.

C. Duct and Plenum Mounted Sensor Probes:

1. Sensor probes shall be constructed of gold anodized aluminum alloy tube with 303 stainless steel mounting brackets. Probes shall be constructed as insertion, internal, or standoff mounting, depending on the installation requirements.
a. Probe Performance Requirements
 1) The sensor accuracy for airflow shall be at least +/-2% of Reading over the sensor probe operating ranges. The installed total accuracy for airflow shall be better than +/-3% of Reading over the sensor probe operating ranges when installed in accordance with manufacturer’s guidelines. The sensor accuracy for temperature shall be better than +/-0.15 deg. F over the entire operating range.

b. Probe Sensor Density
 1) The number of independent sensing points shall be as indicated below.

<table>
<thead>
<tr>
<th>Area (ft²)</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td><= 1</td>
<td>2</td>
</tr>
<tr>
<td>> 1 to < 4</td>
<td>4</td>
</tr>
<tr>
<td>4 to < 8</td>
<td>6</td>
</tr>
<tr>
<td>8 to < 12</td>
<td>8</td>
</tr>
<tr>
<td>12 to < 16</td>
<td>12</td>
</tr>
<tr>
<td>>= 16</td>
<td>16</td>
</tr>
</tbody>
</table>

c. Probe operating ranges:
 1) Airflow: 0 to 5,000 FPM
 2) Temperature: -20 deg. F to 160 deg. F.
 3) Relative Humidity: 0 to 99% (non-condensing.)

D. Fan Inlet Velocity Sensors:
 1. Sensors shall be conducted with stainless steel sensor bodies, stainless steel mounting brackets, and with adjustable cadmium-plated mounting rods.

a. Fan Inlet Performance Requirements:
 1) The individual sensor accuracy for airflow shall be better than +/-3% of Reading over the sensor probe operating ranges when installed in accordance with the manufacturer’s guidelines. The installed accuracy for temperature shall be better than +/-0.15 deg. F over the entire operating range.

b. Fan Inlet Sensor Density:
 1) Probes shall be provided with an adjustable mounting, and two sensors per inlet, for single and dual inlet fans.

c. Fan Inlet Sensor Operating Ranges:
 1) Airflow: 0 to 10,000 FPM.
 2) Temperature: -20 deg. F to 160 deg. F.
 3) Relative Humidity: 0 to 99% (non-condensing.)

E. Dynamic Pressure “Bleed Airflow” Sensors:
 1. Each sensing point shall independently measure bleed airflow rates and direction, or dynamic differential pressure, plus temperature. Sensor housing shall be constructed of an engineered thermoplastic with ½ NPT female threads on the inlet and outlet of the housing.

a. DP Sensor Performance Requirements:
 1) The installed total accuracy of airflow shall be better than +/-2% of Reading, and +/-4% of Reading for pressure, over the sensor operating range when installed in accordance with the manufacturer’s guidelines. The sensor accuracy for temperature shall be better than +/-0.15 deg. F over the entire operating ranges.

b. DP Sensor Operating Ranges:
 1) Bleed Airflow: -2,000 FPM to 2,000 FPM, or
 2) Differential Pressure: -0.25” wg to +0.25” wg and
 3) Temperature: -20 deg. F to 160 deg. F.
 4) Relative Humidity: 0 to 99% (non-condensing)

2.9 FANS

A. General:
1. Provide fans having a certified rating based on tests performed in accordance with AMCA Bulletins Number 210, 211A and 300. See AMCA Standard 99 "Standard Handbook" for definitions of fan terminology. Arrangement, size and capacity of fans are scheduled on the drawings.

2. All fans shall be statically and dynamically balanced by the manufacturer and shall be provided with field mounted vibration isolation units as hereinbefore specified.

3. Diffuser cones and inlet bells are not permitted in rating a fan unless they are an integral part of the fan design.

4. Provide inlets and outlets of fans not duct connected, including fans in plenum chamber or open to the weather, with heavy guard screens to protect personnel. Construct guard screens in a manner that will not impair fan performance, and when bolted to equipment will permit their removal for fan service and cleaning.

5. Provide lubrication facilities, such as oil reservoirs, sight glasses, grease and relief fittings, fill and drain plugs, pipe connections, etc. Place in a readily and safely accessible location so that after installation they will perform required function without requiring the dismantling of any parts or stopping equipment.

6. All parts of fans shall be protected against corrosion prior to operation of the fan.

7. Certified performance data including acoustical data shall be submitted for each fan at design conditions. Data shall include published sound power levels based on actual test on the fan sizes being furnished, and conducted in accordance with current AMCA standards. Such data is to define Sound Power Levels (PWL), re: 10-12 watts for each of the eight (8) frequency bands. Sound Power Levels shall not exceed those scheduled. Should additional attenuation be required to achieve the levels specified, it shall be included by the fan manufacturer. Any cost of field modifications necessitated by additional attenuation shall also be included by the fan manufacturer. Fan curves shall be submitted which will depict static pressure, total pressure, brake horsepower, and mechanical efficiency plotted against air volume. Data submitted in tabular form is not acceptable.

8. Motors, drives, curbs, and bases shall be furnished by the fan manufacturer in accordance with the requirements of Division 23, Sections “Mechanical and Electrical General Provisions” and “Motors”. Motors and drives exposed to the weather shall be suitably protected as specified herein.

B. Type "A" Fan:

1. Fan shall be Twin City, Trane, Greenheck, Buffalo, or Loren Cook, equal to Twin City EPQN quite efficient plenum, direct drive, centrifugal fan. Each fan shall be direct drive in AMCA arrangement 4.

2. Fans shall have a sharply rising pressure characteristic extending through the operating range and continuing to rise beyond the peak efficiency to ensure quiet and stable operation. Fans shall have a non-overloading design with self-limiting horsepower characteristics and shall reach a peak in the normal selection area. All fans shall be capable of operating over the minimum pressure class limits as specified in AMCA’s Standard 2408-69.

3. Fans shall be designed without a scroll type housing and shall incorporate a non-overloading type backward inclined airfoil blade wheel, heavy-gauge reinforced steel inlet plate, structural steel frame, and shaft and bearings.

4. Inlet panels shall be of heavy-gauge reinforced steel construction. The inlet panel incorporates a removable spun inlet cone designed for smooth airflow into the accompanying inlet retaining ring of the fan wheel. A square, formed lip suitable for attachment of a boot connector shall surround the unit.

5. Wheels shall have a spun non-tapered style blade retaining ring on the inlet side to allow higher efficiencies over the performance range of the fan. All wheels on direct drive arrangement 4 fans shall have airfoil-shaped extruded aluminum blades. All hollow blade wheels shall be continuously welded around all edges. Wheels shall have twelve blades for better sound quality. All wheels shall be statically and dynamically balanced on precision electronic balancers to a Balance Quality Grade G6.3 per ANSI/AMCA 204 or better.

6. Shafts shall be AISI 1040 or 1045 hot rolled steel, accurately turned, ground, polished, and ring
gauged for verification. Shafts shall be sized for the first critical speed of at least 1.43 times the maximum speed.

7. All shafts must be dial indicated for straightness after the keyways are cut and straightened as required. Structural steel bases to be designed and manufactured by the fan supplier to ensure proper alignment of the fan and motor and structural integrity of the base to prevent vibration.

8. Bearings shall be heavy duty, grease lubricated, spherical roller or adapter mounted antifriction ball, self-aligning, pillow block type and selected for a minimum bearing life (AFBMA L-10) in excess of 80,000 hours at the maximum fan RPM. All bearings shall be equipped with greasable zerk fittings and, where necessary, extended lube lines for easy access for lubrication.

9. The entire fan assembly, excluding the shaft, shall be thoroughly degreased and deburred before application of a rust-preventative primer. After the fan is completely assembled, a finish coat of paint shall be applied to the entire assembly. The fan shaft shall be coated with a petroleum-based rust protectant. Aluminum components shall be unpainted.

10. All fans prior to shipment shall be completely assembled and test run as a unit at the specified operating speed or maximum RPM allowed for the particular construction type. Maximum vibration shall be within the limits of ANSI/AMCA 204 Fan Application Category BV-3. Balance readings shall be taken by electronic type equipment in the axial, vertical, and horizontal directions on each of the bearings. Records shall be maintained and a written copy shall be available upon request.

11. The manufacturer shall guarantee the workmanship and materials for at least one (1) year from startup or eighteen (18) months from shipment, whichever occurs first.

C. Type “B” Fan:

1. Fan shall be Trane, Twin City, Greenheck or Loren Cook equal to Twin City Model BAF-DW belt drive airfoil centrifugal fan with double width, double inlet.

2. The fan shall be designed with centrifugal backward inclined airfoil blade wheel and steel scroll. Housings are to be of heavy gauge, continuously welded construction. In Class I and II construction sizes twelve (12) inches thru twenty-seven (27) inches shall have twelve (12) gauge sides and fourteen (14) gauge scrolls, while sizes thirty (30) inches thru sixty-six (66) inches shall have ten (10) gauge sides and twelve (12) gauge scrolls. All fan housings are equipped with flanged discharge, and removable spun inlet cones designed for smooth airflow into the accompanying venturi shaped inlet cone for the fan wheel. Sizes twelve (12) inches thru thirty-three (33) inches shall be of the rotatable design, convertible to eight (8) standard discharge configurations. Housings with lock seams are not acceptable. Provide inlet collars of heavy gauge, round or rectangular design.

3. All fan wheels shall have spun inlet cones providing a minimum separation in airflow. Blades shall be plate type or die formed airfoil shaped. Sizes eighteen (18) inches and larger shall have nine (9) airfoil blades. Where plate type blades are used, sizes twenty-seven (27) inches and larger shall have twelve (12) blades, while 24-1/2 inches and smaller shall have ten (10) blades. All blades shall be welded to the inlet cones as well as the backplate. No partial welding will be acceptable on airfoil blades. Class III and IV blades shall be made of high strength alloy steel having a minimum yield strength of 50,000 pounds per square inch. Class III and IV wheels shall have steel hubs in place of cast iron. All wheels shall be “true” lined, statically and dynamically balanced on precision electronic balancers. Each wheel shall be designed for critical speeds of at least 1.25 times the maximum class speed.

4. All fan sizes are to have shafts of solid AISI 1040, or 1045 hot rolled steel accurately turned, ground, polished, and ring gauged for accuracy. Close tolerances are to be maintained where the shaft makes contact with the bearings. All shafts must be dial indicated for straightness after the keyways are cut. Shaft diameters shall have first critical speed at least 1.35 times the maximum class speed of the fan.

5. All fans are to have heavy duty, grease lubricated, precision anti-friction ball or roller, self-aligning, pillow block type bearings. Bearings are to be selected for minimum average bearing life (AFBMA L-50) in excess of 200,000 hours when operating at maximum cataloged class conditions. All bearings shall be equipped with re-greasable zerk fittings and where necessary, extended lube lines for easy access for re-lubrication. All Class III fans and Class II fans with
bearings larger than 2-2/16 inch shall have double row spherical split-housed roller bearings, Dodge SAF-XT.

6. All fans shall be furnished with scroll access door (raised for insulation where required), drain fittings and belt guards per OSHA Requirements. Guards shall have tachometer openings at fan and motor shafts.

7. Each fan component shall be thoroughly degreased and deburred before the application of a rust-preventative primer. After complete assembly, a second coat of primer shall be applied to the complete assembly. Fans for laboratory and chemical exhaust shall have heresite-plastic 3055 baked phenolic, five (5) to seven (7) mil thick coating on all internal surfaces and corrosion resistant enamel coating on all exterior surfaces.

8. All fan ratings shall be based on tests made in accordance with the ASHRAE Standard 51/AMCA Standard 210-74 and shall be licensed to bear the AMCA Seal. All fans shall be capable of operating over the minimum pressure class limits, as specified in AMCA's Standard 2048-69. Each fan shall be run fully assembled at the factory, prior to shipment, at the operating rotations per minute or maximum class rotations per minute. All wheels shall be statically and dynamically balanced on precision electronic balancers to a Balance Quality Grade G6.3 per ANSI/AMCA 204 or better.

D. Type "C" Fan:

1. Fan shall be Loren Cook, Greenheck or Twin City equal to Loren Cook Model ACRU-D direct drive roof mounted, upblast centrifugal exhaust fan.

2. Fan shall be of bolted and welded construction utilizing corrosion resistant fasteners. The spun aluminum structural components shall be constructed of minimum 16 gauge marine alloy aluminum, bolted to a rigid aluminum support structure. The aluminum base shall have a one piece inlet spinning and continuously welded curb cap corners for maximum leak protection. The windband shall have a rolled bead for added strength. An integral conduit chase shall be provided into the motor compartment to facilitate wiring connections. The motor shall be enclosed in a weather-tight compartment, separated from the exhaust airstream. Unit shall bear an engraved aluminum nameplate. Nameplate shall indicate design CFM and static pressure. Unit shall be shipped in ISTA certified transit tested packaging.

3. Wheel shall be centrifugal backward inclined, constructed of 100% aluminum, including a precision machined cast aluminum hub. An aerodynamic aluminum inlet cone shall be provided for maximum performance and efficiency. Wheel shall be balanced in accordance with AMCA Standard 204-96, Balance Quality and Vibration Levels for Fans.

4. Motor shall be heavy duty type with permanently lubricated sealed bearings and furnished at the specified voltage, phase and enclosure.

5. Fan shall be manufactured at an ISO 9001 certified facility. Fan shall be listed by Underwriters Laboratories (UL 705) and UL listed for Canada (cUL 705). Fan shall bear the AMCA certified ratings seal for sound and air performance.

6. Fan shall be provided with a factory fabricated insulated roof curb engineered to support the equipment and a wire mesh bird screen.

E. Type "D" Fan:

1. Fan shall be Loren Cook, Greenheck or Twin City equal to Loren Cook Model SQN-D duct mounted, direct driven centrifugal square inline exhaust fan.

2. The fan shall be of bolted construction utilizing corrosion resistant fasteners. Housing shall be minimum 18 gauge galvanized steel with integral duct collars. Bolted access doors shall be provided on three sides, sealed with closed cell neoprene gasketing. Housing shall be pre-drilled to accommodate universal mounting feet for vertical or horizontal installation. Unit shall bear an engraved aluminum nameplate. Nameplate shall indicate design CFM and static pressure. Unit shall be shipped in ISTA certified transit tested packaging.

3. Wheel shall be centrifugal backward inclined, constructed of 100% aluminum, including a precision machined cast aluminum hub. Wheel inlet shall overlap an aerodynamic aluminum inlet cone to provide maximum performance and efficiency. Wheel shall be balanced in accordance with AMCA standard 204-96, balance quality and vibration levels for fans.
4. Motor shall be heavy duty type with permanently lubricated sealed bearings and furnished at the specified voltage, phase and enclosure.
5. Fan shall be manufactured at an ISO 9001 certified facility. Fan shall be listed by Underwriters Laboratories (UL 705) and UL listed for Canada (cUL 705). Fan shall bear the AMCA certified ratings seal for sound and air performance.

F. Type "E" Fan:
1. Fan shall be Loren Cook, Greenheck or Twin City equal to Loren Cook Model GC ceiling mounted, direct driven, centrifugal exhaust fan.
2. Fan shall be manufactured at an ISO 9001 certified facility. Fan shall be listed by Underwriters Laboratories (UL 705) and UL listed for Canada (cUL 705). Fan shall bear the AMCA Certified Ratings Seal for Sound and Air Performance. Construction: The fan wheel housing and integral outlet duct shall be injection molded from a specially engineered resin exceeding UL requirements for smoke and heat generation. The outlet duct shall have provision for an aluminum backdraft damper with continuous aluminum hinge rod. The inlet box shall be minimum 22 gauge galvanized steel. Motor shall be isolation mounted to a one piece galvanized stamped steel integral motor mount/inlet. A field wiring compartment with disconnect receptacle shall be standard. To accommodate different ceiling thickness, an adjustable prepunched mounting bracket shall be provided. A white, non-yellowing, high impact styrene injection molded grill shall be provided as standard. Unit shall be designed with provision for field conversion from ceiling to in-line. Unit shall be shipped in ISTA Certified Transit Tested Packaging.
3. Wheel shall be centrifugal forward curved type, injection molded of polypropylene resin. Wheel shall be balanced in accordance with AMCA Standard 204-96, Balance Quality and Vibration Levels for Fans.
4. Motor shall be open drip proof type with permanently lubricated bearings and include impedance or thermal overload protection and disconnect plug. Motor shall be furnished at the specified voltage.

2.10 ELECTRIC DUCT HEATERS
A. Provide open coil duct heaters with capacity as scheduled on the drawings. Heater shall be U.L. Listed for zero clearance and shall meet all applicable requirements of the National Electrical Code.
B. Heaters shall be slip-in type for duct mounting equal to Brasch, Indeeco or Duct Heater, Inc. open coil heaters. Heaters and their control panels shall be suitable for mounting in the ductwork as indicated.
C. Elements shall be constructed of 80% nickel and 20% chromium; steps shall be arranged to prevent stratification when operating at less than full capacity. The maximum watts per square inch of wire surface shall be not more than 150 kilowatts standard watt density.
D. Coil terminals shall be of stainless steel, terminal insulators and bracket bushings shall be constructed of ceramic and securely positioned. Terminals shall be machine crimped to coil.
E. Frame shall be constructed of sufficiently heavy gauge galvanized steel to assure structural rigidity and have vertical galvanized steel supports with stiffening ribs and gussets spaced no more than four (4) inch apart, spot welded to the casing. Frame and all metal components shall be stainless steel in the pool area.
F. Terminal box shall be provided with solid cover in order to minimize dust infiltration and shall be hinged if built-in fuses or interlocking disconnect switches are provided. Heater terminal box must be totally enclosed and must be without perforated or expanded sheet metal covers, louvers or grilles in order to meet Paragraph 5.6 of the U.L. Standard 1096 which prohibits venting into false ceiling space, hollow spaces in the wall or other concealed spaces of a building structure.
G. Heaters shall be suitable for mounting in a horizontal or vertical position with air flow in either position. Airflow as indicated on the drawings.
H. A disc type automatic reset thermal cutout shall be furnished for primary overtemperature protection. For secondary protection, a sufficient number of heat limiters in the power lines shall de-energize elements if the primary cutout fails. All safety devices shall be serviceable through the terminal box without removing the heating coil from the duct. All safety devices shall be manual reset type.

I. A separate, complete wiring diagram shall be furnished for each heater. Diagram shall include recommended supply air gauges per NEC, and fuse sizes. Typical wiring diagrams are not acceptable. Each heater shall be complete with clearly marked power and control terminals.

J. Built-in components shall include magnetic contractors, transformers with primary fusing, pressure-type airflow switch set at 0.07 inches water column all as required by UL, branch circuit fuses per NEC, interlocking disconnect switch and a single terminal block to accept the number, type and size of conductors as shown on the electrical plan. Control voltage for transformers shall be coordinated with the automatic temperature control contractor. Control voltage for transformers shall be coordinated with the automatic temperature control contractor.

K. Heaters shall be provided with door interlock micro switch to break control circuit and relays or switches to energize contractors.

PART 3 - EXECUTION

3.1 AIR DEVICES

A. Install air devices in accordance with the manufacturer's latest published installation instruction to insure against incorrect air pattern, drafts, and dirt smudging.

B. Construct, and install sheet metal duct or plenum connections to air devices in accordance with terminal manufacturer's recommendations.

C. Make modifications to the duct systems as required to accommodate actual sizes of air devices furnished, e.g., transformations and collar sizes without additional cost.

D. Make joints between each devices and its components, connecting duct, or the mounting surface airtight, using gasket or its equivalent.

E. Align exposed butt edges of linear diffusers using slots and keys strips or with other concealed means.

3.2 FILTERS

A. Protect filter elements and media against contamination from dirt during construction. Thoroughly clean system prior to placing filters in operation.

B. After all adjustments and tests are completed and immediately before the filters are accepted for regular operation, restore filter media to "new" condition status.

C. Install static pressure pitot tips in duct upstream and downstream of the filter and connect to the draft gauge with tubing. Provide suitable cocks in tubing in a manner that will permit calibrating the draft gauge. Carefully level and adjust gauges. Three (3) draft gauges shall be approved for Type "C" filter housing.

3.3 DUCTWORK

A. Install hangers, supports, and their attachments, generally in conformance with SMACNA standard referred to in this section of the specifications and applicable portions of article "Piping, Conduit and
Supports’, of Division 23, Section “Mechanical and Electrical General Provisions”.

B. Furnish hangers capable of withstanding five (5) times the weight of the load imposed on them without damage to duct or any adjacent construction.

C. Neatly erect ducts and plenums of sizes and arrangements shown and detailed and as required to carry out intent of specifications and drawings. Work must meet approval of the Architect in all its parts and details.

D. Sizes shown are air side sizes. Where ducts are shown as lined, dimensions shall be increased to reflect that thickness of the lining.

E. Install ductwork in such a manner as to meet the recommendations of NFPA Standard 90A.

F. Provide each air outlet with a collar adequately stiffened, fastened, and made suitable for securing air device thereto. Make field changes in ductwork, such as those required to accommodate the sizes of factory fabricated equipment actually furnished, i.e., coils, air filters, fans, damper and air terminal units and similar items, without additional cost. Provide duct flanges to match those of connecting factory fabricated equipment. When necessary, relocate and modify ductwork to avoid obstructions such as structural members, piping and conduit, in a manner acceptable to the (Architect/Engineer).

G. Construct and install all ductwork in accordance with the SMACNA Standards specified. Coordinate the installation of all duct systems with all other trades including plumbing, electrical, sprinkler, ceiling systems, etc.

H. All open end return air ducts shall be provided with 1/2” galvanized wire mesh screen.

I. Leak Testing of Ductwork:
 1. When deemed necessary by the Architect, test low pressure ductwork for leaks by sealing openings and pressurizing system to that static pressure which the system will operate. Use test methods approved by SMACNA and Architect. Seal all joints. Leakage shall not exceed three (3) percent of air flow specified at the system's nominal static pressure.
 2. Medium pressure ductwork shall be pressure tested as hereinbefore defined.

J. Duct smoke detectors shall be installed where indicated on the electrical drawings. Duct smoke detectors shall be installed upstream of the associated smoke damper and within 6'-0" of the damper in as straight a section of ductwork as possible.

END OF SECTION 233110
SECTION 237433 - DEDICATED OUTDOOR-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes factory-packaged units capable of supplying up to 100 percent outdoor air and providing cooling and heating.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include rated capacities, operating characteristics, and furnished specialties and accessories.

B. Shop Drawings:
 1. Include plans, elevations, sections, and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Prepare the following by or under the supervision of a qualified professional engineer:
 a. Mounting Details: For securing and flashing roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 b. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Roof-curb mounting details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Size and location of unit-mounted rails and anchor points and methods for anchoring units to curb.

B. Seismic Qualification Certificates: For dedicated outdoor-air units, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Startup service reports.

D. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For units to include in emergency, operation, and maintenance manuals.
1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan Belts: Two set[s] for each belt-driven fan.
 2. Filters: Two set[s] for each unit.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to replace components of units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Compressors: One year from date of Substantial Completion.
 2. Warranty Period for Heat Exchangers: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Daikan or comparable product by one of the following:
 1. Mammoth
 2. Governaire
 3. AAON
 4. Desert Aire
 5. DesChamps
 6. Munters Corporation, Dehumidification Division; Des Champs Products.

2.2 GENERAL DESCRIPTION

A. Furnish as shown on plans, RoofPak Singlezone Heating and Cooling Unit(s). Unit performance and electrical characteristics shall be per the job schedule.

B. Configuration: Fabricate as detailed on prints and drawings.

C. The complete unit shall be UL listed.

D. Each unit shall be specifically designed for outdoor rooftop application and include a weatherproof cabinet. Units shall be of a modular design with factory installed access sections available to provide maximum design flexibility.

E. Unit shall be completely factory assembled and shipped in one piece.

F. Unit to be shipped fully charged with R410A.

G. The unit shall undergo a complete factory run test prior to shipment. The factory test shall include final balancing of all fan assemblies, a refrigeration circuit runtest, a unit control system operations checkout, a unit refrigerant leak test, and a final unit inspection.

H. Factory test shall include test and adjustment of the gas furnace.

I. All units shall have decals and tags to indicate caution areas and aid unit service. Unit nameplates shall be fixed to the main control panel door. Electrical wiring diagrams shall be attached to the control panels. Installation, operating and maintenance bulletins and start-up forms shall be supplied with each unit.
J. Performance: All scheduled capacities and face areas are the minimum accepted value. All scheduled amps, KW, and HP are maximum accepted values that allow scheduled capacity to be met.

2.3 CABINET

A. Unit cabinet shall be designed to operate at total static pressures up to 6.5 inches w.g.

B. Standard double-wall construction for all side wall access doors and floor areas shall be provided with heavy gauge solid galvanized steel inner liners to protect insulation during service and maintenance. Insulation on ceiling and end panels shall be secured with adhesive and mechanical fasteners. Insulation shall be a minimum of 1” thick, 3/4 lb. density neoprene coated glass fiber insulation.

C. Exterior surfaces shall be constructed of pre-painted galvanized steel for aesthetics and long term durability. Paint finish to include a base primer with a high quality, polyester resin topcoat of a neutral beige color. Finished surface to withstand a minimum 750-hour salt spray test in accordance with ASTM B117 standard for salt spray resistance.

D. Service doors shall be provided on both sides of each section in order to provide user access to all unit components. Service doors shall be constructed of heavy gauge galvanized steel with galvanized steel interior liners. All service doors shall be mounted on multiple, stainless steel hinges and shall be secured by a stainless steel latch system that is operated by a single handle. The latch system shall feature a staggered engagement for ease of operation and a safety catch shall protect the user from injury in case a positive pressure door is opened while the fan is operating. Removable panels, or doors secured by multiple, mechanical fasteners are not acceptable.

E. For unit sizes greater than 40 tons, the unit base frame shall be constructed of 13 gauge pre-painted galvanized steel.

F. The unit base shall overhang the roof curb for positive water runoff and shall have a formed recess that seats on the roof curb gasket to provide a positive, weathertight seal. Lifting brackets shall be provided on the unit base with lifting holes to accept cable or chain hooks.

2.4 FANS

A. All fan assemblies shall be statically and dynamically balanced at the factory, including a final trim balance, prior to shipment. All fan assemblies shall employ solid steel fan shafts. Heavy-duty pillow block type, self-aligning, grease lubricated ball bearings shall be used. Bearings shall be sized to provide an L-50 life at 200,000 hours. The entire fan assembly shall be isolated from the fan bulkhead and mounted on rubber-in-shear isolators. Pitch V-belt drives with matching belts shall be provided. V-belt drives shall be selected at the manufacturers standard service factor.

B. Fan motors shall be heavy-duty 1800 rpm premium efficiency. Fan motors to have grease lubricated ball bearings. Motors shall be mounted on an adjustable base that provides for proper alignment and belt tension adjustment.

C. Motor shall be Open Dripproof.

D. Airfoil supply fans.

1. Supply fan shall be a double width, double inlet (DWDI) airfoil centrifugal fan. All fans shall be mounted using shafts and hubs with mating keyways. Fans shall be Class II type and fabricated from heavy-gauge aluminum. Fan blades shall be continuously welded to the back plate and end rim.
2.5 VARIABLE AIR VOLUME CONTROL

A. Separate electronic variable frequency drives shall be provided for each fan. Drives shall be independent. Drives shall be cooled by the filtered mixed air stream. The completed unit assembly shall be listed by a recognized safety agency, such as ETL. Drives are to be accessible through a hinged door assembly complete with a single handle latch mechanism. Mounting arrangements that expose drives to high temperature, unfiltered ambient air are not acceptable. The unit manufacturer shall install all power and control wiring.

B. The drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel. The supply and return/exhaust fan drive outputs shall be independently controlled in order to provide the control needed to maintain building pressure control. Supply and return/exhaust air fan drives that are slaved off a common control output are not acceptable.

C. All drives shall be factory run tested prior to unit shipment.

2.6 ELECTRICAL

A. Unit wiring shall comply with NEC requirements and with all applicable UL standards. All electrical components shall be UL recognized where applicable. All wiring and electrical components provided with unit shall be number and color coded and labeled according to the electrical diagram provided for easy identification. The unit shall be provided with a factory wired weatherproof control panel. Unit shall have a power terminal block for main power connection. A terminal board shall be provided for low voltage control wiring. Branch circuit short circuit protection, 115 volt control circuit transformer and fuse, system switches, and a high temperature sensor. Each compressor and condenser fan motor shall be furnished with contactors and inherent thermal overload protection. Supply and return fan motors shall have contactors and external overload protection. Knockouts shall be provided in the of the main control panels for field wiring entrance. All 115-600 volt internal and external wiring between control boxes and components shall be protected from damage by raceways or conduit.

B. The receptacle shall be powered by a field supplied 115V source.

C. Single terminal block shall be provided for connecting electrical power at the unit.

D. Unit SCCR rating to be 10 kAIC.

2.7 HEATING AND COOLING SECTIONS

A. The cooling coil section shall be installed in a draw through configuration, upstream of the supply air fan. The coil section shall be complete with factory piped cooling coil and sloped drain pan. Hinged access doors on both sides of the section shall provide convenient access to the cooling coil and drain pan for inspection and cleaning.

B. Submittals must demonstrate that scheduled unit leaving air temperature (LAT) is met, that fan and motor heat temperature rise (TR) have been considered, and scheduled entering air temperature (EAT) equals mixed air temperature (MAT). Draw-thru cooling - Scheduled EAT equals cooling coil EAT and scheduled unit LAT equals cooling coil LAT plus TR.

C. Direct expansion (DX) cooling coils shall be fabricated of seamless 1/2” diameter high efficiency copper tubing that is mechanically expanded into high efficiency aluminum plate fins. Coils shall be a multi-row, staggered tube design. All units shall have two independent refrigerant circuits and shall use an interlaced coil circuiting that keeps the full coil face active at all load conditions.

D. All coils shall be factory leak tested with high pressure air under water.
E. A stainless steel, positively sloped drain pan shall be provided with the cooling coil. The drain pan shall extend beyond the leaving side of the coil and underneath the cooling coil connections. The drain pan shall have a minimum slope of 1/8" per foot to provide positive draining. The drain pan shall be connected to a threaded drain connection extending through the unit base. Units with stacked cooling coils shall be provided with a secondary drain pan piped to the primary drain pan.

F. A natural gas fired furnace shall be installed in the unit heat section. The heat exchanger shall include a type 321 stainless steel cylindrical primary combustion chamber, a type 321 stainless steel header, 321 stainless steel steel secondary tubes and type 321 stainless steel turbulators. Carbon or aluminized steel heat exchanger surfaces are not acceptable. The heat exchanger shall have a condensate drain. Clean out of the primary heat exchanger and secondary tubes shall be accomplished without removing casing panels or passing soot through the supply air passages. The furnace section shall be positioned downstream of the supply air fan.

G. The furnace shall be supplied with a forced draft burner capable of continuous modulation between 5% and 100% of rated capacity, without steps, and shall operate efficiently at all firing rates. The burner shall have proven open damper low-high-low prepurge cycle, and proven low fire start. The combustion air control damper shall be in the closed position during the off cycle to reduce losses.

H. The burner shall be specifically designed to burn natural gas and shall include a microprocessor based flame safeguard control, combustion air proving switch, pre-purge timer and spark ignition. The gas train shall include redundant gas valves, shutoff cock, pilot gas valve, pilot pressure regulator, and pilot cock.

2.8 FILTERS

A. Unit shall be provided with a draw-through filter section. The filter section shall be supplied complete with the filter rack as an integral part of the unit. The draw-through filter section shall be provided with panel filters.

B. 2" thick AmericanAirFilter MERV 8 and MERV 13 pleated panel filters shall be provided.

C. Filters shall be frame mounted and shall slide into galvanized steel racks contained within the unit. Filters shall be installed in an angular arrangement to maximize filter area and minimize filter face velocity. Filters shall be accessible from both sides of the filter section.

2.9 OUTDOOR/RETURN AIR SECTION

A. Unit shall be provided with an outdoor air economizer section. The 0 to 100% outside air economizer section shall include outdoor, return, and exhaust air dampers. Outdoor air shall enter from both sides of the economizer section through horizontal, louvered intake panels complete with rain lip and bird screen. The floor of the outdoor air intakes shall provide for water drainage. The economizer section shall allow return air to enter from the bottom of the unit. The outside and return air dampers shall be sized to handle 100% of the supply air volume. The dampers shall be opposed sets of parallel blades, arranged vertically to converge the return air and outdoor air streams in multiple, circular mixing patterns.

B. UltraSeal low leak dampers shall be provided on outdoor dampers. Damper blades shall be fully gasketed and side sealed and arranged horizontally in the hood. Damper leakage shall be less than 0.2% at 1.5 inches static pressure differential. Leakage rate to be tested in accordance with AMCA Standard 500. Damper blades shall be operated from multiple sets of linkages mounted on the leaving face of the dampers.

C. Control of the outdoor or return dampers shall be by a factory installed actuator. Damper actuator shall be of the modulating, spring return type. If outdoor air is suitable for “free” cooling, the outdoor air dampers shall modulate in response to the unit’s temperature control system. An adjustable enthalpy control shall
be provided to sense the dry-bulb temperature and relative humidity of the outdoor air stream to determine if outdoor air is suitable for “free” cooling.

2.10 DISCHARGE AND RETURN PLENUM OPTIONS

A. A supply air discharge plenum shall be provided. The plenum section shall have a top discharge opening.

2.11 CONDENSING SECTION

A. Air Cooled Condenser

1. Units shall have at least one condenser fan controlled to maintain positive head pressure. An ambient thermostat shall prevent the refrigeration system from operating below 45º F ambient.
2. The condensing section shall be open on the sides and bottom to provide access and to allow airflow through the coils. Condenser coils shall be multi-row and fabricated from cast aluminum micro-channel coils. Each condenser coil shall be factory leak tested with high-pressure air under water. Coils are to be recessed so that the cabinet provides built in hail protection.
3. Condenser fans shall be direct drive, propeller type designed for low tip speed, vertical air discharge, and include service guards. Fan blades shall be constructed of steel and riveted to a steel center hub. Condenser fan motors shall be heavy-duty, inherently protected, three-phase, non-reversing type with permanently lubricated ball bearing and integral rain shield.

B. Scroll Compressors

1. Each unit shall have multiple, heavy-duty Copeland scroll compressors.
2. Each compressor shall be complete with gauge ports, crankcase heater, sight-glass, anti-slug protection, motor overload protection and a time delay to prevent short cycling and simultaneous starting of compressors following a power failure.
3. Compressors shall be isolated with resilient rubber isolators to decrease noise transmission.

C. Refrigeration Circuit

1. Each unit shall have two independent refrigeration circuits. Each circuit shall be complete with low pressure control, pumpdown switch, liquid line solenoid valve, filter drier, liquid moisture indicator/sight-glass, thermal expansion valve, liquid line charging valve with a 3/8” charging port, a manual reset high pressure safety switch. The thermal expansion valve shall be capable of modulation from 100% to 25% of its rated capacity. Sight-glasses shall be accessible for viewing without disrupting unit operation. Each circuit shall be dehydrated and leak tested.
2. Each circuit shall be dehydrated and factory charged with 410-A Refrigerant and oil. Refrigeration capacity control shall be accomplished by staging of the unit’s multiple compressors. All compressor capacity control staging shall be controlled by the factory installed main unit control system.
3. Modulating hot gas reheat shall be factory installed on the lead circuit complete with modulating valves, micro-channel refrigerant reheat coil and dehumidification control. Controls shall maintain +/- 0.5 degree control of the reheat coil leaving air temperature.

2.12 UNIT CURBS

A. A prefabricated 12-gauge galvanized steel, mounting curb, designed and manufactured by the unit manufacturer, shall be provided for field assembly prior to unit shipment. The curb shall be a full perimeter type with complete perimeter support of the air handling section and rail support of the condensing section.

2.13 CONTROLS

A. Each unit shall be equipped with a complete MicroTech® III microprocessor based control system. The unit control system shall include all required temperature and pressure sensors, input/output boards, main...
microprocessor and operator interface. All boards shall be individually replaceable for ease of service. All microprocessors, boards, and sensors shall be factory mounted, wired and tested.

B. Supply air fan to be controlled by duct static pressure.

C. The microprocessor shall be a stand-alone DDC controller not dependent on communications with any on-site or remote PC or master control panel. The microprocessor shall maintain existing set points and operate stand alone if the unit loses either direct connect or network communications. The microprocessor memory shall be protected from voltage fluctuations as well as any extended power failures. All factory and user set schedules and control points shall be maintained in nonvolatile memory. No settings shall be lost, even during extended power shutdowns.

D. The main microprocessor shall support an RS-232 direct connection to a product service tool or a modem. A communications module shall be provided for direct communication into the BAS network.

E. All digital inputs and outputs shall be protected against damage from transients or wrong voltages. Each digital input and digital output shall be equipped with an LED for ease of service. All field wiring shall be terminated at a separate, clearly marked terminal strip.

F. The microprocessor memory shall be protected from all voltage fluctuations as well as any extended power failures. The microprocessor shall support an RS-232 direct connect from an IBM PC or 100% true compatible using MicroTech software. The microprocessor shall maintain existing set points and operate stand alone if the rooftop loses either direct connect or network communications.

G. The microprocessor shall have a built-in time schedule. The schedule shall be programmable from the unit keypad interface. The schedule shall be maintained in nonvolatile memory to insure that it is not lost during a power failure. There shall be one start/stop per day and a separate holiday schedule. The controller shall accept up to sixteen holidays each with up to a 5-day duration. Each unit shall also have the ability to accept a time schedule via BAS network communications.

H. If the unit is to be programmed with a night setback or setup function, an optional space sensor shall be provided. Space sensors shall be available to support field selectable features. Sensor options shall include Zone sensor with tenant override switch, or Zone sensor with tenant override switch and heating/cooling set point adjustment.

I. User Interface (UI)
 1. The keypad/display character format shall be 20 characters x 4 lines. The character font shall be a 5 x 8 dot matrix. The display shall be a super twist liquid crystal display (LCD) with black characters on yellow background providing high visibility. The display form shall be in plain English coded formats. Lookup tables are not acceptable.
 2. The keypad shall be equipped with 8 individual touch-sensitive membrane key switches. All control settings shall be password protected from changes by unauthorized personnel.
 3. Both a unit-mounted and remote-mounted UI shall be provided. One remote UI can communicate with up to 8 separate units. Both the unit-mounted and remote-mounted UI are always active. The control contractor is responsible for wiring between the unit and the remote UI. The maximum wiring distance to the remote UI is 2100 feet. The remote UI shall have an 8 line x 30 character display. The remote UI shall be provided with the same “push and roll” navigational tool and have identical functionality to the unit-mounted UI.

J. The display shall provide the following information:
 1. Supply, outdoor and space air temperature.
 2. Duct and building static pressure- the control contractor is responsible for providing and installing sensing tubes.
 3. Fan status and airflow verification.
4. Fan VFD speed.
5. Outside air damper position and economizer mode.
6. Cooling, heating and changeover status.
7. Occupied, unoccupied, and dirty filter status.
8. Date and time schedules.
9. Up to 4 current alarms and 8 previous alarms with time and date.

K. The keypad shall provide the following set points as a minimum:
1. Six control modes including off manual, auto, heat/cool, cool only, heat only and fan only.
2. Four occupancy modes including auto, occupied, unoccupied and bypass (tenant override with adjustable duration).
3. Control changeover based on return air temperature, outdoor air temperature, or space temperature.
4. Primary cooling and heating set point temperature based on supply or space temperature.
5. Night setback and setup space temp.
6. Cooling and heating control differential (or dead band).
7. Cooling and heating supply temperature reset options based on one of the following: Return air temperature, outdoor air temperature, space temperature, Airflow, or external (1-5VDC) signal.
8. Reset schedule temperature.
9. High supply, low supply and high return air temperature alarm limits.
10. Ambient compressor and heat lockout temperatures.
11. Auto or manual lead lag method on compressors.
12. Compressor interstage timers duration.
13. Duct static pressure.
14. Minimum outdoor airflow reset based on external reset (1-5 VDC), percent of CFM capacity, and fixed outdoor damper position.
15. Economizer changeover based on enthalpy, dry bulb or network signal.
16. Current time and date.
17. Occupied/unoccupied time schedules with allowances for holiday/event dates and duration.
18. Three types of service modes including timers normal (all time delays), timers fast (all time delays 20 seconds), and normal.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.

C. Examine roof curbs and equipment supports for suitable conditions where units will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer's rigging and installation instructions for unloading units and moving to final locations.

B. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.
C. Install wind and seismic restraints according to manufacturer's written instructions. Wind and seismically restrained vibration isolation roof-curb rails are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

D. Install wall- and duct-mounted sensors furnished by manufacturer for field installation. Install control wiring and make final connections to control devices and unit control panel.

E. Install separate devices furnished by manufacturer and not factory installed.

F. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.

G. Electrical Connections: Comply with requirements for power wiring, switches, and motor controls in electrical Sections.
 1. Install electrical devices furnished by unit manufacturer but not factory mounted.

3.3 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Inspect units for visible damage to furnace combustion chamber.
 3. Inspect units for visible damage to refrigerant compressor, condenser and evaporator coils, and fans.
 4. Start refrigeration system when outdoor-air temperature is within normal operating limits and measure and record the following:
 a. Cooling coil leaving-air, dry- and wet-bulb temperatures.
 b. Cooling coil entering-air, dry- and wet-bulb temperatures.
 c. Condenser coil entering-air dry-bulb temperature.
 d. Condenser coil leaving-air dry-bulb temperature.
 5. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short-circuiting of air through outside coil or from outside coil to outdoor-air intake.
 6. Inspect casing insulation for integrity, moisture content, and adhesion.
 7. Verify that clearances have been provided for servicing.
 8. Verify that controls are connected and operable.
 9. Verify that filters are installed.
 10. Clean coils and inspect for construction debris.
 11. Clean furnace flue and inspect for construction debris.
 12. Inspect operation of power vents.
 13. Purge gas line
 15. Verify bearing lubrication.
 16. Clean fans and inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 17. Adjust fan belts to proper alignment and tension.
 18. Start unit.
 19. Inspect and record performance of interlocks and protective devices including response to smoke detectors by fan controls and fire alarm.
 20. Operate unit for run-in period.
 22. Adjust and inspect high-temperature limits.
 23. Inspect outdoor-air dampers for proper stroke[and interlock with return-air dampers].
24. Verify operational sequence of controls.
25. Measure and record the following airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Outdoor-air flow.

B. After startup, change filters, verify bearing lubrication, and adjust belt tension.

C. Remove and replace components that do not properly operate and repeat startup procedures as specified above.

D. Prepare written report of the results of startup services.

3.4 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 237330
SECTION 238126 - HEATING AND AIR CONDITIONING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The drawings and general provisions of the Contract, including General and Supplementary Conditions, General Requirements and all other Specification Sections apply to the work specified in this section. In the event of conflict between specific requirements of the various documents, the more restrictive, the more extensive (i.e.: more expensive) requirement shall govern.

1.2 SCOPE

A. This section includes all heating and air conditioning equipment as indicated on the drawings and described herein.

B. The requirements of Division 23500, Section “Mechanical and Electrical General Provisions” shall apply to the work specified under this section.

C. Controls and Building Management System Integration: All controls for the variable refrigerant system, ventilation air units and heat recovery wheels shall be provided by the equipment manufacturer. Control wiring will be provided as specified under section 230900. Equipment controls shall utilize BACnet communication protocol and will be compatible with the automation system. Equipment manufacturer shall provide all programming, checkout commissioning and startup of the VRF system and ventilation air systems. A BACnet Network Automation Engine for communication of the VRF system will be provided by the controls contractor as specified under section 230900. VRF and ventilation air equipment manufacturer is responsible for providing BACnet controls. Equipment manufacturer shall provide onsite technical personnel to assist and support controls contractor in integrating the VRF system.

1.3 QUALITY ASSURANCE

A. The units shall be listed by Electrical Testing Laboratories (ETL) and bear the ETL label.

B. All wiring shall be in accordance with the National Electrical Code (N.E.C.).

C. Project shall comply with the applicable version of ASHRAE standard 15.

D. The units shall be manufactured in a facility registered to ISO 9001 and ISO14001 which is a set of standards applying to environmental protection set by the International Standard Organization (ISO).

E. All units must meet or exceed the 2010 Federal minimum efficiency requirements and the proposed ASHRAE 90.1 efficiency requirements for VRF systems. Efficiency shall be published in accordance with the DOE alternative test procedure, which is based on the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standards 340/360, 1230 and ISO Standard 13256-1.

F. A full charge of R-410A for the condensing unit only shall be provided in the condensing unit.

G. All components shall be provided by one manufacturer including but not limited to:

1. Outdoor Units
2. Indoor Units
3. Mode Control Units
4. All necessary and applicable controls for the VRF System
5. Factory refrigerant charge for condensing unit(s) only
6. Y and or T-Branch(s) (field fabrication of Y or T branches is not acceptable)
7. Condensate Lift Pump(s) as required
8. Refrigerant Ball Valves as required
9. Service Software

1.4 COORDINATION

A. The installing contractor for any equipment shall coordinate the following items with applicable trades:
 1. Structural supports, curbs, and/or housekeeping pads required for all equipment.
 2. Piping size and connection/header locations. Locations shall be indicated on the installation and coordination shop drawings and final coordination shall be done on site.
 3. Ductwork connection sizes and locations. Locations shall be indicated on the installation and coordination shop drawings and final coordination shall be done on site.
 4. Electrical power requirements and wire/conduit and over-current protection sizes. Sizes shall be indicated on the installation and coordination shop drawings and final coordination shall be done on site.

1.5 SUBMITTALS

A. Installing contractor shall provide the following:
 1. VRF Guide Specification
 2. VRF Dimensional Data for all products submitted
 3. VRF Product Data for all products submitted.
 4. VRF report showing design conditions, total load profile, and actual capacity at actual Indoor Unit location,
 5. VRF Piping and Wiring layout showing estimated piping, wiring sizes, equipment quantities, piping length estimate, and additional refrigerant charge.
 6. VRF Schedule showing the performance for all pieces of equipment.

1.6 INSTALLATION AND OPERATION MANUALS

A. Owner shall be provided with a complete and comprehensive electronic set of Installation and Operation Manuals.

1.7 QUALIFICATIONS

A. Manufacturer shall have a minimum of twenty-five (25) years of HVAC experience in the North America market.
B. Manufacturer to have Local Factory Service within seventy-five (75) miles of jobsite.
C. The VRF system shall be installed by a certified installer with VRF installation and service training. The mandatory contractor service and install training shall be performed by the manufacturer.

1.8 WARRANTY

A. The units shall be covered by the manufacturer’s standard limited warranty for a period of 12 months from date of installation. If during this period, any part should fail to function properly due to defects in workmanship or material, it shall be replaced or repaired at the discretion of the manufacturer.
B. The units shall carry an extended manufacturer’s functional parts warranty for a period of 5 years from date of installation.
C. The contractor shall take the manufacturers required steps in order to ensure that the system and components are eligible for extended warranty.

D. The contractor shall provide labor warranty as specified in the general conditions for this project.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. A variable capacity, heat pump heat recovery air conditioning system. The system shall consist of air cooled outdoor unit(s), multiple branch circuit controllers, multiple indoor fan coil units, and Direct Digital Controls. Each indoor unit or group of indoor units shall be capable of operating in any mode independently of other indoor units or groups. System shall be capable of changing mode (cooling to heating, heating to cooling) with no interruption to system operation. To ensure owner comfort, each indoor unit or group of indoor units shall be independently controlled and capable of changing mode automatically when zone temperature strays 2.0 degrees F from set point for ten minutes.

2.2 VARIABLE REFRIGERANT FLOW (VRF) SYSTEM

A. The basis of design for the variable capacity, heat recovery air conditioning system is Trane. Other approved manufacturers for the VRF system are LG and Daikin Industries.
 1. All details shown on the design documents, electrical requirements and capacities scheduled are based on the basis of design equipment.
 2. Refrigerant piping shall be sized in accordance with manufacturer's written instructions based on the project specific layout and length of refrigerant piping. Prior approved manufacturers shall, prior to the bid, provide to the contractor a project specific schematic showing all information required to price the installation of their heat pump system. Schematic shall include pipe lengths, pipe sizes, branch/circuit controllers, specialty pipe fittings/branches, electrical loads and controls. Any system components or electrical changes required to install a heat pump system other than the basis of design shall be included in the project bid. Installation and design of any system other than the basis of design shall be the responsibility of the contractor and, after the project award, be of no additional cost to the owner.

B. To ensure maximum occupant comfort, heat recovery systems shall have a space temperature controller for each connected indoor unit. The heat recovery system shall provide simultaneous heating and cooling without the use of reheat.

C. In order to ensure maximum simultaneous cooling and heating efficiencies (SCHE), heat recovery outdoor units will feature a low temperature/low pressure gas line, high temperature/high pressure gas line, and a medium temperature/high pressure liquid line. All three lines will connect from the condensing unit to each mode control units.

D. The heat recovery outdoor units shall be equipped with multiple circuit boards. These boards shall perform all functions necessary for operation of the outdoor units.

E. The heat recovery outdoor units shall be equipped with dual inverter compressors per module.

F. The outdoor unit shall be completely factory assembled, internally piped and wired. Each unit shall be run tested at the factory.
 1. The combination ratio of the nominal indoor cooling capacity versus the nominal outdoor rated cooling capacity shall range from 50% to 130%.
 2. Outdoor unit shall have a sound rating no higher than 62/83(Pressure/Power) dB(A).
 3. Unit shall have a night quiet setting to reduce nighttime sound levels.
4. All refrigerant lines from the outdoor unit to the MCU (Mode Change Unit) shall be field insulated.
5. The outdoor unit shall have an accumulator with crank case heater and controls.
6. The outdoor unit shall have a high pressure safety switch, fuse, over-current protection and crank case heater.
7. If the outdoor unit is above the indoor unit, the outdoor unit shall have the ability to operate with a maximum height difference of 164 ft.
8. If the outdoor unit is below the indoor unit, the outdoor unit shall have the ability to operate with a maximum height difference of 131 ft.
9. The system shall have a maximum total refrigerant tubing length of 3281 ft.
10. The maximum length between outdoor unit and the furthest indoor units is not to exceed 656 ft (722 equivalent feet).
11. The maximum height difference between MCU boxes shall be 49 ft.
12. The maximum height difference between indoor units shall be 49 ft.
13. The outdoor unit shall be capable of operating in cooling mode from 23°F to 120°F.
14. The outdoor unit shall be capable of operating in heating mode from 75°F to -13°F ambient temperatures without additional low ambient controls, additional modules, or low ambient accessories.
15. The outdoor unit shall have a high efficiency oil separator plus additional logic controls to ensure adequate oil volume in the compressor is maintained.
16. The outdoor units shall provide continuous heating during oil return and the defrost cycle through the use of rotational defrost. (multiple module systems)
17. Units shall have a snow blower feature to ensure the dispersion of accumulated snow.

G. The unit casing(s) shall be fabricated of galvanized steel, bonderized and finished with a powder coated baked enamel.

H. The outdoor condenser fan shall be furnished with direct drive motors(s). All fan motors shall have inherent motor protection, and permanently lubricated bearings. All fan motors shall be mounted for quiet operation. All fans shall be provided with a raised guard to prevent contact with moving parts. The fans shall have vertical discharge airflow.

I. R410A refrigerant shall be required for VRF outdoor unit systems. Manufacturer shall only provide the refrigerant as required for unit charge. Contractor shall be required to provide additional refrigerant as specified in VRF reports.

J. The outdoor condenser coil shall be of nonferrous construction with lanced or corrugated plate fins on copper tubing. The condenser coil shall have Blue Fin anti-corrosion protection as a standard feature. The coil shall be protected with an integral metal guard. The coil fins shall be coated with hydrophilic paints.

K. The VRF heat recovery outdoor units shall be equipped with inverter driven vapor injection asymmetric scroll compressor(s). The asymmetric design will allow for only one point of contact for the scroll compressor blades resulting in reduced friction, and increased efficiency. Conventional scroll compressors with 2-points of contact will not be allowed due to their inherent inefficiency.

L. The outdoor unit compressor shall utilize inverter driven technology to modulate capacity. The compressors shall also utilize advanced technology adaptive sine wave control for reduced harmonics and faster frequency acceleration.

M. The compressor shall be capable of 1/60th second advanced micro-control.

N. The outdoor unit compressor shall utilize vapor injection technology which shall increase the mass flow rate of refrigerant, resulting in improved performance for low temperature conditions.
O. The compressor will be equipped with an internal thermal overload protection.

P. The compressor shall be mounted to avoid the transmission of vibrations.

2.3 MODE CHANGE UNIT

A. The MCU (Mode Change Unit) shall be used for applications requiring simultaneous heating and cooling. The unit electrical power shall be 208/230 volts, 1 phase, 60 hertz.

B. MCUs require they be used in conjunction with VRF outdoor heat recovery condensing units. These units shall be equipped with a circuit board that shall perform all functions necessary for operation.

C. The MCU shall be completely factory assembled, internally piped and wired. Unit shall be run tested. This unit shall be mounted indoors.

D. Each MCU shall be capable of transferring heat to connected associated indoor units, and to the connected outdoor condensing unit. This shall allow simultaneous heating and cooling without the need for reheat.

E. Isolation valves with access ports shall be installed by the contractor on the entering and leaving refrigerant circuits.

F. Additional subcooling shall be provided at the MCU. The additional subcooling is required to mitigate losses due to pipe length and heat gain. This will ensure scheduled capacity at the indoor unit.

G. MCU shall be available in three sizes, 4-port, 6-port, and dedicated 2-port. The outdoor heat recovery condensing unit is capable of connecting to multiple MCUs.

H. The 4-port MCU shall connect up to 4 indoor units when the sum of the indoor unit’s capacity is less than 120 MBH. Optionally, the 6-port MCUs shall connect up to 6 indoor units where the sum of indoor unit’s capacity is less than 180 MBH.

I. The dedicated 2-port MCU shall be used to connect individual Indoor units whose capacity greater than or equal to 36 MBH, and where the sum of the MCUs capacity is less than 192 MBH.

J. When connecting indoor units with capacities greater than 36 MBH to a 4-port, 6-port, or dedicated 2-port MCU, two ports shall be twinned together at the MCU to deliver the required refrigerant. The two MCU refrigerant valves shall operate simultaneously.

K. Indoor units with capacity in excess of 48MBH shall not be connected to 4-port or 6-port MCUs. They should be used exclusively with a dedicated 2-port MCUs.

L. Indoor units with capacity less than 36MBH indoor unit shall not be connected to a dedicated 2-port MCUs.

M. The MCU casing shall be fabricated of galvanized steel. Each cabinet shall house a liquid-gas separator and multiple refrigeration control valves. The unit shall house two tube-in-tube heat exchangers (sub cooling) to ensure heating and cooling capacity at the indoor unit.

N. The MCU shall be furnished with multiple two position refrigerant valves. Linear electronic expansion valves shall be used to control the variable refrigerant flow.

O. An integral MCU condensate pan and drain connection shall be provided.
P. Use 18 AWG, 25pF/ft nom., 60.7 Ω impedance, braid or foil shielded, twisted pair wire for communications wiring. Splicing of communication wiring shall not be permitted.

2.4 1-WAY SLIM CEILING CASSETTE INDOOR UNITS (4TVE)

A. The 4TVE is a one-way cassette style indoor unit that recesses into the ceiling with a ceiling grille and shall have a 2000 step modulating expansion device.

B. The indoor unit shall be a factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, the electronic modulating linear expansion device, control circuit board, and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, and auto restart function.

C. The unit cabinet shall be space-saving ceiling recessed. The one-way grille shall be fixed to bottom of cabinet allowing for one-way airflow.

D. The indoor fan shall consist of a direct driven cross-flow fan with a single motor. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings. The indoor fan shall have high, medium, and low fan speeds. The fan speed shall be adjustable by an optional remote controller.

E. Return air shall be filtered by means of a long-life washable permanent filter.

F. The indoor coil shall be constructed as follows:
1. The indoor coil shall be of nonferrous construction with slit fins on copper tubing.
2. The tubing shall have inner grooves for high efficiency heat exchange.
3. All tube joints shall be brazed with phos-copper or silver alloy.
4. The coils shall be pressure tested at the factory.
5. A condensate pan and drain shall be provided under the coil.
6. The factory installed condensate lift mechanism shall be able to raise drain water 29.5 inches water column above the condensate pan.
7. The coil fins shall be coated with hydrophilic paints.
8. Both refrigerant lines to the indoor units shall be insulated.

M. Splicing of communication wiring shall not be permitted.

N. This unit shall use controls provided by the manufacture to perform functions necessary to operate the system. Please refer to Part 3 of this guide specification for details on controllers and other control options.

2.5 4-WAY MINI/ 4-WAY CEILING CASSETTE INDOOR UNITS (4TVB/4TVC)

A. The 4TVB/4TVC are four-way cassette style indoor units that recess into the ceiling grid with an exposed ceiling grille and an integral 2000 step modulating expansion device.

B. The indoor unit shall be a factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, the electronic modulating linear expansion device, control circuit board, and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function.

C. The unit cabinet shall be a space-saving ceiling-recessed cassette. The cabinet panel shall have provisions for a field installed filtered outside air intake. Branch ducting shall be allowed from cabinet.

D. The indoor fan shall consist of a turbo fan with a single direct drive motor. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings. The indoor
fan shall have high, medium, and low fan speeds. The fan speed shall be adjustable by an optional remote controller. The auto air swing vanes shall be capable of automatically swinging up and down for uniform air distribution. If required the cassette shall be capable of closing off one or more vanes to prevent “stray airflow”.

E. Return air shall be filtered by means of a long-life washable permanent filter.

F. The indoor coil shall be constructed as follows:
 1. The indoor coil shall be of nonferrous construction with slit fins on copper tubing.
 2. The tubing shall have inner grooves for high efficiency heat exchange.
 3. All tube joints shall be brazed with phos-copper or silver alloy.
 4. The coils shall be pressure tested at the factory.
 5. A condensate pan and drain shall be provided under the coil.
 6. The coil fins shall be coated with hydrophilic paints.
 7. The factory installed condensate lift mechanism shall be able to raise drain water 29.5 inches water column above the condensate pan.
 8. Both refrigerant lines to the indoor units shall be insulated.

G. This unit shall use controls provided by the manufacturer to perform functions necessary to operate the system. Please refer to Part 3 of this guide specification for details on controllers and other control options.

2.6 SLIM DUCT /MEDIUM STATIC/ HIGH STATIC- DUCTED INDOOR UNITS (4TVL/4TVD/4TVA)

A. The 4TVL/4TVD/4TVA are ducted indoor fan coil designs that mounts above the ceiling. The unit shall have a 2000 step modulating expansion device.

B. The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, the electronic modulating linear expansion device, control circuit board, and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, and an auto restart function.

C. The unit cabinet shall be a space saving, ceiling-concealed, ducted unit. The cabinet panel shall have provisions for a field installed filtered outside air intake.

D. The indoor unit fan shall consist of two or three Sirocco fans, direct driven by a single motor. The indoor fan shall be statically and dynamically balanced and run on a motor with permanently lubricated bearings. The indoor fan shall have high, medium, and low fan speeds. The fan speed shall be adjustable by an optional remote controller. The airflow may also be adjusted based on static pressure.

E. The return air shall be filtered by means of a standard factory installed return air filter. An optional return filter box (rear placement) with high-efficiency filter shall be available for ducted indoor units. If using the optional return filter box, verify the filter/filter box performance is within the bounds of the unit’s external pressure performance.

F. The indoor coil shall be constructed as follows:
 1. The indoor coil shall be of nonferrous construction with slit fins on copper tubing.
 2. The tubing shall have inner grooves for high efficiency heat exchange.
 3. All tube joints shall be brazed with phos-copper or silver alloy.
 4. The coils shall be pressure tested at the factory.
 5. A condensate pan and drain shall be provided under the coil.
 6. The coil fins shall be coated with hydrophilic paints.
 7. The optional field installed condensate lift mechanism shall be able to raise drain water 29.5 inches water column above the condensate pan.
8. Both refrigerant lines to the indoor units shall be insulated.

G. This unit shall use controls provided by the manufacturer to perform functions necessary to operate the system. Please refer to Part 3 of this guide specification for details on controllers and other control options.

2.7 CEILING SUSPENDED (FLOOR) INDOOR UNITS (4TVX)

A. The 4TVX unit is a convertible unit that can be mounted on the ceiling in a horizontal configuration, or on the floor/wall in a vertical configuration.

B. The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, and an auto restart function.

C. The unit cabinet shall be an exposed ceiling suspended or wall/floor mounted configuration. With multi directional drain and refrigerant piping offering four (4) directions for refrigerant piping and four (4) directions for condensate drainage.

D. The indoor unit fan shall consist of Sirocco fans direct driven by a single motor. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings. The indoor fan shall have multiple speeds.

E. Return air shall be filtered by means of an easily removable, washable filter.

F. The indoor coil shall be constructed as follows:
 1. The indoor coil shall be of nonferrous construction with Slit fins on copper tubing.
 2. The tubing shall have inner grooves for high efficiency heat exchange.
 3. All tube joints shall be brazed with phos-copper or silver alloy.
 4. The coils shall be pressure tested at the factory.
 5. A condensate pan and drain shall be provided under the coil.
 6. The coil fins shall be coated with hydrophilic paints.
 7. The optional field installed condensate lift mechanism shall be able to raise drain water 29.5 inches water column above the condensate pan.

G. Both refrigerant lines to the indoor units shall be insulated.

H. This unit shall use controls provided by the manufacturer to perform functions necessary to operate the system. Please refer to Part 3 of this guide specification for details on controllers and other control options.

2.8 WALL MOUNTED INDOOR UNITS (4TVW-C)

A. The 4TVW-C is a wall-mounted indoor unit section with a slim silhouette. The 4TVW-C shall have a 2000 step modulating expansion device.

B. The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, internal piping, the electronic modulating linear expansion device, control circuit board, and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function.

C. The unit casing shall have a white finish, with multi directional drain and refrigerant piping offering four (4) directions for refrigerant piping and four (4) directions for condensate drainage. The unit shall be secured firmly to the wall with factory mounting plate.
D. The indoor fan shall consist of a cross-flow fan with a single direct drive motor. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings. A manual adjustable guide vane shall be provided to change the airflow from side to side (left to right) as desired. A motorized air sweep louver shall provide an automatic change in airflow by directing the air up and down to provide uniform air distribution. The indoor fan shall have multiple speeds.

E. Return air shall be filtered by means of an easily removable, washable filter.

F. The indoor coil shall be constructed as follows:
 1. The indoor coil shall be of nonferrous construction with Slit fins on copper tubing.
 2. The tubing shall have inner grooves for high efficiency heat exchange.
 3. All tube joints shall be brazed with phos-copper or silver alloy.
 4. The coils shall be pressure tested at the factory.
 5. A condensate pan and drain shall be provided under the coil.
 6. The coil fins shall be coated with hydrophilic paints.
 7. The optional field installed condensate lift mechanism shall be able to raise drain water 29.5 inches water column above the condensate pan.
 8. Both refrigerant lines to the indoor units shall be insulated.

G. This unit shall use controls provided by the manufacturer to perform functions necessary to operate the system. Please refer to Part 3 of this guide specification for details on controllers and other control options.

2.9 ACCESSORIES

A. Y-Joint Kits- are a required component for VRF-Systems with multiple evaporators and MCU’s on the same system. Y-joints shall be provided for liquid, suction, and hot gas fittings as required. Y-joints shall be provided with polystyrene insulation. Y-branches shall facilitate different pipe sizes without having to braze additional fittings. Field fabrication or substitution of non-factory fabricated Y-Joints shall void warranty. Kits shall be installed per manufacturer guidelines. Requires field installation.

B. T-Joint Kits – are a required component for VRF systems with multiple outdoor modules on a single system. The T-Joint shall be provided for liquid, suction, and hot gas fittings as required. T-Joints shall be provided with polystyrene insulation. T-Branche s shall facilitate different pipe sizes without having to braze additional fittings. Field fabrication or substitution of non-factory fabricated T-joints shall void warranty. Kits shall be installed per manufacturer guidelines. Requires field installation.

C. EEV KITs- the EEV (Electronic Expansion Valve) provides refrigerant management of indoor units. The EEV shall be required for field installation on ceiling suspended (floor) indoor units. Heat Recovery systems shall require the single room EEV. Heat Pump systems (only) may also utilize the two or three room EEV kits. Kits shall be installed per manufacturer guidelines. Requires field installation.

D. Condensate Drain Pumps shall be provided for field installation as required for efficient condensate management. Condensate pumps shall be capable of 29.5” of lift to allow condensate to reach the closest gravity drain line. Condensate pumps shall include a check valve to prevent water from flowing back into the indoor unit. Pump shall be mounted in the chassis of the indoor unit. Pump shall draw on required power from the associated indoor unit. Requires field installation (Standard factory installed for all ceiling cassettes).

E. Refrigerant Isolation Ball Valves - shall be provided for field installation. Valves shall utilize a uni-body full port design to minimize leaks and internal pressure drops. Valves shall be rated for 700PSIG, and are offered with an optional factory insulation package. Valves shall be factory tested under pressure. Valves shall require polytetrafluoroethylene (PTFE) seals and gaskets. No synthetic O-rings are allowed. Design shall permit valve operation without removal of seal cap. Valves shall have a temperature operation range of -40°F to 300°F. Requires field installation.
F. Wired Remote Temperature Controller can be used with all VRF Indoor Units. Remote shall utilize a Multi-function LCD display and shall possesses the following functionality:

1. Temperature set point control
2. Built-in room temperature sensor
3. Operation mode: Auto-Cool-Dry-Fan-Heat
5. Filter alarm reset (timer)
6. Individual airflow blade control on cassette units
7. Single or multiple indoor unit control (up to 16 units)
8. Real-time clock includes current time, day display
9. Daylight savings time adjustment (program in the date)
10. Weekly operating scheduling
11. Motion Detection/Away function (applies to enabled indoor units)
12. Upper/Lower temperature limit settings
13. Controls up to 16 Indoor Units
14. Up to 2 can be averaged as single controller
15. Error display
16. Service Mode provides configuration settings
17. Security lock code

G. External Room Temperature Sensor is wall-mounted to provide accurate room temperature sensing for an associated VRF cooling and heating unit. It is used in place of the unit-mounted return air sensor provided with VRF indoor units. It may also be used when there is a desire to prohibit direct occupant control. Requires field installation.

H. The VRF Duct Signal Receiver is a wall or ceiling-mounted device that receives signals from the Wireless (Infrared) Remote Control. It re-transmits those signals to an associated concealed VRF Indoor Unit. This allows for use of remote control of concealed indoor units. Requires field installation.

I. Motion Detector is an optional component for the Mini 4-Way cassette that offers a smart solution to saving energy and costs. It works by turning off the air conditioning system once it detects the absence of any users in the vicinity. Energy efficiency is further maximized through its ability to automatically identify and set operation patterns. The Motion Detector Sensor prevents air flow from blowing directly onto a person by adjusting the blade direction when motion is detected. This creates a more constant and comfortable environment. The motion sensor must be used with the wired remote controller, (TVCTRLTWRWD01T). Requires field installation.

J. External Contact Interface shall permit the on/off control of indoor units through an external input. The device will also allow the indoor unit to interlock control of external devices. This will allow the external devices to operate in sequence with the interlocked indoor unit.

K. Mode Select Switch shall enable the facility to manually control the mode of the VRF system. The switch shall set the operating mode as Cool, Heat, or Auto. (for use on heat pump systems only.)

L. Standard Cassette Panels shall be required with as indicated for all 1-way, Mini 4-way, and 4-way ceiling cassettes.

M. Hail guards shall protect the condenser coil from damaging hail. Requires field installation.

N. Wind/Snow Prevention Duct Kit are used in windy or snowy regions to prevent cold gusts of air from interfering with stable operation. They are also use in snowy regions to prevent snow from accumulating on the outdoor units. The kit is recommended when low ambient heating is required. The Wind/Snow prevention kit may require the additional use of the Duct Discharge Kit. Requires field installation.
O. Filter Box is an optional return filter box (rear placement) that enables the use of high efficient filters with ducted concealed indoor units. If using the optional return filter box, verify the filter/filter box performance is within the bounds of the unit’s external pressure performance. Requires field installation.

2.10 CONTROLS

A. BAS MANUFACTURER

1. The VRF System Network Controls shall be capable of supporting remote controllers, system controllers, centralized controllers, an integrated web based interface, graphical user workstation, and system integration to Building Management Systems via BACnet®.

B. ELECTRICAL CHARACTERISTICS

1. The VRF System Network Controls shall operate at 12VDC. Controller power and communications shall be via a common non-polar communications bus.

2. Control wiring shall be installed in a system daisy chain configuration from the wired remote controller to the indoor unit, to the and to outdoor unit. Control wiring to wired remote controllers shall be run from the indoor unit terminal block to the controller associated with that unit.

3. Control wiring for system controllers, and centralized controllers shall be installed in a daisy chain configuration from interface module to interface module, to system controllers, to the power supply.

4. For communication wiring between ODUs, IDUs, MCU, system controller, and remote controllers use 18 AWG, 25pf/ft nom., 60.7 Ω impedance, braid or foil shielded, twisted pair wire. Splicing of communication wiring shall not be permitted.

5. The VRF SC Web UI shall be capable of being networked with the VRF System Controller TVCTRLTIMD00A0, system controllers for web based control.

6. Network wiring shall be CAT-5e with RJ-45 connection.

C. SYSTEM NETWORK CONTROLS

1. The VRF System Network Controls consists of individual controllers, system controllers, and integrated management system. The VRF System Network Controls shall support operation monitoring, scheduling, error monitor, power distribution, personal browsers, tenant billing, online maintenance support, and integration with Building Management Systems (BMS) using BACnet® interfaces.

D. VRF-SYSTEM CONTROLLER+BACnet®

1. The VRF System Controller+BACnet is an intelligent field panel that communicates with VRF Outdoor Unit(s), Indoor Unit(s) and other VRF controllers. Additionally, it shall include a BACnet® IP (Internet Protocol) port to function as a communications gateway to other BACnet IP devices. The VRF System Controller+BACnet shall connect to associated indoor and outdoor units utilizing a dedicated control network. The controller utilizes the local area network (LAN) to provide a web page-based user interface available wherever the building’s network access is available. The VRF System Controller+BACnet is housed in a protective enclosure suitable for wall-mounting in a mechanical or electrical equipment room. The VRF BACnet® Gateway shall be capable of controlling up to 256 indoor units/EEVs support.

2. The VRF System Controller shall allow a building operator to view the system using a PC with a standard web browser, such as Windows® Internet Explorer or Mozilla Firefox.

3. The VRF System Controller shall include a user interface that includes control and monitoring of each Indoor unit through a standard graphical display with convenient pop-up controller screen to adjust comfort settings for each zone.

4. The VRF SC shall be capable of controlling a maximum of 256 indoor units via a PC. A field supplied PC shall be required. The VRF SC shall support operation superseding that of the remote controllers, system configuration, 1-day/daily/weekly scheduling, monitoring of operation status, error email notification, online maintenance tool and malfunction monitoring.
5. The VRF SC shall have a basic set of operation controls which can be applied to an individual indoor unit, a group of indoor units (up to 256 indoor units), or all indoor units (collective batch operation).

6. The basic set of operation controls for the VRF SC shall include on/off, operation mode selection (auto, cool, heat, dry, and fan), temperature setting, fan speed setting, airflow direction setting, error email notification, and online maintenance.

7. Since the VRF SC provides centralized control, it shall be able to enable or disable operation of local remote controllers via the PC. In terms of scheduling, the VRF SC shall allow the user to define 1-day, daily, and annual schedules with operations consisting of ON/OFF, mode selection, temperature setting, permit/prohibit of wireless/wired remote controllers.

8. The system shall detect and store alarms in the Alarm Log. The Alarm Log shall display critical data about the alarm, including the location of the device, and the time of occurrence. Alarms shall be routed by e-mail to stationary or mobile devices. Capacity to store up to 1024 alarm events on time specific basis shall be required.

9. Database changes made by other users shall automatically be reflected in the VRF System Controller without the need for a central server. The system database be capable of archiving or backing up data for local or offsite storage. This is desirable in the event the date is ever needed for restoring the system. A built-in SD card slot provides for on-board but removable data backup storage.

10. A password shall protect the VRF control system from unauthorized access. Each operator is assigned a role. Roles are defined by access rights. Pre-defined roles shall be selected from the VRF System Controller interface. Operators shall have access only to those features which define their roles. Roles may also be customized. An operator with administrative-level security shall access all information on the system, and shall have the ability to alter passwords and create new security roles.

E. VRF-SYSTEM TOUCHSCREEN CONTROLLER

1. The VRF System Touchscreen shall provide an intuitive, fast and convenient method of centrally operating a VRF system. The VRF System Touchscreen shall communicate with associated VRF components through a dedicated control network. It can control many comfort and energy-saving settings, including temperature, fan speeds, and operating schedules for up to 128 indoor units, and up to 16 outdoor units. The unit shall be housed in an attractive enclosure suitable for wall-mounting in an office, corridor or utility room.

2. The System Touchscreen shall feature a 7” Color Capacitive Touch Screen. The User interface shall display operating equipment icons indicating mode status at a glance. All units within a zone shall be managed with one-button control. Unique zone description icons shall make it easy to recognize a zone.

3. Control shall include but not be limited to the following: On/Off control, temperature set-point, mode settings Auto/Heat/Cool/Auto/Dry/Fan, air-direction adjustment, and local temperature set-point restrictions.

4. The System Touchscreen shall be capable of setting up to up to 10 unique schedules including exception day setting for holidays, and Daylight Saving Time adjustment.

5. The System Touchscreen shall be capable of grouping indoor unit in common zones. There may be up to 12 zones. Zones may be individually named.

6. The System Touchscreen shall provide management of multiple indoor units as 1 unit (Group control). Additionally, the controller shall provide monitoring and control points for Interlocking of external equipment via 2 Binary Inputs and 1 Binary Output.

7. The System Touchscreen shall provide an alarm/error display, and alarm history.

8. Security shall be provided by a secure password.

9. The System Touchscreen shall connect via R1/R2 VRF communications link for monitoring and control of up to 128-total Indoor Units and MCUs, associated with up to 16-outdoor units. Alternately, the system shall connect via F1/F2 VRF communications link for monitoring and control of up to 64-indoor units plus up to 16-MCUs, associated with 1-Outdoor Unit.
PART 3 - EXECUTION

3.1 INSTALLATION
 A. System shall be installed in accordance with manufacturer’s guidelines.
 B. Installing contractor shall attend and successfully complete the manufacturers VRF Installation factory training class. Contractor shall submit certificate of completion as part of project closeout documents.
 C. Installing contractor shall install units to comply with building codes.
 D. VRF systems shall be installed in such a way as to permit access for routine maintenance.

3.2 COMMISSIONING
 A. Upon completion of installation and prior to final commissioning, contractor shall provide revised piping layout reflecting actual installation conditions to VRF technician.
 B. The system shall then be reviewed and commissioned by a Factory VRF Technician. Contractor shall provide a verified and submitted commissioning report to Factory Service Department, and to the owner’s agent verifying the system has met the requirements for proper installation, and function.
 C. Engage a Factory VRF Technician to train Owner’s maintenance personnel to adjust, operate, and maintain units.

3.3 OPERATION AND MAINTENANCE
 A. Contractor shall submit Operation and Maintenance Manuals complete with descriptive literature, model, and serial number of all equipment, performance data, manufacturer’s instructions for operating and maintenance, lubrication recommendation and schedule.

3.4 TRAINING
 A. Provide owner training for the VRF system. Minimum of 8 hours of training at project turnover, 4 hours at 90 days after substantial completion and additional 4 hours at the one year walkthrough. All training shall be videotaped.

3.5 COORDINATION
 A. Contractor shall provide complete coordination for the installation of the indoor and outdoor components, including size and location of outdoor unit support, automatic temperature controls and electrical requirements

END OF SECTION 238126
COMcheck Software Version 3.9.3
Interior Lighting and Power Compliance Certificate

90.1 (2007) Standard

Section 1: Project Information

Project Type: New Construction
Project Title: Halbert Hall - Animal Kennel Addition

Construction Site: 7900 Hwy 76
Pendleton, SC 29670

Owner/Agent: Tri-County Technical College
Designer/Contractor: RMF Engineering

Section 2: Interior Lighting and Power Calculation

<table>
<thead>
<tr>
<th>A</th>
<th>B Floor Area</th>
<th>C Allowed Watts / ft2</th>
<th>D Allowed Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>School/University</td>
<td>5500</td>
<td>1.2</td>
<td>6600</td>
</tr>
</tbody>
</table>

Total Allowed Watts = 6600

Section 3: Interior Lighting Fixture Schedule

<table>
<thead>
<tr>
<th>A</th>
<th>B Lamps/Fixture</th>
<th>C # of Fixtures</th>
<th>D Fixture Watt.</th>
<th>E (C x D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>School/University (5500 sq.ft.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Fluorescent 1: R1: 2'x4' Recessed Troffer: 48" T8 32W: Electronic:</td>
<td>2</td>
<td>12</td>
<td>58</td>
<td>96</td>
</tr>
<tr>
<td>Linear Fluorescent 2: R1E: Same as R1 with battery backup: 48" T8 32W: Electronic:</td>
<td>2</td>
<td>3</td>
<td>58</td>
<td>174</td>
</tr>
<tr>
<td>Linear Fluorescent 3: R2: 2'x4' Recessed Troffer: 48" T8 32W: Electronic:</td>
<td>2</td>
<td>2</td>
<td>58</td>
<td>116</td>
</tr>
<tr>
<td>Linear Fluorescent 4: S1: 4" Enclosed Industrial Strip: 48" T8 32W: Electronic:</td>
<td>2</td>
<td>49</td>
<td>58</td>
<td>2842</td>
</tr>
<tr>
<td>Linear Fluorescent 5: S1E: Same as S1 with battery backup: 48" T8 32W: Electronic:</td>
<td>2</td>
<td>6</td>
<td>58</td>
<td>348</td>
</tr>
<tr>
<td>Linear Fluorescent 6: S2: 8' Direct Linear Pendant: 48" T8 32W: Electronic:</td>
<td>2</td>
<td>2</td>
<td>58</td>
<td>116</td>
</tr>
<tr>
<td>Linear Fluorescent 7: S2E: Same as S2 with battery backup: 48" T8 32W: Electronic:</td>
<td>2</td>
<td>2</td>
<td>58</td>
<td>116</td>
</tr>
</tbody>
</table>

Total Proposed Watts = 440G

Interior Lighting Passes: Design 33% better than code.

Section 4: Compliance Statement

Compliance Statement: The proposed lighting design represented in this document is consistent with the building plans, specifications and other calculations submitted with this permit application. The proposed lighting system has been designed to meet the 90.1 (2007) Standard requirements in COMcheck Version 3.9.3 and to comply with the mandatory requirements in the Requirements Checklist.

Name - Title

Signature

Date

Section 5: Post Construction Compliance Statement

Record Drawings and Operating and Maintenance Manuals:

☐ 1. Construction documents with record drawings and operating and maintenance manuals provided to the owner.

Lighting Designer or Contractor Name

Signature

Date

Project Title: Halbert Hall - Animal Kennel Addition
Data filename: H:\PROJ\313082A0\PrMgmt\COMCheck.cck
90.1 (2007) Standard

Section 1: Project Information

Project Type: New Construction
Project Title: Halbert Hall - Animal Kennel Addition

Construction Site: 7900 Hwy 76
Pendleton, SC 29670

Owner/Agent: Tri-County Technical College
Designer/Contractor: RMF Engineering

Section 2: Exterior Lighting Area/Surface Power Calculation

<table>
<thead>
<tr>
<th>A Exterior Area/Surface</th>
<th>B Quantity</th>
<th>C Allowed Watts / Unit</th>
<th>D Tradable Wattage</th>
<th>E Allowed Watts (B x C)</th>
<th>F Proposed Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main entry/exit</td>
<td>3 ft of door width</td>
<td>30</td>
<td>Yes</td>
<td>90</td>
<td>676</td>
</tr>
<tr>
<td>Other entry/exit</td>
<td>6 ft of door width</td>
<td>20</td>
<td>Yes</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>Attached canopy</td>
<td>522 ft²</td>
<td>1.25</td>
<td>Yes</td>
<td>653</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Tradable Watts* = 863
Total Allowed Watts = 863
Total Allowed Supplemental Watts** = 43

* Wattage tradeoffs are only allowed between tradable areas/surfaces.
** A supplemental allowance equal to 43 watts may be applied toward compliance of both non-tradable and tradable areas/surfaces.

Section 3: Exterior Lighting Fixture Schedule

<table>
<thead>
<tr>
<th>A Fixture ID: Description / Lamp / Wattage Per Lamp / Ballast</th>
<th>B Lamps/ Fixture</th>
<th>C # of Fixtures</th>
<th>D Fixture Watt.</th>
<th>E (C x D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main entry/exit (3 ft of door width): Tradable Wattage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact Fluorescent 1: S3: Exterior Canopy Fixture: Quad 2-pin 26W; Electronic:</td>
<td>2</td>
<td>4</td>
<td>52</td>
<td>208</td>
</tr>
<tr>
<td>Compact Fluorescent 2: S3E: Same as S3 with battery backup: Quad 2-pin 26W; Electronic:</td>
<td>2</td>
<td>5</td>
<td>52</td>
<td>260</td>
</tr>
<tr>
<td>Compact Fluorescent 3: W1: Exterior wallpack: Quad 2-pin 26W; Electronic:</td>
<td>2</td>
<td>4</td>
<td>52</td>
<td>208</td>
</tr>
<tr>
<td>Other entry/exit (6 ft of door width): Tradable Wattage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attached canopy (522 ft²): Tradable Wattage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Tradable Proposed Watts = 676

Section 4: Compliance Statement

Compliance Statement: The proposed exterior lighting design represented in this document is consistent with the building plans, specifications and other calculations submitted with this permit application. The proposed lighting system has been designed to meet the 90.1 (2007) Standard requirements in COMcheck Version 3.9.3 and to comply with the mandatory requirements in the Requirements Checklist.

Name - Title
Signature
Date

Project Title: Halbert Hall - Animal Kennel Addition
Data filenames: H:\PROJ\313082A0\PrMgmt\COMCheck.cck
Report date: 08/01/14
Page 2 of 2
Inspection Checklist

Requirements: 0.0% were addressed directly in the COMcheck software

Text in the "Comments/Assumptions" column is provided by the user in the COMcheck Requirements screen. For each requirement, the user certifies that a code requirement will be met and how that is documented, or that an exception is being claimed. Where compliance is itemized in a separate table, a reference to that table is provided.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2 [PR4]¹</td>
<td>Plans, specifications, and/or calculations provide all information with which compliance can be determined for the lighting and electrical systems and equipment and document where exceptions to the standard are claimed. Information provided should include interior lighting power calculations, wattage of bulbs and ballasts, transformers and control devices.</td>
<td>☑ Complies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐ Does Not</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐ Not Observable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐ Not Applicable</td>
<td></td>
</tr>
</tbody>
</table>

8.4.1.1, 8.4.1.2 [PR8]² Plans, specifications, and/or calculations provide all information with which compliance can be determined for the electrical systems and equipment and document where exceptions are claimed. Feeder connectors sized in accordance with approved plans and branch circuits sized for maximum drop of 3%.

☑ Complies
☐ Does Not
☐ Not Observable
☐ Not Applicable

Additional Comments/Assumptions:

1 | High Impact (Tier 1) | 2 | Medium Impact (Tier 2) | 3 | Low Impact (Tier 3)

Project: Halbert Hall - Animal Kennel Addition
Data: H:\PROJ\313082A0\PrMgmt\COMCheck.cck

Report date: 08/01/1
Page 2 of 4
<table>
<thead>
<tr>
<th>90.1 (2007) Standard</th>
<th>Rough-In Electrical Inspection</th>
<th>Complies?</th>
<th>Comments/Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.1.1 [EL1]²</td>
<td>Automatic controls to shut off all building lighting installed in buildings >5,000 ft².</td>
<td>✓ Complies</td>
<td></td>
</tr>
<tr>
<td>9.4.1.2 [EL2]²</td>
<td>Independent lighting controls installed per approved lighting plans and all manual controls readily accessible and visible to occupants.</td>
<td>✓ Complies</td>
<td></td>
</tr>
<tr>
<td>9.4.1.3 [EL3]²</td>
<td>Automatic lighting controls for exterior lighting installed.</td>
<td>✓ Complies</td>
<td></td>
</tr>
<tr>
<td>9.4.1.4 [EL4]¹</td>
<td>Separate lighting control devices for specific uses installed per approved lighting plans.</td>
<td>✓ Complies</td>
<td></td>
</tr>
<tr>
<td>9.4.2 [EL5]³</td>
<td>Ballasted one and three lamp fixtures with >30 W/amp have two lamp tandem wired ballasts when >=2 fixtures in same space on same control.</td>
<td>✓ Complies</td>
<td></td>
</tr>
<tr>
<td>9.4.3 [EL6]¹</td>
<td>Exit signs do not exceed 5 watts per face.</td>
<td>✓ Complies</td>
<td></td>
</tr>
<tr>
<td>9.4.4 [EL7]¹</td>
<td>Exterior grounds lighting over 100 W provides >60 lm/W unless on motion sensor or fixture is exempt from scope of code or from external LPD.</td>
<td>✓ Complies</td>
<td></td>
</tr>
<tr>
<td>9.6.2 [EL8]¹</td>
<td>Additional interior lighting power allowed for special functions per the approved lighting plans and is automatically controlled and separated from general lighting.</td>
<td>✓ Complies</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments/Assumptions:

Project: Halbert Hall - Animal Kennel Addition
Data: H:\PROJ\313082A0\PrMgmt\COMCheck.cck
Report date: 08/01/1
Page 3 of 4
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS
 A. VFC: Variable frequency controller.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For testing agency.
 B. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
 A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Alcan Products Corporation: Alcan Cable Division.
 2. Alpha Wire.
 3. Belden Inc.
 5. General Cable Technologies Corporation.
 B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
 C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN-2-THWN-2.
2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. AFC Cable Systems, Inc.
 2. Gardner Bender.
 4. Ideal Industries, Inc.
 5. Ilsco; a branch of Bardes Corporation.
 6. NSi Industries LLC.
 7. O-Z/Gedney; a brand of the EGS Electrical Group.
 8. 3M; Electrical Markets Division.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN-2-THWN-2, single conductors in raceway.

B. Exposed Feeders: Type THHN-2-THWN-2, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-2-THWN-2, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-2-THWN-2, single conductors in raceway.

E. Exposed Branch Circuits, Including in Crawlspace: Type THHN-2-THWN-2, single conductors in raceway.

F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-2-THWN-2, single conductors in raceway.

G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-2-THWN-2, single conductors in raceway.
H. VFC Output Circuits: Type XHHW-2 in metal conduit.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

G. Each branch circuit shall have an individual neutral conductor. Increasing the neutral conductor size, or "super neutral," is not allowed for multiple branch circuits.

H. Feeders and branch circuits shall have a ground conductor.

I. Install no more than 3 phase wires in any feeder or branch circuit conduit.

J. Wire size on 120 Volt, 20 ampere branch circuit home run conductors over 75 feet in length (from closest wiring device at the home run designation to the associated panelboard shown on the electrical drawing sheets), shall be increased to No. 10 AWG (minimum) to limit excessive voltage drop.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.

D. Test and Inspection Reports: Prepare a written report to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

E. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519
SECTION 260526 – GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: Grounding systems and equipment.

B. Section includes grounding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Ground rods.
 2. Ground rings.
 3. Grounding arrangements and connections for separately derived systems.

B. Qualification Data: For qualified testing agency and testing agency's field supervisor.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Instructions for periodic testing and inspection of grounding features at ground rings based on NETA MTS.
 a. Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 b. Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 12 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

2.2 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

D. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet in diameter.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install barecopper conductor, No. 2/0 AWG minimum.
 1. Bury at least 24 inches below grade.
C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down to specified height above floor; connect to horizontal bus.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.

3.3 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Lighting circuits.
 3. Receptacle circuits.
 5. Three-phase motor and appliance branch circuits.
 6. Flexible raceway runs.
 7. Armored and metal-clad cable runs.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

E. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals.
Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

F. Signal and Communication Equipment: In addition to grounding and bonding required by NFPA 70, provide a separate grounding system complying with requirements in TIA/ATIS J-STD-607-A.
 1. For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 2. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-4-by-12-inch grounding bus.
 3. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

G. Metal Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.4 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

E. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

F. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

G. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

H. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around the perimeter of building.
 1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
 2. Bury ground ring not less than 24 inches from building's foundation.

I. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.
 1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

3.5 LABELING

A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for instruction signs. The label or its text shall be green.

B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
 1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

G. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).
 5. Handhole/Manhole Grounds: 10 ohms.

H. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 – HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
1. Hangers and supports for electrical equipment and systems.
2. Construction requirements for concrete bases.
B. Related Sections include the following:
1. Section 260548 "Vibration and Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. IMC: Intermediate metal conduit.
C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
B. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 ACTION SUBMITTALS
A. Product Data: For the following:
1. Steel slotted support systems.
2. Nonmetallic slotted support systems.
B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
1. Trapeze hangers. Include Product Data for components.
2. Steel slotted channel systems. Include Product Data for components.
3. Nonmetallic slotted channel systems. Include Product Data for components.
4. Equipment supports.

1.6 INFORMATIONAL SUBMITTALS
A. Welding certificates.
1.7 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Comply with NFPA 70.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified together with concrete Specifications.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.

4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.

5. Channel Dimensions: Selected for applicable load criteria.

B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch- diameter holes at a maximum of 8 inches o.c., in at least 1 surface.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. Fabco Plastics Wholesale Limited.
 d. Seaseaf, Inc.

2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.

3. Fitting and Accessory Materials: Same as channels and angles.

4. Rated Strength: Selected to suit applicable load criteria.

C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

D. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.
 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."

C. Anchor equipment to concrete base.
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 – RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Nonmetal conduits, tubing, and fittings.
 3. Metal wireways and auxiliary gutters.
 4. Surface raceways.
 5. Boxes, enclosures, and cabinets.

B. Related Requirements:
 1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.
 2. Section 230500 “Mechanical and Electrical General Provisions” for scope related to low voltage temperature control wiring and associated conduit.

1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.

B. GRC: Galvanized rigid steel conduit.

C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Qualification Data: For professional engineer.

C. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.

D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. AFC Cable Systems, Inc.
 3. Anamet Electrical, Inc.
 4. Electri-Flex Company.
 5. O-Z/Gedney; a brand of EGS Electrical Group.
 6. Picoma Industries, a subsidiary of Mueller Water Products, Inc.
 7. Republic Conduit.
 8. Robroy Industries.
 10. Thomas & Betts Corporation.
 11. Western Tube and Conduit Corporation.
 12. Wheatland Tube Company; a division of John Maneely Company.

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. ARC: Comply with ANSI C80.5 and UL 6A.

E. IMC: Comply with ANSI C80.6 and UL 1242.

F. EMT: Comply with ANSI C80.3 and UL 797.

G. FMC: Comply with UL 1; zinc-coated steel.

H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Fittings for EMT:
 a. Material: Steel.
 b. Type: compression.
 2. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.

J. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.
2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. AFC Cable Systems, Inc.
 2. Anamet Electrical, Inc.
 3. Arnco Corporation.
 4. CANTEX Inc.
 5. CertainTeed Corp.
 7. Electri-Flex Company.
 8. Kraloy.
 9. Lamson & Sessions; Carlon Electrical Products.
 10. Niedax-Kleinhuis USA, Inc.
 11. Raco; a Hubbell company.
 12. Thomas & Betts Corporation.

B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. ENT: Comply with NEMA TC 13 and UL 1653.

D. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

E. LFNC: Comply with UL 1660.

F. Rigid HDPE: Comply with UL 651A.

G. Continuous HDPE: Comply with UL 651B.

H. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.

I. RTRC: Comply with UL 1684A and NEMA TC 14.

J. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

K. Fittings for LFNC: Comply with UL 514B.

L. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Cooper B-Line, Inc.
 2. Hoffman; a Pentair company.
 4. Square D; a brand of Schneider Electric.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.

2.1 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. Color shall match device colors in the building. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell Incorporated; Wiring Device-Kellem's Division.
 b. Mono-Systems, Inc.
 c. Panduit Corp.
 d. Wiremold / Legrand.

2.2 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Adalet.
2. Cooper Technologies Company; Cooper Crouse-Hinds.
3. EGS/Appleton Electric.
5. FSR Inc.
6. Hoffman; a Pentair company.
7. Hubbell Incorporated; Killark Division.
8. Kraloy.
10. Mono-Systems, Inc.
12. RACO; a Hubbell Company.
13. Robroy Industries.
14. Spring City Electrical Manufacturing Company.
15. Stahlin Non-Metallic Enclosures; a division of Robroy Industries.
17. Wiremold / Legrand.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

J. Device Box Dimensions: 4 inches by 2-1/8 inches by 2-1/8 inches deep.

K. Gangable boxes are NOT allowed.

L. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed Conduit: IMC.
 2. Concealed Conduit, Aboveground: EMT.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 6. Damp or Wet Locations: EMT.
 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.
3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface raceways only where indicated on Drawings.

G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached. Provide support straps intended for this type of installation.

I. Raceways Embedded in Slabs (if approved by structural engineer):
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to GRC or IMC before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

N. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

P. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

Q. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

R. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius controls at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

S. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

T. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service raceway enters a building or structure.
 3. Where otherwise required by NFPA 70.

U. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

V. Expansion-Joint Fittings:
 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

W. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.

2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to top of box unless otherwise indicated.

Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

AA. Locate boxes so that cover or plate will not span different building finishes.

BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 “Sleeves and Sleeve Seals for Electrical Raceways and Cabling.”

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260543 – UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Conduit, ducts, and duct accessories for direct-buried and concrete-encased duct banks, and in single duct runs.
2. Handholes and boxes.

1.3 DEFINITION

A. RNC: Rigid nonmetallic conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:

1. Duct-bank materials, including separators and miscellaneous components.
2. Ducts and conduits and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
3. Accessories for handholes and boxes.
4. Warning tape.
5. Warning planks.

B. Shop Drawings for Factory-Fabricated Handholes and Boxes Other Than Precast Concrete: Include dimensioned plans, sections, and elevations, and fabrication and installation details, including the following:

1. Duct entry provisions, including locations and duct sizes.
2. Cover design.
4. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 INFORMATIONAL SUBMITTALS

A. Source quality-control test reports.

B. Field quality-control test reports.

1.6 QUALITY ASSURANCE

A. Comply with ANSI C2.

B. Comply with NFPA 70.
1.7 DELIVERY, STORAGE, AND HANDLING
 A. Deliver ducts to Project site with ends capped. Store nonmetallic ducts with supports to prevent bending, warping, and deforming.
 B. Store factory-fabricated underground utility structures at Project site as recommended by manufacturer to prevent physical damage. Arrange so identification markings are visible.

1.8 COORDINATION
 A. Coordinate layout and installation of ducts, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field.
 B. Coordinate elevations of ducts and duct-bank entrances into handholes, and boxes with final locations and profiles of ducts and duct banks as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations from those indicated as required to suit field conditions and to ensure that duct runs drain to handholes, and as approved by Architect.

PART 2 - PRODUCTS

2.1 CONDUIT
 B. RNC: NEMA TC 2, Type EPC-40-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.2 NONMETALLIC DUCTS AND DUCT ACCESSORIES
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. ARNCO Corp.
 2. Beck Manufacturing.
 3. Cantex, Inc.
 6. ElecSys, Inc.
 7. Electri-Flex Company.
 8. IPEX Inc.
 9. Lamson & Sessions; Carlon Electrical Products.
 10. Manhattan/CDT; a division of Cable Design Technologies.
 11. Spiraduct/AFC Cable Systems, Inc.
 B. Duct Accessories:
 1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and sizes of ducts with which used, and selected to provide minimum duct spacings indicated while supporting ducts during concreting or backfilling.

2.3 HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE
 A. Description: Comply with SCTE 77.
 1. Color: Gray or Green to match installed surface.
2. Configuration: Units shall be designed for flush burial and have open bottom, unless otherwise indicated.
3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
5. Cover Legend: Molded lettering, "ELECTRIC" or as indicated for each service.
7. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

B. Polymer Concrete Handholes and Boxes with Polymer Concrete Cover: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armorcast Products Company.
 b. Carson Industries LLC.
 c. CDR Systems Corporation.
 d. NewBasis.

C. Fiberglass Handholes and Boxes with Polymer Concrete Frame and Cover: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armorcast Products Company.
 b. Carson Industries LLC.
 c. Christy Concrete Products.
 d. Synertech Moulded Products, Inc.; a division of Oldcastle Precast.

2.4 SOURCE QUALITY CONTROL

A. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
1. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 UNDERGROUND DUCT APPLICATION

A. Ducts for Electrical Cables Over 600 V: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank, unless otherwise indicated.

B. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-40-PVC, in direct-buried duct bank, unless otherwise indicated.

C. Ducts for Electrical Branch Circuits: RNC, NEMA Type EPC-40-PVC, in direct-buried duct bank, unless otherwise indicated.

D. Underground Ducts for Telephone, Communications, or Data Utility Service Cables: RNC, NEMA Type EPC-40-PVC, installed in direct-buried duct bank, unless otherwise indicated.
E. Underground Ducts Crossing Driveways and Roadways: RNC, NEMA Type EPC-40-PVC, encased in reinforced concrete.

3.2 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for 600 V and Less, Including Telephone, Communications, and Data Wiring:
 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-10 structural load rating.
 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Polymer concrete, SCTE 77, Tier 15 structural load rating.
 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer concrete units, SCTE 77, Tier 8 structural load rating.
 4. Units Subject to Light-Duty Pedestrian Traffic Only: High-density plastic, structurally tested according to SCTE 77 with 3000-lbf vertical loading.

3.3 EARTHWORK

A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Restore surface features at areas disturbed by excavation and reestablish original grades, unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses."

3.4 DUCT INSTALLATION

A. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two manholes to drain in both directions.

B. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations, unless otherwise indicated.

C. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.

D. Duct Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch ducts, and vary proportionately for other duct sizes.
 1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell without reducing duct line slope and without forming a trap in the line.
 2. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to manhole or handhole.
 3. Grout end bells into structure walls from both sides to provide watertight entrances.

E. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 feet outside the building wall without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Install conduit penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
F. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

G. Pulling Cord: Install 100-lbf-test nylon cord in ducts, including spares.

H. Concrete-Encased Ducts: Support ducts on duct separators.
 1. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than 5 spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches between tiers. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 2. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 a. Start at one end and finish at the other, allowing for expansion and contraction of ducts as their temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written recommendations, or use other specific measures to prevent expansion-contraction damage.
 b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing rod dowels extending 18 inches into concrete on both sides of joint near corners of envelope.
 3. Pouring Concrete: Spade concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Use a plank to direct concrete down sides of bank assembly to trench bottom. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.
 4. Reinforcement: Reinforce concrete-encased duct banks where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
 5. Stub-Ups: Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. Stub-Ups to Equipment: For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.
 6. Warning Tape: Bury warning tape approximately 12 inches above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches of the centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

I. Direct-Buried Duct Banks:
 1. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.
 2. Space separators close enough to prevent sagging and deforming of ducts, with not less than 5 spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent displacement during backfill and yet permit linear duct movement due to expansion and contraction as temperature changes. Stagger spacers approximately 6 inches between tiers.
 3. Excavate trench bottom to provide firm and uniform support for duct bank. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches in nominal diameter.
 4. Install backfill as specified in Section 312000 "Earth Moving."
 5. After installing first tier of ducts, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as
temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand-place backfill to 4 inches over ducts and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."

6. Install ducts with a minimum of 3 inches between ducts for like services and 6 inches between power and signal ducts.

7. Depth: Install top of duct bank at least 36 inches below finished grade, unless otherwise indicated.

8. Set elevation of bottom of duct bank below the frost line.

9. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

10. Warning Planks: Bury warning planks approximately 12 inches above direct-buried ducts and duct banks, placing them 24 inches o.c. Align planks along the width and along the centerline of duct bank. Provide an additional plank for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional planks 12 inches apart, horizontally.

3.5 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of ducts, and seal joint between box and extension as recommended by the manufacturer.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas and trafficways, set so cover surface will be flush with finished grade. Set covers of other handholes 1 inch above finished grade.

D. Field-cut openings for ducts and conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

E. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 1. Concrete: 3000 psi, 28-day strength, complying with Section 033000 "Cast-in-Place Concrete," with a troweled finish.
 2. Dimensions: 10 inches wide by 12 inches deep.

3.6 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:
 1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.
2. Pull aluminum or wood test mandrel through duct to prove joint integrity and test for out-of-round duct. Provide mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.

3. Test handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.8 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

END OF SECTION 260543
SECTION 260544 – SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

B. Related Requirements:
 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.

b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.
 e. Proco Products, Inc.

2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel.

4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Presealed Systems.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

2. Sealant shall have VOC content of <Insert value> g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.
PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260548 – VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Isolation pads.
 2. Spring isolators.
 3. Restrained spring isolators.
 4. Channel support systems.
 5. Restraint cables.
 6. Hanger rod stiffeners.
 7. Anchorage bushings and washers.

B. Related Sections include the following:
 1. Section 260529 "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 DEFINITIONS

1.4 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:

 1. See Structural Drawing for requirements.

1.5 ACTION SUBMITTALS

A. Product Data: For the following:

 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 b. Annotate to indicate application of each product submitted and compliance with requirements.

B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators and seismic restraints.
 a. Coordinate design calculations with wind-load calculations required for equipment mounted outdoors. Comply with requirements in other electrical Sections for equipment mounted outdoors.

2. Indicate materials and dimensions and identify hardware, including attachment and anchorage devices.

3. Field-fabricated supports.

4. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.

B. Welding certificates.

C. Field quality-control test reports.

1.7 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

D. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ace Mountings Co., Inc.
2. Amber/Booth Company, Inc.
4. Isolation Technology, Inc.
7. Vibration Eliminator Co., Inc.
8. Vibration Isolation.

B. Pads: Arrange in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
1. Resilient Material: Oil- and water-resistant neoprene.

C. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

D. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.
1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch-thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
2. Restraint: Seismic or limit-stop as required for equipment and authorities having jurisdiction.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.2 SEISMIC-RESTRAINT DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Amber/Booth Company, Inc.
2. California Dynamics Corporation.
3. Cooper B-Line, Inc.; a division of Cooper Industries.
4. Hilti Inc.
5. Loos & Co.; Seismic Earthquake Division.
7. TOLCO Incorporated; a brand of NIBCO INC.
8. Unistrut; Tyco International, Ltd.

B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.

D. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.

E. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.

F. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.

G. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

H. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

I. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.3 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 1. Powder coating on springs and housings.
 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 3. Baked enamel or powder coat for metal components on isolators for interior use.
 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 APPLICATIONS

A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Equipment and Hanger Restraints:
 1. Install restrained isolators on electrical equipment.
 2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.

B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

D. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
B. Perform tests and inspections.

C. Tests and Inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 5. Test to 90 percent of rated proof load of device.
 7. Measure isolator deflection.
 8. Verify snubber minimum clearances.
 9. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust isolators after isolated equipment is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust active height of spring isolators.

D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 260548
SECTION 260553 – IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 4. Warning labels and signs.
 5. Instruction signs.
 7. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

A. Product Data: For each electrical identification product indicated.

B. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

A. Comply with ANSI A13.1.

B. Comply with NFPA 70.

D. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.
D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER AND CONTROL RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an white field.
 2. Legend: Indicate voltage and system or service type.

C. Colors for Raceways Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING."

D. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

E. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

G. Tape and Stencil for Raceways Carrying Circuits More Than 600 V: 4-inch-wide black stripes on 10-inch centers diagonally over orange background that extends full length of raceway or duct and is 12 inches wide. Stop stripes at legends.

H. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

I. Write-On Tags: Polyester tag, 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

2.2 ARMORED AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.

B. Colors for Cables Carrying Circuits at 600 V and Less:
 1. Black letters on an white field.
 2. Legend: Indicate voltage and system or service type.

C. Colors for Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER HIGH VOLTAGE WIRING."
D. Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

E. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

F. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around cable it identifies. Full shrink recovery at a maximum of 200 deg F. Comply with UL 224.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.

B. Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

C. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the cable diameter such that the clear shield overlaps the entire printed legend.

D. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around cable it identifies. Full shrink recovery at a maximum of 200 deg F. Comply with UL 224.

E. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

F. Write-On Tags: Polyester tag, 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

G. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of cable it identifies and to stay in place by gripping action.

H. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of cable it identifies and to stay in place by gripping action.

2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the conductor diameter such that the clear shield overlaps the entire printed legend.

C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of conductor it identifies and to stay in place by gripping action.

D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve with diameter sized to suit diameter of conductor it identifies and to stay in place by gripping action.
E. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around conductor it identifies. Full shrink recovery at a maximum of 200 deg F. Comply with UL 224.

F. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.5 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 7 by 10 inches.

D. Metal-Backed, Butyrate Warning Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 10 by 14 inches.

E. Warning label and sign shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."
 3. Arc Flash Warning: “Danger - Arc Flash Hazard” or “Warning – Arc Flash Hazard”

2.6 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. inches and 1/8 inch thick for larger sizes.
 1. Engraved legend with black letters on white face.
 2. Punched or drilled for mechanical fasteners.
 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

B. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.

C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

2.7 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.
B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

E. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.8 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self extinguishing, UV stabilized, one piece, self locking.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.
D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape with adhesive appropriate to the location and substrate.

G. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

H. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

I. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

J. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
 2. Power.

C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
D. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

E. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.

F. Control-Circuit Conductor Termination Identification: For identification at terminations provide self-adhesive vinyl labels with the conductor designation.

G. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.

 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

I. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

J. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

K. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.

L. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 2. Equipment to Be Labeled:
a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive, engraved, laminated acrylic or melamine label.
b. Enclosures and electrical cabinets.
c. Access doors and panels for concealed electrical items.
d. Switchboards.
e. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
f. Emergency system boxes and enclosures.
g. Enclosed switches.
h. Enclosed circuit breakers.
i. Enclosed controllers.
j. Variable-speed controllers.
k. Push-button stations.
l. Power transfer equipment.
m. Contactors.
n. Remote-controlled switches, dimmer modules, and control devices.
o. Power-generating units.
p. Monitoring and control equipment.

END OF SECTION 260553
SECTION 260573 – OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes computer-based, fault-current and overcurrent protective device coordination studies. Protective devices shall be set based on results of the protective device coordination study.

B. The contractor shall furnish an Arc Flash Hazard Analysis Study per the requirements set forth in NFPA 70E - Standard for Electrical Safety in the Workplace. The arc flash hazard analysis shall be performed according to the IEEE 1584 equations that are presented in NFPA70E-2004, Annex D.

1.3 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Other Action Submittals: The following submittals shall be made after the approval process for system protective devices has been completed. Submittals may be in digital form.

1. Coordination-study input data, including completed computer program input data sheets.
2. Study and Equipment Evaluation Reports.
3. Coordination-Study Report – one draft copy to be submitted before electrical gear is ordered and one sealed and signed final.
5. Arc flash labels shall be provided in hard copy only.
6. Submit certified “as-set” overcurrent protective device tabulations for the record.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For coordination-study specialist.

B. Product Certificates: For coordination-study and fault-current-study computer software programs, certifying compliance with IEEE 399.

1.5 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.

B. Coordination-Study Specialist Qualifications: An entity experienced in the application of computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. Professional engineer, licensed in the state where Project is located, shall be responsible for the study. All elements of the study shall be performed under the direct supervision and control of engineer.
C. Comply with IEEE 242 for short-circuit currents and coordination time intervals.

D. Comply with IEEE 399 for general study procedures.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Computer Software Developers: Subject to compliance with requirements, provide products by one of the following:
 1. CGI CYME.
 2. EDSA Micro Corporation.
 3. ESA Inc.
 4. Operation Technology, Inc.
 5. SKM Systems Analysis, Inc.

2.2 COMPUTER SOFTWARE PROGRAM REQUIREMENTS

A. Comply with IEEE 399.

B. Analytical features of fault-current-study computer software program shall include "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
 1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.
 1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.
 2. Electrical gear shall not be ordered before draft of study is prepared.

3.2 POWER SYSTEM DATA

A. Gather and tabulate the following input data to support coordination study:
 1. Product Data for overcurrent protective devices specified in other electrical Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are
consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.

2. Impedance of utility service entrance.

3. Electrical Distribution System Diagram: In hard-copy and electronic-copy formats, showing the following:
 a. Circuit-breaker and fuse-current ratings and types.
 b. Relays and associated power and current transformer ratings and ratios.
 c. Transformer kilovolt amperes, primary and secondary voltages, connection type, impedance, and X/R ratios.
 d. Generator kilovolt amperes, size, voltage, and source impedance.
 e. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length.
 f. Busway ampacity and impedance.
 g. Motor horsepower and code letter designation according to NEMA MG 1.

4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Generator thermal-damage curve.
 e. Ratings, types, and settings of utility company’s overcurrent protective devices.
 f. Special overcurrent protective device settings or types stipulated by utility company.
 g. Time-current-characteristic curves of devices indicated to be coordinated.
 h. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 j. Panelboards, switchboards, motor-control center ampacity, and interrupting rating in amperes rms symmetrical.

3.3 FAULT-CURRENT STUDY

A. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuit-breaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:
 1. Switchboard bus.
 2. Distribution panelboard.

B. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.

C. Calculate momentary and interrupting duties on the basis of maximum available fault current.

D. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 241 and IEEE 242.
 1. Transformers:
 a. ANSI C57.12.10.
b. ANSI C57.12.22.
c. ANSI C57.12.40.
d. IEEE C57.12.00.
e. IEEE C57.96.

3. Low-Voltage Fuses: IEEE C37.46.

E. Study Report:
 1. Show calculated X/R ratios and equipment interrupting rating (1/2-cycle) fault currents on electrical distribution system diagram.

F. Equipment Evaluation Report:
 1. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 2. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
 3. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3.4 COORDINATION STUDY

 1. Calculate the maximum and minimum 1/2-cycle short-circuit currents.
 2. Calculate the maximum and minimum ground-fault currents.

B. Comply with IEEE 241 and IEEE 242 recommendations for fault currents and time intervals.

C. Transformer Primary Overcurrent Protective Devices:
 1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
 2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

D. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

E. Coordination-Study Report: Prepare a written report indicating the following results of coordination study:
 1. Tabular Format of Settings Selected for Overcurrent Protective Devices:
 a. Device tag.
 b. Relay-current transformer ratios; and tap, time-dial, and instantaneous-pickup values.
 c. Circuit-breaker sensor rating; and long-time, short-time, and instantaneous settings.
 d. Fuse-current rating and type.
e. Ground-fault relay-pickup and time-delay settings.

2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 a. Device tag.
 b. Voltage and current ratio for curves.
 c. Three-phase and single-phase damage points for each transformer.
 d. No damage, melting, and clearing curves for fuses.
 e. Cable damage curves.
 f. Transformer inrush points.
 g. Maximum fault-current cutoff point.

3. The report shall be sealed by the professional engineer who performed the study.

F. Completed data sheets for setting of overcurrent protective devices.

3.5 ARC FLASH EVALUATION

A. Perform calculation to determine the incident energy and arc flash boundary for each location in the power system.

B. Incident energy and arc flash boundaries shall following the NFPA 70E and IEEE 1584 standards.

C. Arc Flash Report:
 1. Incident energy and flash protection boundary calculations
 a. Arcing fault magnitude
 b. Protective device clearing time
 c. Duration of arc
 d. Arc flash boundary
 e. Working distance
 f. Incident energy
 g. Hazard Risk Category

 2. Recommendations for arc flash energy reduction

3.6 ARC FLASH WARNING LABELS

A. The contractor of the Arc Flash Hazard Analysis shall provide a 3.5 in. x 5 in. thermal transfer type label of high adhesion polyester for each work location analyzed.

B. All labels will be based on recommended overcurrent device settings and will be provided after the results of the analysis have been presented to the owner and after any system changes, upgrades or modifications have been incorporated in the system.

C. The label shall include the following information, at a minimum:
 1. Location designation
 2. Nominal voltage
 3. Flash protection boundary
 4. Hazard risk category
 5. Incident energy
 6. Working distance
 7. Engineering report number, revision number and issue date.
D. Labels shall be machine printed, with no field markings.

E. Arc flash labels shall be provided in the following manner and all labels shall be based on recommended overcurrent device settings.
 1. For each 480 and 208 volt panelboard, one arc flash label shall be provided.
 2. For each switchboard, one arc flash label shall be provided.

END OF SECTION 260573
SECTION 260923 – LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Time switches.
 2. Indoor occupancy sensors.

B. Related Requirements:
 1. Section 262726 “Wiring Devices” for wall-box dimmers and manual light switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 1. Interconnection diagrams showing field-installed wiring.
 2. Include diagrams for power, signal, and control wiring.
 3. Floor plans showing coverage for each occupancy sensor and light-level sensor.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Cooper Industries, Inc.
 2. Intermatic, Inc.
 3. Invensys Controls.
 5. NSi Industries LLC; TORK Products.
 6. Tyco Electronics; ALR Brand.

B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.
1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Contact Rating: 20-A ballast load, 120-/240-V ac.
3. Programs: 3 minimum channels; each channel is individually programmable with eight on-off set points on a 24-hour schedule.
4. Astronomic Time: All channels.
5. Automatic daylight savings time changeover.

2.2 INDOOR OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Bryant Electric; a Hubbell company.
 2. Cooper Industries, Inc.
 3. Hubbell Building Automation, Inc.
 5. Lightolier Controls.
 6. Lithonia Lighting; Acuity Lighting Group, Inc.
 7. Lutron Electronics Co., Inc.
 8. NSi Industries LLC; TORK Products.
 9. RAB Lighting.
 10. Sensor Switch, Inc.
 11. Square D; a brand of Schneider Electric.
 12. Watt Stopper.

B. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Operation: Unless otherwise indicated, turn them off when unoccupied (“vacancy sensor”); with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 3. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
 4. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 5. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 6. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
 7. Bypass Switch: Override the "on" function in case of sensor failure.
 8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.

C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 1. Sensitivity Adjustment: Separate for each sensing technology.
 2. Detector Sensitivity: Detect occurrences of 6-inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling.

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Bryant Electric; a Hubbell company.
 2. Cooper Industries, Inc.
 3. Hubbell Building Automation, Inc.
 5. Lightolier Controls.
 6. Lithonia Lighting; Acuity Lighting Group, Inc.
 7. Lutron Electronics Co., Inc.
 8. NSi Industries LLC; TORK Products.
 9. RAB Lighting.
 10. Sensor Switch, Inc.
 11. Square D; a brand of Schneider Electric.
 12. Watt Stopper.

B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
 3. Switch Rating: Not less than 800-VA fluorescent at 120 V, 1200-VA fluorescent at 277 V, and 800-W incandescent.

C. Wall-Switch:
 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 2100 sq. ft.
 2. Sensing Technology: Dual technology - PIR and ultrasonic.
 3. Switch Type: SP, manual "on," automatic "off."
 4. Voltage: Match the circuit voltage; dual-technology type.
 5. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
 6. Concealed "off" time-delay selector at 30 seconds, and 5, 10, and 20 minutes.
 7. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.

2.4 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

B. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 WIRING INSTALLATION

A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.

B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Lighting control devices will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.4 DEMONSTRATION

A. Coordinate demonstration of products specified in this Section with commissioning agent.

B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923
SECTION 262416 – PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Panelboard suppressors

1.3 DEFINITIONS

A. SVR: Suppressed voltage rating.
B. TVSS: Transient voltage surge suppressor.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 6. Include wiring diagrams for power, signal, and control wiring.
 7. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.
B. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field Quality-Control Reports:

1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Panelboard Schedules: For installation in panelboards.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 “Operation and Maintenance Data,” include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 1.

F. Comply with NFPA 70.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NEMA PB 1.
1.10 PROJECT CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

1.11 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.12 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.

 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

B. Enclosures: Flush- and surface-mounted cabinets.

 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 2. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 3. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 4. Finishes:
 a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 6. Labelled to warn qualified persons of potential electric arc flash hazards.

C. Incoming Mains Location: Top and bottom.

D. Phase, Neutral, and Ground Buses:
2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

E. Conductor Connectors: Suitable for use with conductor material and sizes.
2. Main and Neutral Lugs: Compression type.
3. Ground Lugs and Bus-Configured Terminators: Compression type.
4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
5. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

F. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

2.2 DISTRIBUTION PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Mains: Circuit breaker or Lugs, see panel schedules.

E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only.

D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and \(I^2t \) response.
4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
7. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 f. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.
 g. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.
 h. Multipole units enclosed in a single housing or factory assembled to operate as a single unit.

2.5 PANELBOARD SUPPRESSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Current Technology; a subsidiary of Danahar Corporation.
2. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Liebert Corporation.
5. Siemens Energy & Automation, Inc.
6. Square D; a brand of Schneider Electric.
B. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, solid-state, parallel-connected, non-modular type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories:

1. Accessories:
 a. LED indicator lights for power and protection status.
 b. Audible alarm, with silencing switch, to indicate when protection has failed.
 c. One set of dry contacts rated at 5 A and 250-V ac, for remote monitoring of protection status.

2. Peak Single-Impulse Surge Current Rating: 120 kA per mode/240 kA per phase.

 a. Line to Neutral: 70,000 A.
 b. Line to Ground: 70,000 A.
 c. Neutral to Ground: 50,000 A.

4. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.

5. Protection modes and UL 1449 SVR for grounded wye circuits with 208Y/120-V, three-phase, four-wire circuits shall be as follows:
 a. Line to Neutral: 400 V for 208Y/120.
 b. Line to Ground: 400 V for 208Y/120.
 c. Neutral to Ground: 400 V for 208Y/120.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install panelboards and accessories according to NEMA PB 1.1.

B. Comply with mounting and anchoring requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

C. Mount top of trim 90 inches above finished floor unless otherwise indicated.

D. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

E. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
F. Install filler plates in unused spaces.

G. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

H. Comply with NECA 1.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

F. Panelboards will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
3.5 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study."

END OF SECTION 262416
SECTION 262726 – WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Twist-locking receptacles.
 3. Weather-resistant receptacles.
 4. Snap switches and wall-box dimmers.

1.3 DEFINITIONS
A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers’ Names: Shortened versions (shown in parentheses) of the following manufacturers’ names are used in other Part 2 articles:

1. Cooper Wiring Devices; Division of Cooper Industries, Inc. (Cooper).
2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).

B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Hubbell: HBL5351 (single), HBL5352 (duplex).
 c. Leviton: 5891 (single), 5352 (duplex).
 d. Pass & Seymour: 5361 (single), 5362 (duplex).

2.4 GFCI RECEPTACLES

A. General Description:

1. Straight blade, feed-through type.
2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
4. Exterior GFCI receptacles shall be weather-resistant type.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Hubbell: GFR5352L.
 d. Leviton: 7590.
2.5 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; CWL520R.
 b. Hubbell; HBL2310.
 c. Leviton; 2310.
 d. Pass & Seymour; L520-R.

2.6 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Single Pole:
 1) Cooper; AH1221.
 2) Hubbell; HBL1221.
 3) Leviton; 1221-2.
 4) Pass & Seymour; CSB20AC1.
 b. Two Pole:
 1) Cooper; AH1222.
 2) Hubbell; HBL1222.
 3) Leviton; 1222-2.
 4) Pass & Seymour; CSB20AC2.
 c. Three Way:
 1) Cooper; AH1223.
 2) Hubbell; HBL1223.
 3) Leviton; 1223-2.
 4) Pass & Seymour; CSB20AC3.
 d. Four Way:
 1) Cooper; AH1224.
 2) Hubbell; HBL1224.
 3) Leviton; 1224-2.
 4) Pass & Seymour; CSB20AC4.

2.7 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant thermoplastic with lockable “While In Use” cover.

2.8 FINISHES

A. Device Color:
 1. Wiring Devices Connected to Normal Power System: Color to be chosen during construction by architect unless otherwise indicated or required by NFPA 70 or device listing.
B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailling existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 8. Tighten unused terminal screws on the device.
 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversizered or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use adhesive machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test Instruments: Use instruments that comply with UL 1436.
 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Wiring device will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. Section Includes:
 1. Cartridge fuses rated 600-V ac and less for use in enclosed switches and enclosed controllers.
 2. Plug fuses rated 125-V ac and less for use in plug-fuse-type enclosed switches.

1.3 ACTION SUBMITTALS

 A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.
 5. Coordination charts and tables and related data.
 6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

 A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Ambient temperature adjustment information.
 2. Current-limitation curves for fuses with current-limiting characteristics.
 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.
 4. Coordination charts and tables and related data.

1.5 QUALITY ASSURANCE

 A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Bussmann, Inc.
 2. Edison Fuse, Inc.
 3. Ferraz Shawmut, Inc.
 4. Littelfuse, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

2.3 PLUG FUSES

A. Characteristics: UL 248-11, nonrenewable plug fuses; 125-V ac.

2.4 PLUG-FUSE ADAPTERS

A. Characteristics: Adapters for using Type S, rejection-base plug fuses in Edison-base fuseholders or sockets; ampere ratings matching fuse ratings; irremovable once installed.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 FUSE APPLICATIONS

A. Cartridge Fuses:
 1. Motor Branch Circuits: Class RK1, time delay.
 2. Control Circuits: Class CC, fast acting.

B. Plug Fuses:

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Install plug-fuse adapters in Edison-base fuseholders and sockets. Ensure that adapters are irremovable once installed.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 – ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Molded-case circuit breakers (MCCBs).
 4. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 5. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.
1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Manufacturer's field service report.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.
1.9 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 240 and 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.2 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 240 and 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. **Square D; a brand of Schneider Electric.**

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

C. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

D. Features and Accessories:

1. Standard frame sizes, trip ratings, and number of poles.
2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.

2.4 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

C. Install fuses in fusible devices.

D. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816
SECTION 262913 – ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following enclosed controllers rated 600 V and less:

 1. Full-voltage manual.

1.3 DEFINITIONS

A. CPT: Control power transformer.
B. MCCB: Molded-case circuit breaker.
C. MCP: Motor circuit protector.
D. N.C.: Normally closed.
E. N.O.: Normally open.
F. OCPD: Overcurrent protective device.
G. SCR: Silicon-controlled rectifier.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed controllers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of enclosed controller. Include manufacturer's technical data on features, performance, electrical characteristics, ratings, and enclosure types and finishes.
B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.

 1. Show tabulations of the following:
 a. Each installed unit's type and details.
 b. Factory-installed devices.
 c. Nameplate legends.
 d. Short-circuit current rating of integrated unit.
2. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For enclosed controllers, accessories, and components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
1. Routine maintenance requirements for enclosed controllers and installed components.
2. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
3. Manufacturer's written instructions for setting field-adjustable overload relays.
4. Manufacturer's written instructions for testing, adjusting, and reprogramming reduced-voltage solid-state controllers.

B. Testing Agency Qualifications: Member company of NETA or an NRTL.
1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70.

E. IEEE Compliance: Fabricate and test enclosed controllers according to IEEE 344 to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

1.9 COORDINATION

A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS

A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.

B. Motor-Starting Switches: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Siemens Energy & Automation, Inc.
 e. Square D; a brand of Schneider Electric.
 2. Configuration: Nonreversing.
 3. Surface mounting.

C. Fractional Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Siemens Energy & Automation, Inc.
 e. Square D; a brand of Schneider Electric.
 2. Configuration: Nonreversing.
 3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.
 4. Surface mounting.
 5. Red pilot light.

D. Integral Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Siemens Energy & Automation, Inc.
 e. Square D; a brand of Schneider Electric.
 2. Configuration: Nonreversing.
 3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters and sensors in each phase, matched to nameplate full-load current of actual protected motor and having appropriate adjustment for duty cycle; external reset push button; bimetallic type.
 4. Surface mounting.
 5. Red pilot light.
 6. N.O. auxiliary contact.
E. Magnetic Controllers: Full voltage, across the line, electrically held.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Siemens Energy & Automation, Inc.
 e. Square D; a brand of Schneider Electric.

2. Configuration: Nonreversing.

 a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.

4. Power Contacts: Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.

5. Control Circuits: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 a. CPT Spare Capacity: 50 VA.

6. Bimetallic Overload Relays:
 a. Inverse-time-current characteristic.
 b. Class 10 tripping characteristic.
 c. Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 d. Ambient compensated.
 e. Automatic resetting.

7. N.C., isolated overload alarm contact.

8. External overload reset push button.

F. Combination Magnetic Controller: Factory-assembled combination of magnetic controller, OCPD, and disconnecting means.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Siemens Energy & Automation, Inc.
 e. Square D; a brand of Schneider Electric.

2. Fusible Disconnecting Means:
 a. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate indicated fuses.
 b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

3. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.

4. Nonfusible Disconnecting Means:
 a. NEMA KS 1, heavy-duty, horsepower-rated, nonfusible switch.
 b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 c. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.

5. MCP Disconnecting Means:
 a. UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents, instantaneous-only circuit breaker with front-mounted, field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
 b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
c. Auxiliary contacts "a" and "b" arranged to activate with MCP handle.

d. N.C. alarm contact that operates only when MCP has tripped.

e. Current-limiting module to increase controller short-circuit current (withstand) rating to 100 kA.

6. MCCB Disconnecting Means:
 a. UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents; thermal-magnetic MCCB, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits.
 b. Front-mounted, adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 c. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 d. Auxiliary contacts "a" and "b" arranged to activate with MCCB handle.
 e. N.C. alarm contact that operates only when MCCB has tripped.

2.2 ENCLOSURES

A. Enclosed Controllers: NEMA ICS 6, to comply with environmental conditions at installed location.
 1. Dry and Clean Indoor Locations: Type 1.
 2. Outdoor Locations: Type 3R.

2.3 ACCESSORIES

A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 a. Push Buttons: Shrouded types; momentary as indicated.
 b. Pilot Lights: LED types; colors as indicated; push to test.
 c. Selector Switches: Rotary type.
 2. Elapsed Time Meters: Heavy duty with digital readout in hours; nonresettable.

B. Reversible N.C./N.O. auxiliary contact(s).

C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.

E. Cover gaskets for Type 1 enclosures.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and surfaces to receive enclosed controllers, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

B. Examine enclosed controllers before installation. Reject enclosed controllers that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."

B. Seismic Bracing: Comply with requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

C. Install fuses in each fusible-switch enclosed controller.

D. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."

E. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

F. Comply with NECA 1.

3.3 IDENTIFICATION

A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved nameplate.
 3. Label each enclosure-mounted control and pilot device.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.
 3. Test continuity of each circuit.
4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Construction Manager before starting the motor(s).

5. Test each motor for proper phase rotation.

7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. Enclosed controllers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports including a certified report that identifies enclosed controllers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

B. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust to six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Construction Manager before increasing settings.

3.6 PROTECTION

A. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers.

END OF SECTION 262913
SECTION 263213 - ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged engine-generator sets for standby power supply with the following features:
 1. Gas engine.
 2. Unit-mounted cooling system.
 3. Unit-mounted control and monitoring.
 4. Outdoor enclosure.

B. Related Sections include the following:
 1. Section 263600 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.3 DEFINITIONS

A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

B. LP: Liquid petroleum.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of packaged engine generator indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. In addition, include the following:
 1. Thermal damage curve for generator.
 2. Time-current characteristic curves for generator protective device.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 1. Dimensioned outline plan and elevation drawings of engine-generator set and other components specified.
 2. Design Calculations: Signed and sealed by a qualified professional engineer. Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 3. Vibration Isolation Base Details: Signed and sealed by a qualified professional engineer. Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include base weights.
1.5 INFORMATIONAL SUBMITTALS

A. Manufacturer Seismic Qualification Certification: Submit certification that base tank, engine-generator set, batteries, battery racks, accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Qualification Data: For installer, manufacturer and testing agency.

C. Source quality-control test reports.

1. Certified summary of prototype-unit test report.

2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.

4. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.

6. Report of exhaust emissions showing compliance with applicable regulations.

D. Field quality-control test reports.

E. Warranty: Special warranty specified in this Section.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 4 hours of drive time of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.

C. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL), and that is acceptable to authorities having jurisdiction.
1. Testing Agency’s Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

D. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

F. Comply with ASME B15.1.

G. Comply with NFPA 37.

H. Comply with NFPA 70.

I. Comply with NFPA 110 requirements for Level 1 emergency power supply system.

J. Comply with UL 2200.

K. Engine Exhaust Emissions: Comply with applicable state and local government requirements.

L. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.8 COORDINATION

A. Coordinate size and location of concrete bases for package engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

B. Coordinate gas service with utility provider.

1.9 WARRANTY

A. Extended Warranty Coverage shall be provided for a period of 5 years, and shall include no deductible. Extended Warranty Coverage provides for 100 percent of usual and customary parts and labor costs for failures due to defects in materials and workmanship to the “as shipped consist” from the factory, excluding filters, fluids, vee belts, hoses, power take-offs, paint, batteries and clutches. Coverage provides for a rental power unit due to unscheduled failures causing unexpected downtime to the customer in excess of 48 hours from the time of diagnoses. All repairs will be performed by factory trained dealer service personnel, and allows for repairer travel and mileage for all repairs up to 8 hours and 320 miles per incident.

1.10 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, provide 5 years' full maintenance by skilled employees of manufacturer's designated service organization. Include quarterly exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Provide parts and supplies same as those used in the manufacture and installation of original equipment.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Caterpillar; Engine Div.
2. Generac Power Systems, Inc.
3. Kohler Co.; Generator Division.
5. Spectrum Detroit Diesel.

2.2 ENGINE-GENERATOR SET

A. Factory-assembled and -tested, engine-generator set.

B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.

1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and generator-set center of gravity.

C. Capacities and Characteristics:

1. Power Output Ratings: Nominal ratings as indicated.
2. Output Connections: Three-phase, four wire.
3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.

D. Generator-Set Performance:

1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
7. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
8. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.3 ENGINE

A. Fuel: Natural gas.

B. Rated Engine Speed: 1800 rpm.
C. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm.

D. Lubrication System: The following items are mounted on engine or skid:
 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.

E. Engine Fuel System:
 a. Carburetor.
 b. Secondary Gas Regulators: One for each fuel type.
 c. Fuel-Shutoff Solenoid Valves: One for each fuel source.
 d. Flexible Fuel Connectors: One for each fuel source.

F. Coolant Jacket Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity.

G. Governor: Mechanical.

H. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine-generator-set mounting frame and integral engine-driven coolant pump.
 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 3. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
 a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and noncollapsible under vacuum.
 b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.

I. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 1. Minimum sound attenuation of 25 dB at 500 Hz.
 2. Sound level measured at a distance of 10 feet from exhaust discharge after installation is complete shall be 85 dBA or less.

J. Air-Intake Filter: Heavy-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.

K. Starting System: 24-V electric, with negative ground.
 1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in Part 1 "Project Conditions" Article.
2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
3. Cranking Cycle: As required by NFPA 110 for system level specified.
4. Battery: Adequate capacity within ambient temperature range specified in Part 1 "Project Conditions" Article to provide specified cranking cycle at least twice without recharging.
5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 10 deg C regardless of external ambient temperature within range specified in Part 1 "Project Conditions" Article. Include accessories required to support and fasten batteries in place.
8. Battery Charger: Current-limiting, automatic-equalizing and float-charging type. Unit shall comply with UL 1236 and include the following features:
 a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 deg C to plus 60 deg C to prevent overcharging at high temperatures and undercharging at low temperatures.
 c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
 e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
 f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.4 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.

B. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gauges shall be grouped in a common control and monitoring panel mounted on the generator set. Mounting method shall isolate the control panel from generator-set vibration.

C. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level 1 system, and the following:
 1. AC voltmeter.
 2. AC ammeter.
 3. AC frequency meter.
 4. DC voltmeter (alternator battery charging).
 5. Engine-coolant temperature gage.
 6. Engine lubricating-oil pressure gage.
 7. Running-time meter.
9. Generator-voltage adjusting rheostat.
10. Fuel tank derangement alarm.
11. Fuel tank high-level shutdown of fuel supply alarm.
12. Generator overload.

D. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.

E. Connection to Data Link: A separate terminal block, factory wired to Form C dry contacts, for each alarm and status indication is reserved for connections for data-link transmission of indications to remote data terminals. Provide network interface with RS232 port for input into owner’s telecomm system for remote annunciation.

F. Common Remote Audible Alarm: Comply with NFPA 110 requirements for Level 1 systems. Include necessary contacts and terminals in control and monitoring panel.
 1. Overcrank shutdown.
 2. Coolant low-temperature alarm.
 3. Control switch not in auto position.
 4. Battery-charger malfunction alarm.
 5. Battery low-voltage alarm.

G. Remote Alarm Annunciator: Comply with NFPA 99. An LED labeled with proper alarm conditions shall identify each alarm event and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.

2.5 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Generator Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with NEMA AB 1 and UL 489.
 1. Tripping Characteristic: Designed specifically for generator protection.
 2. Trip Rating: Matched to generator rating.
 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 4. Mounting: Adjacent to or integrated with control and monitoring panel.

2.6 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Comply with NEMA MG 1.

B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.

C. Electrical Insulation: Class H or Class F.

D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.

E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

F. Enclosure: Dripproof.
G. Instrument Transformers: Mounted within generator enclosure.

H. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 1. Adjusting rheostat on control and monitoring panel shall provide plus or minus 5 percent adjustment of output-voltage operating band.

I. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

J. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

K. Subtransient Reactance: 12 percent, maximum.

2.7 OUTDOOR GENERATOR-SET ENCLOSURE

A. Description: Vandal-resistant, weatherproof steel housing, wind resistant up to 100 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.

B. Description: Prefabricated or preengineered sound attenuated enclosure with the following features:
 2. Structural Design and Anchorage: Comply with ASCE 7 for wind loads.
 3. Space Heater: Thermostatically controlled and sized to prevent condensation.
 4. Louvers: Equipped with bird screen and filter arranged to permit air circulation when engine is not running while excluding exterior dust, birds, and rodents.
 6. Ventilation: Louvers equipped with bird screen and filter arranged to permit air circulation while excluding exterior dust, birds, and rodents.
 7. Thermal Insulation: Manufacturer’s standard materials and thickness selected in coordination with space heater to maintain winter interior temperature within operating limits required by engine-generator-set components.
 8. Muffler Location: Within enclosure.

C. Engine Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for 2 hours with ambient temperature at top of range specified in system service conditions.
 1. Louvers: Fixed-engine, cooling-air inlet and discharge. Storm-proof and drainable louvers prevent entry of rain and snow.
 2. Automatic Dampers: At engine cooling-air inlet and discharge. Dampers shall be closed to reduce enclosure heat loss in cold weather when unit is not operating.

D. Convenience Outlets: Factory wired, GFCI. Arrange for external electrical connection.

2.8 MOTORS

A. General requirements for motors are specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0
 2. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in electrical Sections.
2.9 VIBRATION ISOLATION DEVICES

A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a non-slip pattern and galvanized-steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.

2. Durometer Rating: Per seismic qualification.
3. Number of Layers: Per seismic qualification.

2.10 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.11 SOURCE QUALITY CONTROL

A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.

B. Project-Specific Equipment Tests: Before shipment, factory test engine-generator set and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:

1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
2. Full load run.
3. Maximum power.
4. Voltage regulation.
5. Transient and steady-state governing.
7. Safety shutdown.
8. Provide 14 days' advance notice of tests and opportunity for observation of tests by Owner's representative.
9. Report factory test results within 10 days of completion of test.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine-generator performance.

B. Examine roughing-in of piping systems and electrical connections. Verify actual locations of connections before packaged engine-generator installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with packaged engine-generator manufacturers' written installation and alignment instructions and with NFPA 110.
B. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.

C. Install packaged engine generator with elastomeric isolator pads having a minimum deflection of 1 inch on 4-inch high concrete base. Secure sets to anchor bolts installed in concrete bases. Concrete base construction is specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

D. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

E. Coordinate with civil plans for gas service and the local gas company for connection type and pressure.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

D. Connect fuel piping to engines with a gate valve and union and flexible connector.

3.4 IDENTIFICATION

A. Identify system components according to Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

C. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

1. Perform tests recommended by manufacturer and each electrical test and visual and mechanical inspection for "AC Generators and for Emergency Systems" specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.

2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to the following:

 a. 100% load test of the generator. This test is designed to determine that the generator system will deliver full load output as connected at the site. Typically this test is performed prior to the building load testing and before final terminations of the emergency system conductors. The test shall be as follows:

 1) Generator load Bank Test:
a) The generator shall be subjected to a three-hour test using resistive load bank with a 1.0 power factor. This test shall be performed at the job site in the presence of the Engineer. The contractor shall provide the resistive load bank to test the generator.

b) One hour at 50% load.

c) One hour at 75% load.

d) One hour at 100% load.

e) Upon completion of the three-hour load test, the generator shall be shutdown after the cooling period. The generator shall be started and immediately upon reaching rated rpm, 100% load shall be applied to demonstrate one-step full load capability. The capability of the system to pick up full standby service load within 10 seconds of power outage shall be demonstrated.

2) The following shall be recorded every thirty minutes during the load bank testing:

 a) Engine water temperature.
 b) Oil pressure.
 c) Voltage per phase and neutral.
 d) Amperes per phases and neutral.
 e) Frequency, KW, KVA, and power factor.
 f) Room or outdoor ambient temperature.

b. Building load test. This test typically occurs after the Owner has effectively moved into the building and equipment such as mechanical equipment and computer equipment is operational. The test essentially determines that the generator system will automatically detect a power loss, automatically start, automatically switch the designated load to the generator in the specified time frame and power the building load for two hours. The load test utilizing the actual building loads and the observation and recording of load changes and the resultant effect on the voltage and frequency shall be a minimum duration of 2 hours of generator run time. A total time of 3-hours shall be allotted for the testing period. The tests shall be shall be as follows:

1) With the prime mover in a “cold start” condition and the emergency load at standard operating level, a primary power failure shall be initiated by opening the switch or breaker supplying the primary power to the building or facility. The test load shall be the load that the emergency generator serves.

2) Observe and record the following during building load testing of the generator:

 a) If the facility is equipped with a fire pump, the pump shall be energized and running for the initial 5-minute period of the load test, then the pump can be de-energized while the testing is in progress.
 b) The time delay starting of the generator.
 c) The cranking time until the prime mover starts and run.
 d) The time that the generator reach the operating speed.
 e) The time that the generator achieved steady-condition after the transfer switches transferred to the emergency position.
 f) The generator voltage, frequency, amperes, prime mover oil pressure, and water temperature.
 g) The battery charge rate shall be recorded at 5-minute intervals for the first 15 minutes and at 15-minute intervals thereafter.
 h) When primary power is returned to the building or facility, the time delay on retransfer to the primary power for the transfer switch with a minimum setting of 5 minutes shall be recorded.
 i) The time delay on the prime mover cool down period and shutdown shall be recorded.
c. Phase loss test shall be performed to test the generator start circuit upon loss of any individual primary electrical phase serving the building. This may require a building power outage for the purpose of removing and then replacing individual primary fuses serving the building transformer. 600V main circuit breakers feeding the building loads should be opened for this test to prevent a single phase condition from occurring for the building motor loads. Starting of the generator during this test is optional provided the start circuits from the ATS(s) to the generator have already been previously tested and were found to be acceptable.

d. Battery Tests: Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions.

e. Check electrolyte level (if applicable) and specific gravity under both conditions. Test for contact integrity of all connectors.

f. Verify acceptance of charge for each element of battery after discharge. Verify measurements are within manufacturer's specifications.

g. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.

h. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine generator system before and during system operation. Check for air, exhaust, and fluid leaks.

i. A full tank of fuel shall be provided, replacing any fuel used for testing (N/A for natural gas).

j. Diesel fuel shall be treated with an alcohol-free additive to disperse water and clean injectors.

k. Copy of the generator’s load test report shall be sent to the owner, and any state agency involved.

l. Noise Level Tests: Measure A-weighted level of noise emanating from generator-set installation, including engine exhaust and cooling-air intake and discharge, at four locations, and compare measured levels with required values.

3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.

 a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 c. Verify acceptance of charge for each element of the battery after discharge.
 d. Verify that measurements are within manufacturer's specifications.

4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.

5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.

6. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.

 a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 c. Verify acceptance of charge for each element of the battery after discharge.
 d. Verify that measurements are within manufacturer's specifications.
7. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.

8. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.

10. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.

11. Harmonic-Content Tests: Measure harmonic content of output voltage under 25 percent and at 100 percent of rated linear load. Verify that harmonic content is within specified limits.

E. Coordinate tests with tests for transfer switches and run them concurrently.

F. Test instruments shall have been calibrated within the last 12 months, traceable to standards of NIST, and adequate for making positive observation of test results. Make calibration records available for examination on request.

G. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

H. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

I. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

J. Remove and replace malfunctioning units and retest as specified above.

K. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

L. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators. Refer to Section 017900 "Demonstration and Training."

END OF SECTION 263213
SECTION 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes transfer switches rated 600 V and less, including the following:

1. Automatic transfer open transition switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, weights, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings: Dimensioned plans, elevations, sections, and details showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and material lists for each switch specified.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturer.

B. Manufacturer Seismic Qualification Certification: Submit certification that transfer switches accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Features and operating sequences, both automatic and manual.

2. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.
1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Maintain a service center capable of providing training, parts, and emergency maintenance repairs within a response period of less than eight hours from time of notification.

B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

C. Source Limitations: Obtain automatic transfer switches through one source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA ICS 1.

F. Comply with NFPA 70.

G. Comply with NFPA 99.

H. Comply with NFPA 110.

I. Comply with UL 1008 unless requirements of these Specifications are stricter.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Contactor Transfer Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Caterpillar; Engine Div.
 b. Emerson; ASCO Power Technologies, LP.
 c. Generac Power Systems, Inc.
 d. GE Zenith Controls.
 e. Kohler Power Systems; Generator Division.
 g. Russelectric, Inc.
 h. Spectrum Detroit Diesel.

2.2 GENERAL TRANSFER-SWITCH PRODUCT REQUIREMENTS

A. Tested Fault-Current Closing and Withstand Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.

B. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.
C. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.

D. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electric-motor-operated mechanism, mechanically and electrically interlocked in both directions.

E. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 1. Switch Action: Double throw; mechanically held in both directions.
 2. Contacts: Silver composition or silver alloy for load-current switching. Conventional automatic transfer-switch units, rated 225 A and higher, shall have separate arcing contacts.

F. Neutral Terminal: Solid and fully rated, unless otherwise indicated.

G. Annunciation, Control, and Programming Interface Components: Devices at transfer switches for communicating with remote programming devices, annunciators, or annunciator and control panels shall have communication capability matched with remote device.

H. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, either by color-code or by numbered or lettered wire and cable tape markers at terminations. Color-coding and wire and cable tape markers are specified in Section 260553 "Identification for Electrical Systems."
 1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
 2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
 3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.

I. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.3 AUTOMATIC TRANSFER SWITCHES

A. Comply with Level 1 equipment according to NFPA 110.

B. Rated for service entrance.

C. Switching Arrangement: Double-throw type, incapable of pauses or intermediate position stops during normal functioning, unless otherwise indicated.

E. In-Phase Monitor: Factory-wired, internal relay controls transfer so it occurs only when the two sources are synchronized in phase. Relay compares phase relationship and frequency difference between normal and emergency sources and initiates transfer when both sources are within 15 electrical degrees, and only if transfer can be completed within 60 electrical degrees. Transfer is initiated only if both sources are within 2 Hz of nominal frequency and 70 percent or more of nominal voltage.

F. Programmed Neutral Switch Position: Switch operator has a programmed neutral position arranged to provide a midpoint between the two working switch positions, with an intentional, time-controlled pause at midpoint during transfer. Pause is adjustable from 0.5 to 30 seconds minimum and factory set for 0.5 second, unless otherwise indicated. Time delay occurs for both transfer directions. Pause is disabled unless both sources are live.
G. Automatic Transfer-Switch Features:

1. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage is adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.

2. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.

3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.

4. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.

5. Test Switch: Simulate normal-source failure.

6. Switch-Position Pilot Lights: Indicate source to which load is connected.

 a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."

8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.

9. Transfer Override Switch: Overrides automatic retransfer control so automatic transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.

10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.

11. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.

12. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings are for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:
 a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 b. Push-button programming control with digital display of settings.
 c. Integral battery operation of time switch when normal control power is not available.

H. ATS Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with NEMA AB 1 and UL 489.

1. Tripping Characteristic: Designed specifically for service entrance protection.

2. Trip Rating: As indicated on drawings.

3. Mounting: Integral to ATS.

2.4 REMOTE ANNUNCIATION

A. Functional Description: Include the following owner alert for remote annunciation of the transfer switch:
1. Indication of sources available, as defined by actual pickup and dropout settings of transfer-switch controls.
2. Indication of switch position.
3. Indication of switch in test mode.
4. Indication of failure of digital communication link.

B. Connection to Data Link: Provide network interface with RS232 port for input into owner’s telecomm system for remote annunciation.

C. Malfunction of annunciator, annunciation and control panel, or communication link shall not affect functions of automatic transfer switch. In the event of failure of communication link, automatic transfer switch automatically reverts to stand-alone, self-contained operation. Automatic transfer-switch sensing, controlling, or operating function shall not depend on remote panel for proper operation.

2.5 SOURCE QUALITY CONTROL

A. Factory test and inspect components, assembled switches, and associated equipment. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Section 260548 "Vibration and Seismic Controls for Electrical Systems."

B. Identify components according to Section 260553 "Identification for Electrical Systems."

C. Set field-adjustable intervals and delays, relays, and engine exerciser clock.

3.2 CONNECTIONS

A. Wiring to Remote Components: Match type and number of cables and conductors to control and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary to accommodate required wiring. Coordinate interface with the owner.

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.

 a. Check for electrical continuity of circuits and for short circuits.
 b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 c. Verify that manual transfer warnings are properly placed.
 d. Perform manual transfer operation.

4. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 c. Verify time-delay settings.
 d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 e. Test bypass/isolation unit functional modes and related automatic transfer-switch operations.
 f. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1 pole deviating by more than 50 percent from other poles.
 g. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cool-down and shutdown.

5. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 a. Verify grounding connections and locations and ratings of sensors.

D. Testing Agency’s Tests and Inspections:

1. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.

 a. Check for electrical continuity of circuits and for short circuits.
 b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 c. Verify that manual transfer warnings are properly placed.
 d. Perform manual transfer operation.

4. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 c. Verify time-delay settings.
 d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 e. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cool-down and shutdown.
 f. Verify remote annunciation to owner.

5. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 a. Verify grounding connections and locations and ratings of sensors.
E. Coordinate tests with tests of generator and run them concurrently.

F. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.

G. Remove and replace malfunctioning units and retest as specified above.

H. Prepare test and inspection reports.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment as specified below. Refer to Section 017900 "Demonstration and Training."

B. Coordinate this training with that for generator equipment.

END OF SECTION 263600
SECTION 264113 – LIGHTNING PROTECTION FOR STRUCTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes lightning protection for structures.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Shop Drawings: For air terminals and mounting accessories.
 1. Layout of the lightning protection system, along with details of the components to be used in the installation.
 2. Include indications for use of raceway, data on how concealment requirements will be met, and calculations required by NFPA 780 for bonding of grounded and isolated metal bodies.
 C. Qualification Data: For qualified Installer and manufacturer. Include data on listing or certification by UL.
 D. Certification, signed by Contractor, that roof adhesive is approved by manufacturer of roofing material.
 E. Field quality-control reports.
 F. Comply with recommendations in NFPA 780, Annex D, "Inspection and Maintenance of Lightning Protection Systems," for maintenance of the lightning protection system.

1.4 QUALITY ASSURANCE
 A. Installer Qualifications: Certified by UL, trained and approved for installation of units required for this Project.
 B. System Certificate:
 1. UL Master Label.
 C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 780, "Definitions" Article.

1.5 COORDINATION
 A. Coordinate installation of lightning protection with installation of other building systems and components, including electrical wiring, supporting structures and building materials, metal bodies requiring bonding to lightning protection components, and building finishes.
 B. Coordinate installation of air terminals attached to roof systems with roofing manufacturer and Installer.
C. Flashings of through-roof assemblies shall comply with roofing manufacturers' specifications.

PART 2 - PRODUCTS

2.1 LIGHTNING PROTECTION SYSTEM COMPONENTS

A. Comply with UL 96 and NFPA 780.

B. Roof-Mounted Air Terminals: NFPA 780, Class I, aluminum unless otherwise indicated.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following or equal:
 a. East Coast Lightning Equipment Inc.
 b. ERICO International Corporation.
 c. Harger.
 d. Heary Bros. Lightning Protection Co. Inc.
 e. Independent Protection Co.
 f. Preferred Lightning Protection.
 g. Quality Lightning Protection
 h. Robbins Lightning, Inc.
 i. South Carolina Lightning Protection, Inc.
 j. Thompson Lightning Protection, Inc.
 2. Air Terminals More than 24 Inches Long: With brace attached to the terminal at not less than half the height of the terminal.

C. Main and Bonding Conductors: Aluminum.

D. Ground Loop Conductor: The same size and type as the main conductor except tinned.

E. Ground Rods: Copper-clad steel; 3/4 inch in diameter by 10 feet long.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install lightning protection components and systems according to UL 96A and NFPA 780.

B. Install conductors with direct paths from air terminals to ground connections. Avoid sharp bends.

C. Conceal the following conductors:
 1. Down conductors.
 2. Interior conductors.

D. Cable Connections: Use exothermic-welded connections for all conductor splices and connections between conductors and other components.
 1. Exception: In single-ply membrane roofing, exothermic-welded connections may be used only below the roof level.
E. Air Terminals on Single-Ply Membrane Roofing: Comply with roofing membrane and adhesive manufacturer's written instructions.

F. Ground Loop: Install ground-level, potential equalization conductor and extend around the perimeter of structure.
 1. Bury ground ring not less than 24 inches from building foundation.
 2. Bond ground terminals to the ground loop.
 3. Bond grounded building systems to the ground loop conductor within 12 feet of grade level.

3.2 CORROSION PROTECTION

A. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.

B. Use conductors with protective coatings where conditions cause deterioration or corrosion of conductors.

3.3 FIELD QUALITY CONTROL

A. Notify Architect at least 48 hours in advance of inspection before concealing lightning protection components.

B. UL Inspection: Meet requirements to obtain a UL Master Label for system.

END OF SECTION 264113
SECTION 265100 – INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Interior lighting fixtures, lamps, and ballasts.
 2. Exit signs.
 3. Lighting fixture supports.

B. Related Sections:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including occupancy sensors and time controllers.

1.3 DEFINITIONS
A. BF: Ballast factor.

B. CCT: Correlated color temperature.

C. CRI: Color-rendering index.

D. HID: High-intensity discharge.

E. LER: Luminaire efficacy rating.

F. Lumen: Measured output of lamp and luminaire, or both.

G. Luminaire: Complete lighting fixture, including ballast housing if provided.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
 1. Physical description of lighting fixture including dimensions.
 2. Ballast, including BF.
 4. Life, output (lumens, CCT, and CRI), low mercury content and energy-efficiency data for lamps.
 5. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
 a. Testing Agency Certified Data: For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by manufacturer.
B. Installation instructions.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.

B. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, from manufacturer.

C. Field quality-control reports.

D. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910, complying with the IESNA Lighting Measurements Testing & Calculation Guides.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NFPA 70.

1.8 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide product indicated on Drawings.

2.2 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.

B. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.

C. Metal Parts: Free of burrs and sharp corners and edges.

D. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.
E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

F. Diffusers and Globes:
 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 a. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
 b. UV stabilized.
 2. Glass: Annealed crystal glass unless otherwise indicated.

G. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp and ballast characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter code (T-4, T-5, T-8, T-12, etc.), tube configuration (twin, quad, triple, etc.), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.
 c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
 d. Start type (preheat, rapid start, instant start, etc.) for fluorescent and compact fluorescent luminaires.
 e. ANSI ballast type (M98, M57, etc.) for HID luminaires.
 f. CCT and CRI for all luminaires.

2.3 BALLASTS FOR LINEAR FLUORESCENT LAMPS

A. General Requirements for Electronic Ballasts:
 1. Comply with UL 935 and with ANSI C82.11.
 2. Designed for type and quantity of lamps served.
 3. Ballasts shall be designed for full light output unless another BF, dimmer, or bi-level control is indicated.
 4. Sound Rating: Class A.
 5. Total Harmonic Distortion Rating: Less than 10 percent.
 6. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 7. Operating Frequency: 42 kHz or higher.
 8. Lamp Current Crest Factor: 1.7 or less.
 9. BF: 0.88 or higher.
 10. Power Factor: 0.95 or higher.
 11. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail.

B. Luminaires controlled by occupancy sensors shall have programmed-start ballasts.

C. Electronic Programmed-Start Ballasts for T5 and T5HO Lamps: Comply with ANSI C82.11 and the following:
 1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
 2. Automatic lamp starting after lamp replacement.

D. Single Ballasts for Multiple Lighting Fixtures: Factory wired with ballast arrangements and bundled extension wiring to suit final installation conditions without modification or rewiring in the field or provide high ballast factor ballasts compliant with ASHRAE 90.1 requirements.
E. Ballasts for Low-Temperature Environments:
 1. Temperatures 0 Deg F and Higher: Electronic type rated for 0 deg F starting and operating
 temperature with indicated lamp types.

2.4 BALLASTS FOR COMPACT FLUORESCENT LAMPS

A. Description: Electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11,
 designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless
dimmer or bi-level control is indicated:
 1. Lamp end-of-life detection and shutdown circuit.
 2. Automatic lamp starting after lamp replacement.
 3. Sound Rating: Class A.
 4. Total Harmonic Distortion Rating: Less than 20 percent.
 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 6. Operating Frequency: 20 kHz or higher.
 7. Lamp Current Crest Factor: 1.7 or less.
 8. BF: 0.95 or higher unless otherwise indicated.
 9. Power Factor: 0.95 or higher.
 10. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and
 radio-frequency interference for nonconsumer equipment.

2.5 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and
 lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:
 1. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.

2.6 EMERGENCY LIGHTING UNITS

A. General Requirements for Emergency Lighting Units: Self-contained units complying with UL 924.

2.7 FLUORESCENT LAMPS

A. All lamps shall be low-mercury type.

B. T8 rapid-start lamps, rated 32 W maximum, nominal length of 48 inches, 2800 initial lumens (minimum),
 CRI 75 (minimum), color temperature 4100 K, and average rated life 20,000 hours unless otherwise
 indicated.

C. T8 rapid-start lamps, rated 28 W maximum, nominal length of 48 inches, 2800 initial lumens (minimum),
 CRI 75 (minimum), color temperature 4100 K, and average rated life 20,000 hours unless otherwise
 indicated.

D. T8 rapid-start lamps, rated 17 W maximum, nominal length of 24 inches, 1300 initial lumens (minimum),
 CRI 75 (minimum), color temperature 4100 K, and average rated life of 20,000 hours unless otherwise
 indicated.

E. T5 rapid-start lamps, rated 28 W maximum, nominal length of 45.2 inches, 2900 initial lumens
 (minimum), CRI 85 (minimum), color temperature 4100 K, and average rated life of 20,000 hours unless
 otherwise indicated.
F. T5HO rapid-start, high-output lamps, rated 54 W maximum, nominal length of 45.2 inches, 5000 initial lumens (minimum), CRI 85 (minimum), color temperature 4100 K, and average rated life of 20,000 hours unless otherwise indicated.

G. Compact Fluorescent Lamps: 4-Pin, CRI 80 (minimum), color temperature 4100 K, average rated life of 10,000 hours at three hours operation per start, and suitable for use with dimming ballasts unless otherwise indicated.
 1. 13 W: T4, double or triple tube, rated 900 initial lumens (minimum).
 2. 18 W: T4, double or triple tube, rated 1200 initial lumens (minimum).
 3. 26 W: T4, double or triple tube, rated 1800 initial lumens (minimum).
 4. 32 W: T4, triple tube, rated 2400 initial lumens (minimum).
 5. 42 W: T4, triple tube, rated 3200 initial lumens (minimum).
 6. 57 W: T4, triple tube, rated 4300 initial lumens (minimum).
 7. 70 W: T4, triple tube, rated 5200 initial lumens (minimum).

2.8 LIGHTING FIXTURE SUPPORT COMPONENTS

A. Comply with Section 260529 “Hangers and Supports for Electrical Systems” for channel- and angle-iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.

C. Twin-Stem Hangers: Two, 1/2-inch steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.

E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage.

F. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Lighting fixtures:
 1. Set level, plumb, and square with ceilings and walls unless otherwise indicated.
 2. Install lamps in each luminaire.

B. Temporary Lighting: If it is necessary, and approved by Architect, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall.

C. Remote Mounting of Ballasts: Distance between the ballast and fixture shall not exceed that recommended by ballast manufacturer. Verify, with ballast manufacturers, maximum distance between ballast and luminaire.
D. Lay-in Ceiling Lighting Fixtures Supports: Use grid as a support element.
 1. Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each fixture. Locate not more than 6 inches from lighting fixture corners.
 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch metal channels spanning and secured to ceiling tees.
 4. Install two independent support rods or wires from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.

E. Suspended Lighting Fixture Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
 4. Do not use grid as support for pendant luminaires. Connect support wires or rods to building structure.

F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.2 IDENTIFICATION
 A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL
 A. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.4 STARTUP SERVICE
 A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed, for at least 100 hours at full voltage.

3.5 ADJUSTING
 A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting aimable luminaires to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose. Some of this work may be required after dark.
 1. Adjust aimable luminaires in the presence of Architect and Lighting Designer.

END OF SECTION 265100
SECTION 265600 – EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Exterior luminaires with lamps and ballasts.
B. Related Sections:
 1. Section 265100 "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings.

1.3 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color-rendering index.
C. HID: High-intensity discharge.
D. LER: Luminaire efficacy rating.
E. Luminaire: Complete lighting fixture, including ballast housing if provided.
F. Pole: Luminaire support structure, including tower used for large area illumination.
G. Standard: Same definition as "Pole" above.

1.4 ACTION SUBMITTALS
A. Product Data: For each luminaire, and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following:
 1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
 2. Details of attaching luminaires and accessories.
 3. Details of installation and construction.
 4. Luminaire materials.
 5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories.
 a. Testing Agency Certified Data: For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
 6. Ballasts, including energy-efficiency data.
 7. Lamps, including life, output, CCT, CRI, lumens, and energy-efficiency data.
8. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.

1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.
B. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For luminaires to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE
A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
D. Comply with NFPA 70.

1.8 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs or alterations from special warranty coverage.
1. Warranty Period for Metal Corrosion: Five years from date of Substantial Completion.
2. Warranty Period for Color Retention: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Products: Subject to compliance with requirements, provide product indicated on Drawings.

2.2 GENERAL REQUIREMENTS FOR LUMINAIRES
A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.
1. LER Tests Fluorescent Fixtures: Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
B. Lateral Light Distribution Patterns: Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
C. Metal Parts: Free of burrs and sharp corners and edges.

D. Sheet Metal Components: Corrosion-resistant aluminum unless otherwise indicated. Form and support to prevent warping and sagging.

E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.

F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.

G. Exposed Hardware Material: Stainless steel.

H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.

I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.

J. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 1. White Surfaces: 85 percent.
 2. Specular Surfaces: 83 percent.
 3. Diffusing Specular Surfaces: 75 percent.

K. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.

M. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp and ballast characteristics:
 a. "USES ONLY" and include specific lamp type.
 b. Lamp diameter code (T-4, T-5, T-8, T-12), tube configuration (twin, quad, triple), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.
 c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
 d. Start type (preheat, rapid start, instant start) for fluorescent and compact fluorescent luminaires.
 e. ANSI ballast type (M98, M57, etc.) for HID luminaires.
 f. CCT and CRI for all luminaires.

2.3 FLUORESCENT BALLASTS AND LAMPS

A. Ballasts for Low-Temperature Environments:
1. Temperatures 0 Deg F and Higher: Electronic type rated for 0 deg F starting and operating temperature with indicated lamp types.

B. Ballast Characteristics:
 1. Power Factor: 90 percent, minimum.
 2. Sound Rating: Class A.
 3. Total Harmonic Distortion Rating: Less than 10 percent.
 5. Transient-Voltage Protection: Comply with IEEE C62.41.1 and IEEE C62.41.2, Category A or better.

PART 3 - EXECUTION

3.1 LUMINAIRE INSTALLATION
 A. Install lamps in each luminaire.
 B. Fasten luminaire to indicated structural supports.
 1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
 C. Adjust luminaires that require field adjustment or aiming.

3.2 CORROSION PREVENTION
 A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
 B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch-thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.3 FIELD QUALITY CONTROL
 A. Inspect each installed fixture for damage. Replace damaged fixtures and components.
 B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
 1. Verify operation of photoelectric controls.
 C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.4 DEMONSTRATION
 A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain luminaire lowering devices.

END OF SECTION 265600
SECTION 270528 - PATHWAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits and fittings.
 2. Metal wireways and auxiliary gutters.

B. Related Requirements:
 1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.
 2. Section 260533 "Raceways and Boxes for Electrical Systems" for conduits, wireways, surface raceways, boxes, enclosures, cabinets, handholes, and faceplate adapters serving electrical systems.

1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.

B. GRC: Galvanized rigid steel conduit.

C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface pathways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Pathway routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of pathway groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Qualification Data: For professional engineer.

C. Seismic Qualification Certificates: For pathway racks, enclosures, cabinets, equipment racks and their mounting provisions, including those for internal components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which certification is based and their installation requirements.
4. Detailed description of conduit support devices and interconnections on which certification is based and their installation requirements.

D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 3. Anamet Electrical, Inc.
 4. Electri-Flex Company.
 5. O-Z/Gedney; a brand of EGS Electrical Group.
 6. Picoma Industries; Subsidiary of Mueller Water Products, Inc.
 7. Republic Conduit.
 8. Robroy Industries.
 10. Thomas & Betts Corporation.
 11. Western Tube and Conduit Corporation.
 12. Wheatland Tube Company; a division of John Maneely Company.

B. General Requirements for Metal Conduits and Fittings:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. ARC: Comply with ANSI C80.5 and UL 6A.

E. IMC: Comply with ANSI C80.6 and UL 1242.

F. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.

G. EMT: Comply with ANSI C80.3 and UL 797.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Fittings for EMT:
 a. Material: Steel.
 b. Type: Compression.
 2. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions where installed, and including flexible external bonding jumper.
3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Adalet.
 2. Cooper Technologies Company; Cooper Crouse-Hinds.
 3. EGS/Appleton Electric.
 5. Hoffman; a Pentair company.
 6. Hubbell Incorporated; Killark Division.
 7. Lamson & Sessions; Carlon Electrical Products.
 8. Milbank Manufacturing Co.
 9. Molex; Woodhead Brand.
 10. Mono-Systems, Inc.
 12. RACO; a Hubbell company.
 13. Robroy Industries.
 14. Spring City Electrical Manufacturing Company.
 15. Stahlin Non-Metallic Enclosures; a division of Robroy Industries.
 17. Wiremold / Legrand.

B. General Requirements for Boxes, Enclosures, and Cabinets:
 1. Comply with TIA-569-B.
 2. Boxes, enclosures and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet-Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

H. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

I. Gangable boxes are not allowed.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

A. Outdoors: Apply pathway products as specified below unless otherwise indicated:
1. Exposed Conduit: IMC.
2. Concealed Conduit, Aboveground: EMT.
4. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply pathway products as specified below unless otherwise indicated:
1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: GRC. Pathway locations include the following:
 a. Mechanical rooms.
4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Damp or Wet Locations: EMT.
6. Boxes and Enclosures: NEMA 250 Type 1, except use NEMA 250 Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Pathway Size: 1-inch trade size. Minimum size for optical-fiber cables is 1 1/4 inch.

D. Pathway Fittings: Compatible with pathways and suitable for use and location.
1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface pathways only where indicated on Drawings.

G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with NECA 1, NECA 101, TIA-569-A and TIA-569-B for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum pathways. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.

B. Keep pathways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.

C. Complete pathway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches of changes in direction. Utilize long radius ells for all optical-fiber cables.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.
I. Pathways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure pathways to reinforcement at maximum 10-foot intervals.
 2. Arrange pathways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange pathways to keep a minimum of 1 inch of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to GRC before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for pathways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.

M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.

N. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

P. Cut conduit perpendicular to the length. For conduits of 2-inch trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.

Q. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground pathways designated as spare above grade alongside pathways in use.

R. Install pathway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed pathways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install pathway sealing fittings according to NFPA 70.

S. Install devices to seal pathway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service pathway enters a building or structure.
 3. Where otherwise required by NFPA 70.

T. Comply with manufacturer's written instructions for solvent welding PVC conduit and fittings.

U. Expansion-Joint Fittings:
1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F, and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.

2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.

3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

V. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to top of box unless otherwise indicated.

W. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

X. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

Y. Support boxes of three gangs or more from one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

Z. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

AA. Set metal floor boxes level and flush with finished floor surface.

BB. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."
3.5 PROTECTION

A. Protect coatings, finishes, and cabinets from damage or deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 270528
SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fire-alarm control unit.
 3. System smoke detectors.
 7. Addressable interface device.
 8. Digital alarm communicator transmitter.

1.3 DEFINITIONS

A. EMT: Electrical Metallic Tubing.
B. FACP: Fire Alarm Control Panel.
C. HLI: High Level Interface.
E. PC: Personal computer.
F. VESDA: Very Early Smoke-Detection Apparatus.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including furnished options and accessories.
 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 2. Include rated capacities, operating characteristics, and electrical characteristics.

B. Shop Drawings: For fire-alarm system.
 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 2. Include plans, elevations, sections, details, and attachments to other work.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 4. Detail assembly and support requirements.
 5. Include voltage drop calculations for notification-appliance circuits.
 6. Include battery-size calculations.
 7. Include input/output matrix.
8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.

9. Include performance parameters and installation details for each detector.

10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.

11. Provide program report showing that air-sampling detector pipe layout balances pneumatically within the airflow range of the air-sampling detector.

12. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
 a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 b. Show field wiring required for HVAC unit shutdown on alarm.
 c. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters’ control system.
 d. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters’ smoke-evacuation system.
 e. Locate detectors according to manufacturer’s written recommendations.
 f. Show air-sampling detector pipe routing.

13. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

C. General Submittal Requirements:

1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.

2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified, fire-alarm technician; Level III minimum.
 c. Licensed or certified by authorities having jurisdiction.

D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.

2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.

3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.
1.6 SAMPLE WARRANTY: FOR SPECIAL WARRANTY.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following and deliver copies to authorities having jurisdiction:
 a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 d. Riser diagram.
 e. Device addresses.
 f. Air-sampling system sample port locations and modeling program report showing layout meets performance criteria.
 g. Record copy of site-specific software.
 h. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 1) Equipment tested.
 2) Frequency of testing of installed components.
 3) Frequency of inspection of installed components.
 4) Requirements and recommendations related to results of maintenance.
 5) Manufacturer's user training manuals.
 i. Manufacturer's required maintenance related to system warranty requirements.
 j. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.

C. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.9 PROJECT CONDITIONS

A. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.
1.10 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.

B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.

C. Automatic sensitivity control of certain smoke detectors.

D. All components provided shall be listed for use with the selected system.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 2. Heat detectors.
 3. Smoke detectors.
 4. Duct smoke detectors.

B. Fire-alarm signal shall initiate the following actions:
 1. Continuously operate alarm notification appliances.
 2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
 3. Transmit an alarm signal to the remote alarm receiving station.
 4. Unlock electric door locks in designated egress paths.
 5. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
 6. Record events in the system memory.
 7. Indicate device in alarm on the graphic annunciator.

C. System trouble signal initiation shall be by one or more of the following devices and actions:
 1. Open circuits, shorts, and grounds in designated circuits.
 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
 4. Loss of primary power at fire-alarm control unit.
 5. Ground or a single break in internal circuits of fire-alarm control unit.
 6. Abnormal ac voltage at fire-alarm control unit.
 7. Break in standby battery circuitry.
8. Failure of battery charging.
9. Abnormal position of any switch at fire-alarm control unit or annunciator.

D. System Supervisory Signal Actions:
1. Initiate notification appliances.
2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
3. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote alarm receiving station.

2.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.4 FIRE-ALARM CONTROL UNIT

A. Basis of Design Manufacturer and campus standard: Subject to compliance with requirements, provide the following:
1. SimplexGrinnell LP.
2. Approved Equal.

B. General Requirements for Fire-Alarm Control Unit:
1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
 b. Include a real-time clock for time annotation of events on the event recorder and printer.
 c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
 d. The FACP shall be listed for connection to a central-station signaling system service.
 e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.
2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.

C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.
3. Pathway Class Designations: NFPA 72, Class B.
4. Serial Interfaces:
a. One RS 232 port for PC configuration.

D. Smoke-Alarm Verification:
 1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
 2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.
 3. Sound general alarm if the alarm is verified.
 4. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

E. Notification-Appliance Circuit:
 1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
 2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz
 square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the
 maximum sound level, or at least 75 dB(A), whichever is greater, measured at the pillow.
 3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same
 field of view, as defined in NFPA 72.

F. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and
 trouble signals to a remote alarm station.

G. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices,
 notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator
 transmitters shall be powered by 24-V dc source.
 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply
 module rating.

H. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic
 transfer switch.

I. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in
 a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays
 and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble
 conditions.

2.5 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in
 red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of
 operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide
 manufacturer's surface back box.
 1. Single-action mechanism, pull-lever type; with integral addressable module arranged to
 communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 2. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral
 addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to
 fire-alarm control unit.
 3. Station Reset: Key- or wrench-operated switch.
 4. Indoor Protective Shield: Factory-fabricated, clear plastic enclosure hinged at the top to permit
 lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered
 audible horn intended to discourage false-alarm operation.
 5. Weatherproof Protective Shield: Factory-fabricated, clear plastic enclosure hinged at the top to
 permit lifting for access to initiate an alarm.
2.6 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

1. Comply with UL 268; operating at 24-V dc, nominal.
2. Detectors shall be two-wire type.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
6. Integral Visual-Indicating Light: LED type, indicating detector has operated.

B. Photoelectric Smoke Detectors:

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. Ionization Smoke Detector:

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
4. Each sensor shall have multiple levels of detection sensitivity.
5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
7. Detectors shall be self-restoring and functional after smoke incident or testing.
2.7 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.
 1. Temperature sensors shall test for and communicate the sensitivity range of the device.

B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.8 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

B. Chimes, Low-Level Output: Vibrating type, 75-dBA minimum rated output.

C. Chimes, High-Level Output: Vibrating type, 81-dBA minimum rated output.

D. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

E. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.
 1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
 2. Mounting: Wall mounted unless otherwise indicated.
 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 4. Flashing shall be in a temporal pattern, synchronized with other units.
 5. Strobe Leads: Factory connected to screw terminals.

2.9 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 1. Mounting: Flush cabinet, NEMA 250, Type 1.
B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.10 ADDRESSABLE INTERFACE DEVICE

A. General:
 1. Include address-setting means on the module.
 2. Store an internal identifying code for control panel use to identify the module type.
 3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Control Module:
 1. Operate notification devices.
 2. Operate solenoids for use in sprinkler service.

2.11 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.

B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 1. Verification that both telephone lines are available.
 2. Programming device.
 3. LED display.
 5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:
 1. Address of the alarm-initiating device.
 2. Address of the supervisory signal.
 3. Address of the trouble-initiating device.
 4. Loss of ac supply.
 5. Loss of power.
 6. Low battery.
 7. Abnormal test signal.

E. Secondary Power: Integral rechargeable battery and automatic charger.

F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.
2.12 DEVICE GUARDS

A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.
 1. Factory fabricated and furnished by device manufacturer.
 2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.

B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 1. Devices placed in service before all other trades have completed cleanup shall be replaced.
 2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.

B. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.
 1. Comply with requirements for seismic-restraint devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Manual Fire-Alarm Boxes:
 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
 3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.

D. Smoke- or Heat-Detector Spacing:
 1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
 2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
 3. Smooth ceiling spacing shall not exceed 30 feet.
 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A or Annex B in NFPA 72.
 5. HVAC: Locate detectors not closer than 36 inches from air-supply diffuser or return-air opening.
6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.

E. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.

F. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
 1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.

G. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.

H. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.

I. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.

J. Device Location-Indicating Lights: Locate in public space near the device they monitor.

K. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.
 1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT.

L. Pathways shall be installed in EMT.

M. Exposed EMT shall be painted red enamel.

3.3 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087 100 "Door Hardware." Connect hardware and devices to fire-alarm system.
 1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.5 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.
3.6 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by authorities having jurisdiction.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.

 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.

 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

 6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.7 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

 1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.8 DEMONSTRATION

 A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 283111
SECTION 311000 - SITE CLEARING AND EROSION CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Protecting existing vegetation to remain.
2. Removing existing vegetation.
3. Clearing and grubbing.
4. Stripping and removing topsoil.
5. Removing above-and below-grade site improvements.
6. Temporary erosion and sedimentation control measures.

1.3 DEFINITIONS

A. Topsoil: Natural or cultivated surface-soil layer containing organic matter and sand, silt, and clay particles; friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of subsoil and weeds, roots, toxic materials, or other nonsoil materials.

B. Tree Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction, and defined by the drip line of individual trees or the perimeter drip line of groups of trees, unless otherwise indicated.

1.4 MATERIAL OWNERSHIP

A. Except for materials indicated to remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.5 SUBMITTALS

A. Photographs or videotape, sufficiently detailed, of existing conditions of trees and plantings, adjoining construction, and site improvements that might be misconstrued as damage caused by site clearing.

1.6 QUALITY ASSURANCE

A. Authorities Having Jurisdiction: Conform to requirements of all authorities having jurisdiction.

1. Where conflicts exist between the requirements of the Contract Documents and those of authorities having jurisdiction, the higher quality or more restrictive requirement shall apply.
1.7 PROJECT CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
2. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

B. Salvageable Improvements: Carefully remove items indicated to be salvaged or re-used and store on Owner's premises where indicated.

C. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing. Do not proceed with operations until existing utilities are located and clearly marked.

D. Do not commence site clearing operations until temporary erosion and sedimentation control measures are in place.

E. Suspend clearing operations during wet conditions unless otherwise directed by Architect.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

A. Satisfactory Soils: ASTM D 2487 Soil Classification Groups GW, GP, GM, SW, SP, and SM, AASHTO M 145 Soil Classification Groups A-1, A-2-4, A-2-5, and A-3, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

1. Obtain approved borrow soil materials off-site when satisfactory soil materials are not available on-site.

2.2 EROSION CONTROL MATERIALS

A. Silt Fence Geotextile: Woven geotextile fabric, manufactured for silt fence applications, made from polyolefins or polyesters; with elongation less than 20 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Grab Tensile Strength: 500 lbf; ASTM D 4632.
2. Tear Strength: 275 lbf; ASTM D 4533.
3. Permittivity: 0.10 per second, minimum; ASTM D 4491.
4. UV Stability: 70 percent after 500 hours' exposure; ASTM D 4355.

B. Silt Fence Post: Steel, either integrally manufactured with the silt fence as part of a complete system or separately provided. Where separately provided, the following shall apply:

1. Steel posts: T or U cross-sectional shape. Minimum weight 1.3 pounds per foot. Minimum length 5 feet. Shall have projections to aid in fastening wire of fabric. Shall have a metal plate welded near the bottom such that, when driven to proper depth, it will be below ground and will aid stability.
2. Fasteners: Galvanized wire or other fasteners as required for a secure installation.

C. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Grab Tensile Strength: 157 lbf; ASTM D 4632.
3. Sewn Seam Strength: 142 lbf; ASTM D 4632.
4. Tear Strength: 56 lbf; ASTM D 4533.
5. Puncture Strength: 56 lbf; ASTM D 4833.
6. Apparent Opening Size: No. 40 sieve, maximum; ASTM D 4751.
7. Permittivity: 0.5 per second, minimum; ASTM D 4491.
8. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.

D. Woven Wire Fabric: ASTM A 116, Class1, wire and opening sizes as indicated.

E. Erosion Control Aggregate: Naturally or artificially graded mixture of crushed gravel or stone as indicated.

1. Material shall be free of shale, clay, friable material, debris, waste, frozen materials, vegetation, organic material, or other deleterious matter.

2.3 TREE PROTECTION MATERIALS

A. Fence Material: As indicated. Orange polypropylene safety mesh, as indicated. Minimum weight 16 lbs per 4 foot x 100 foot roll.

B. Metal Posts and Rails: As indicated. Round cold-formed, electric-resistance-welded, steel pipe or tubing, with minimum yield strength of 45,000 psi and with outside dimension, minimum wall thickness, and weight complying with ASTM F 761 for the following fence height and strength and stiffness requirements:

1. Fence Height: 4 feet.
2. Duty Rating: Medium.
3. Tube or Pipe Diameter and Thickness: According to ASTM F 761.

C. PVC Rails: As indicated. 1” diameter Schedule 40 with solvent cement joints.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect and maintain benchmarks and survey control points from disturbance during construction.

B. Locate and clearly flag trees and vegetation to remain or to be relocated.

C. Protect existing site improvements to remain from damage during construction.

1. Restore damaged improvements to their original condition, as acceptable to Owner.
3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

A. Provide temporary erosion and sedimentation control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to a Stormwater Pollution Prevention Plan (SWPPP), specific to the site, that complies with EPA 832/R-92-005 or the requirements of authorities having jurisdiction, whichever is more stringent.

B. Inspect, repair, and maintain erosion and sedimentation control measures during construction until permanent vegetation has been established.

C. When directed by Architect, remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

3.3 TREE PROTECTION

A. Erect and maintain temporary fencing around tree protection zones before starting site clearing. Remove fence when construction is complete.

 1. Do not store construction materials, debris, or excavated material within fenced area.
 2. Do not permit vehicles, equipment, or foot traffic within fenced area.
 3. Maintain fenced area free of weeds and trash.

B. Do not excavate within tree protection zones, unless otherwise indicated.

C. Where excavation for new construction is required within tree protection zones, hand clear and excavate to minimize damage to root systems. Use narrow-tine spading forks, comb soil to expose roots, and cleanly cut roots as close to excavation as possible.

 1. Cover exposed roots with burlap and water regularly.
 2. Temporarily support and protect roots from damage until they are permanently redirected and covered with soil.
 3. Coat cut faces of roots more than 1-1/2 inches diameter with an emulsified asphalt or other approved coating formulated for use on damaged plant tissues.
 4. Backfill with soil as soon as possible.

D. Repair or replace trees and vegetation indicated to remain that are damaged by construction operations, in a manner approved by Architect.

 1. Employ an arborist, licensed in jurisdiction where Project is located, to submit details of proposed repairs and to repair damage to trees and shrubs.
 2. Replace trees that cannot be repaired and restored to full-growth status, as determined by Architect.

3.4 UTILITIES

A. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:

 1. Notify Owner, Architect and operating utility not less than two days in advance of proposed utility interruptions.
 2. Do not proceed with utility interruptions without the permission of all of the parties noted above.
3.5 CLEARING AND GRUDBBING

A. Remove obstructions, trees, shrubs, grass, and other vegetation to permit installation of new construction.
 1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
 2. Cut minor roots and branches of trees indicated to remain in a clean and careful manner where such roots and branches obstruct installation of new construction.
 3. Completely remove stumps and roots greater than 1” in diameter, obstructions, and debris extending to a depth of 24 inches below exposed subgrade.
 4. Use only hand methods for grubbing within tree protection zone.

B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated and is to be performed immediately. Do not leave depressions overnight.
 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.6 TOPSOIL STRIPPING

A. Remove sod and grass before stripping topsoil.

B. Strip topsoil to whatever depths are encountered in a manner to prevent intermingling with underlying subsoil or other waste materials.
 1. Remove subsoil and nonsoil materials from topsoil, including trash, debris, weeds, roots, and other waste materials.

C. Dispose of topsoil as specified for surplus soil material in disposal article below.

3.7 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and as necessary to facilitate new construction.

B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.
 1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut length of existing pavement to remain before removing existing pavement. Saw-cut faces vertically.
 2. Paint cut ends of steel reinforcement in concrete to remain to prevent corrosion.

3.8 DISPOSAL

A. Disposal: Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner’s property.
 1. Do not burn or chip demolished or waste materials on Owner’s property.
 2. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities.

END OF SECTION 311000
SECTION 312000 - EARTH MOVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Preparing subgrades for slabs-on-grade, walks, pavements, lawns and grasses, and exterior plants.
2. Base course for concrete walks and pavements.
3. Base course for asphalt paving.
4. Subsurface drainage backfill for walls and trenches.
5. Excavating and backfilling for utility trenches.
6. Excavating and backfilling trenches for buried mechanical and electrical utilities and pits for buried utility structures.

1.3 DEFINITIONS

A. Backfill: Soil material or controlled low-strength material used to fill an excavation.

B. Base Course: Course placed between the subgrade and paving materials.

C. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.

D. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.

1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract provisions for unit prices.
2. Bulk Excavation: Excavation more than 10 feet in width and more than 30 feet in length.
3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.

E. Fill: Soil materials used to raise existing grades.

F. Filter aggregate: Aggregate backfill material that acts as a filter medium in subdrainage systems.

G. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material that exceed 1 cu. yd. for bulk excavation or 3/4 cu. yd. for footing, trench, and pit excavation that cannot be removed by rock excavating equipment equivalent to the following in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted:
1. Excavation of Footings, Trenches, and Pits: Late-model, track-mounted hydraulic excavator; equipped with a 42-inch-wide, maximum, short-tip-radius rock bucket; rated at not less than 138-hp flywheel power with bucket-curving force of not less than 28,090 lbf and stick-crowd force of not less than 18,650 lbf; measured according to SAE J-1179.

2. Bulk Excavation: Late-model, track-mounted loader; rated at not less than 210-hp flywheel power and developing a minimum of 48,510-lbf breakout force with a general-purpose bare bucket; measured according to SAE J-732.

H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

I. Subgrade: Soil surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below base course, subbase, drainage fill, or topsoil materials, as applicable.

J. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.4 SUBMITTALS

A. Material Test Reports: From a qualified testing agency indicating and interpreting test results for compliance of the following with requirements indicated:

1. Classification according to ASTM D 2487 of each on-site and borrow soil material proposed for fill and backfill.

2. Laboratory compaction curve according to ASTM D 698 for each on-site and borrow soil material proposed for fill and backfill.

B. Pre-excavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by earthwork operations. Submit before earthwork begins.

1.5 QUALITY ASSURANCE

A. Geotechnical Testing Agency Qualifications: An independent testing agency qualified according to ASTM E 329 to conduct soil materials and rock-definition testing, as documented according to ASTM D 3740 and ASTM E 548.

B. Authorities Having Jurisdiction: Conform to requirements of all authorities having jurisdiction.

1. Where conflicts exist between the requirements of the Contract Documents and those of authorities having jurisdiction, the higher quality or more restrictive requirement shall apply.

1.6 PROJECT CONDITIONS

A. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted in writing by Architect and then only after arranging to provide temporary utility services according to requirements indicated.

1. Notify Architect not less than two days in advance of proposed utility interruptions.
PART 2 - PRODUCTS

2. Do not proceed with utility interruptions without Architect's written permission.
3. Contact utility-locator service for area where Project is located before excavating.

2.1 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

B. Satisfactory Soils: ASTM D 2487 Soil Classification Groups GW, GP, GM, SW, SP, and SM, AASHTO M 145 Soil Classification Groups A-1, A-2-4, A-2-5, and A-3, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction. These soils are not eligible for compensation under any Unit Price provisions for removal of unsatisfactory soil.

2.2 AGGREGATE MATERIALS

A. All sand and aggregate materials shall be free of shale, clay, friable material, debris, waste, frozen materials, vegetation, organic material, or other deleterious matter.

B. Aggregate materials shall not be composed of marine limestone or slag unless specifically allowed in the individual paragraph(s) below.

C. Graded Aggregate Base Course (GABC): Naturally or artificially graded crushed stone (macadam) or marine limestone in accordance with Section 305 of the South Carolina Department of Transportation Standard Specifications for Highway Construction.

D. Filter Aggregate: Naturally or artificially graded mixture of crushed gravel or stone, in accordance with the gradation requirements for Coarse Aggregate #57 as defined by the South Carolina Department of Transportation Standard Specifications for Highway Construction.

E. Sand: Natural or manufactured sand in accordance with the gradation requirements for Fine Aggregate FA-10 (natural) or FA-10M (manufactured) as defined by the South Carolina Department of Transportation Standard Specifications for Highway Construction.

2.3 GEOTEXTILES

A. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Grab Tensile Strength: 157 lbf; ASTM D 4632.
3. Sewn Seam Strength: 142 lbf; ASTM D 4632.
4. Tear Strength: 56 lbf; ASTM D 4533.
5. Puncture Strength: 56 lbf; ASTM D 4833.
6. Apparent Opening Size: No. 40 sieve, maximum; ASTM D 4751.
7. Permittivity: 0.5 per second, minimum; ASTM D 4491.
8. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.

2.4 FLOWABLE FILL
A. Flowable Fill: Low-density, self-compacting, flowable concrete material (controlled low-strength material) in accordance with the requirements for Excavatable Flowable Fill as defined by Section 210 of the South Carolina Department of Transportation Standard Specifications for Highway Construction.

PART 3 - EXECUTION

3.1 PREPARATION
A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earthwork operations.
B. Preparation of subgrade for earthwork operations including removal of vegetation, topsoil, debris, obstructions, and deleterious materials from ground surface is specified in Section titled "Site Clearing."
C. Protect and maintain erosion and sedimentation controls, which are specified in Section titled "Site Clearing," during earthwork operations.

3.2 DEWATERING
A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.
2. Where required, install a dewatering system to keep subgrades dry and convey ground water away from excavations. Maintain until dewatering is no longer required.

3.3 EXPLOSIVES
A. Explosives: Do not use explosives.
3.4 EXCAVATION, GENERAL

A. Classified Excavation: Excavate to subgrade elevations. Material to be excavated will be classified as earth and rock. Do not excavate rock until it has been classified and cross sectioned by Architect, based on the recommendations of the Geotechnical Testing Agency. The Contract Sum will be adjusted for rock excavation based on a mutually acceptable price. Changes in the Contract time may be authorized for rock excavation.

1. If excavated materials intended for fill and backfill include unsatisfactory soil materials or rock, replace with satisfactory soil materials. The Contract Sum will be adjusted for replacement of unsatisfactory soils based on a mutually acceptable price.

2. Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation.
 a. Intermittent drilling; blasting, if permitted; ram hammering; or ripping of material not classified as rock excavation is earth excavation.

3. Rock excavation includes removal and disposal of rock. Remove rock to lines and subgrade elevations indicated to permit installation of permanent construction without exceeding the following dimensions:
 a. 24 inches outside of concrete forms other than at footings.
 b. 12 inches outside of concrete forms at footings.
 c. 6 inches outside of minimum required dimensions of concrete cast against grade.
 d. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
 e. 6 inches beneath bottom of concrete slabs on grade.
 f. 6 inches beneath pipe in trenches, and the greater of 24 inches wider than pipe or 42 inches wide.

3.5 EXCAVATION FOR STRUCTURES

A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.

1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.

2. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.

3.6 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.7 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.
1. Beyond building perimeter and where specific gradients, lines, depths, and elevations are not indicated, excavate trenches to allow installation of top of pipe below frost line or a minimum depth of 36” below finished grade, whichever is greater.

B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit, unless otherwise indicated.

1. Clearance: 12 inches each side of pipe or conduit or as indicated.

C. Trench bottoms where bedding course is indicated: Excavate trenches 4 inches deeper than bottom of pipe elevation to allow for bedding course, unless otherwise indicated.

1. See “Utility Trench Backfill” paragraph below for bedding course requirements.

D. Trench bottoms where no bedding course is indicated: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

1. For pipes and conduit less than 6 inches in nominal diameter and flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
2. For pipes and conduit 6 inches or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe circumference. Fill depressions with tamped sand backfill.
3. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

3.8 SUBGRADE INSPECTION

A. Notify Architect when excavations have reached required subgrade.

B. If Architect, based on the recommendations of the Geotechnical Testing Agency, determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.

1. Authorized additional excavation and replacement material will be paid for based on a mutually acceptable price.

C. Proof-roll subgrade below the building slabs and pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades. Unless otherwise directed by Architect, based on the recommendations of the Geotechnical Testing Agency perform proof-rolls as follows:

1. Completely proof-roll subgrade in one direction and, where dimensions permit, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
2. Proof-roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons.
3. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, based on the recommendations of the Geotechnical Testing Agency, and replace with compacted backfill or fill as directed.
D. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, based on the recommendations of the Geotechnical Testing Agency, without additional compensation.

3.9 UNAUTHORIZED EXCAVATION

A. Fill unauthorized excavation under foundations, wall footings, utility pipe, or other construction as directed by Architect, based on the recommendations of the Geotechnical Testing Agency.

3.10 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.11 BACKFILL

A. Place and compact backfill in excavations promptly, but not before completing the following, as applicable:

1. Making arrangements for required testing and evaluation of subdrainage requirements by Geotechnical Testing Agency.
2. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
3. Surveying locations of underground utilities for Record Documents.
4. Testing and inspecting underground utilities.
5. Removing concrete formwork.
6. Removing trash and debris.
7. Removing temporary shoring and bracing, and sheeting.
8. Installing permanent or temporary horizontal bracing on horizontally supported walls.

B. Place backfill on subgrades free of mud, frost, snow, or ice.

C. Comply with the requirements indicated in the paragraph below titled “Compaction of Soil Backfills and Fills”.

3.12 UTILITY TRENCH BACKFILL

A. Bedding Course: Where indicated or required by agency having jurisdiction, place and compact bedding course on trench bottoms. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

1. Unless otherwise indicated or required by agency having jurisdiction, bedding course shall be required for the following pipe materials:

 a. Corrugated High Density Polyethylene Pipe (AASHTO M 252M)
 b. Corrugated Steel Pipe (ASTM A 760)
 c. Gravity Flow Polyvinyl Chloride Pipe (ASTM D 3034)
 d. Gravity Flow Ductile Iron Pipe (ASTM A 746)
e. Elliptical Concrete Pipe (ASTM C 507)
f. Concrete Box Culvert (ASTM C 1433)

B. Backfill trenches excavated under footings and within 18 inches of bottom of footings as directed by Architect, based on the recommendations of the Geotechnical Testing Agency.

C. Flowable Fill: Where indicated or required by agency having jurisdiction, place backfill of flowable fill over the utility pipe or conduit for the full depth of the trench to final subgrade elevation.

D. Initial Backfill—Bedding Material: Where indicated or required by agency having jurisdiction, place and compact initial backfill of bedding course to a height of 2 inches over the utility pipe or conduit.

 1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of utility piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.

E. Initial Backfill—Satisfactory Soil: Where no other initial backfill is indicated, place and compact initial backfill of satisfactory soil to a height of 6 inches over the utility pipe or conduit.

 1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of utility piping or conduit to avoid damage or displacement of piping or conduit.

 2. Coordinate backfilling with utilities testing.

F. Backfill voids with satisfactory soil while installing and removing shoring and bracing.

G. Place and compact final backfill of satisfactory soil, in accordance with requirements for Backfill as indicated above, to final subgrade elevation.

H. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

I. Place backfill on subgrades free of mud, frost, snow, or ice.

J. Comply with the requirements indicated in the paragraph below titled “Compaction of Soil Backfills and Fills”.

3.13 SOIL FILL

A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.

B. Place and compact fill material in layers to required elevations as follows:

 1. Make arrangements for required testing by Geotechnical Testing Agency as required. Do not place subsequent layers until required testing is complete and acceptable results have been obtained and documented.

 2. Under grass and planted areas, use satisfactory soil material.

 3. Under walks and pavements, use satisfactory soil material.

 4. Under steps and ramps, use satisfactory soil material.

 5. Under footings and foundations, use satisfactory soil material.
C. Place soil fill on subgrades free of mud, frost, snow, or ice.

D. Do not place soil fill on yielding or unapproved subgrade.

3.14 SOIL MOISTURE CONTROL

A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.

1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.

2. Remove and replace, or scarify and air dry otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry density.

3.15 COMPACTION OF SOIL BACKFILLS AND FILLS

A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.

1. Make arrangements for required testing by Geotechnical Testing Agency as required. Do not place subsequent layers until required testing is complete and acceptable results have been obtained and documented.

B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.

C. Compact soil materials to not less than the following percentages of maximum dry density according to ASTM D 698:

1. Under structures, slabs, steps, and pavements, compact each layer of backfill or fill soil material at 98 percent.

2. Under walkways, compact each layer of backfill or fill soil material at 95 percent.

3. Under lawn or unpaved areas, compact each layer of backfill or fill soil material at 90 percent.

4. For utility trenches under lawns or unpaved areas, compact each layer of initial and final backfill soil material at 90 percent. For all other areas compact to the level required for that area.

3.16 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.

1. Provide a smooth transition between adjacent existing grades and new grades.

2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.

B. Site Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
1. Lawn or Unpaved Areas: Plus or minus 1 inch.
2. Walks and Pavements: Plus or minus 1/2 inch.

3.17 SUBSURFACE DRAINAGE

A. Subsurface Drainage (if applicable): Specified in Section titled “Subdrainage.”

B. Make arrangements for evaluation of subsurface drainage requirements by Geotechnical Testing Agency as required.

C. If Architect, based on the recommendations of the Geotechnical Testing Agency, determines that subsurface drainage requirements differ from those indicated in the Contract Documents, install revised subsurface drainage as directed.

D. Authorized adjustments of Subsurface Drainage will be paid for according to Contract provisions for unit prices. If Contract does not provide unit prices for Subsurface Drainage, adjustment will be based on mutually acceptable pricing established prior to the initiation of the Work.

3.18 GRADED AGGREGATE BASE COURSE (GABC)

A. Place GABC on subgrades free of mud, frost, snow, or ice.

B. Immediately prior to placing GABC, proof-roll subgrade as directed in the “Subgrade Inspection” paragraph above. Do not proceed with placement of GABC until subgrade is approved.

C. On prepared and approved subgrade, place GABC under pavements as follows:

1. Make arrangements for required testing by Geotechnical Testing Agency.
2. Where indicated, install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
3. Place GABC material over subgrade under pavements as indicated.
4. Shape GABC to required crown elevations and cross-slope grades.
5. Place GABC 8 inches or less in compacted thickness in a single layer.
6. Place GABC that exceeds 8 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 8 inches thick or less than 4 inches thick.
 a. Do not place subsequent layers until required testing is complete and acceptable results have been obtained and documented.
7. Compact GABC at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 100 percent of maximum dry density according to ASTM D 1557.

D. Shoulders: Where installation is not bordered by concrete curb, walks or alternate confinement system, place shoulders along edges of GABC to prevent lateral movement. Construct shoulders, at least 12 inches wide, of satisfactory soil materials and compact simultaneously with each base layer to not less than 95 percent of maximum dry density according to ASTM D 698.

3.19 FIELD QUALITY CONTROL

A. Geotechnical Testing Agency: Contractual responsibilities for testing are identified in Division 1 Section “Quality Requirements”. Responsible party will engage a qualified independent geotechnical engineering testing agency to perform field quality-control testing.
B. Allow Geotechnical Testing Agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earthwork only after test results for previously completed work comply with requirements.

C. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect, based on the recommendations of the Geotechnical Testing Agency.

D. Geotechnical Testing Agency will test compaction of soils in place according to ASTM D 1556, or ASTM D 2922, as applicable. Tests will be performed at the following locations and frequencies:

1. Paved and Slab Areas: At subgrade and at each compacted fill and backfill layer, at least 1 test for every 5000 sq. ft or less of paved area or building slab, but in no case fewer than 3 tests.
2. Foundation Wall Backfill: At each compacted backfill layer, at least 1 test for each 100 feet or less of wall length, but no fewer than 2 tests.
3. Trench Backfill: At each compacted initial and final backfill layer, at least 1 test for each 300 feet or less of trench length, but no fewer than 2 tests.

E. When Geotechnical Testing Agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil to depth required; recompact and retest until specified compaction is obtained.

3.20 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.

1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.

C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.

1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.21 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Unless directed to stockpile onsite, remove surplus satisfactory and unsatisfactory soil and legally dispose of it off Owner's property. Remove waste material, trash, and debris, and legally dispose of it off Owner's property.

END OF SECTION 312000
SECTION 313116 - TERMITE CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Soil treatment with termiticide.

1.3 PERFORMANCE REQUIREMENTS
 A. Service Life of Soil Treatment: Soil treatment by use of a termiticide that is effective for not less than five years against infestation of subterranean termites.

1.4 SUBMITTALS
 A. Product Data: For each type of termite control product.
 1. Include the EPA-Registered Label for termiticide products.
 2. Include certificate of registration with South Carolina Department Pesticide Regulation.
 B. Qualification Data: For qualified Installer of termite control products, including licensing records and application reports as required by local authorities.
 C. Product Certificates: For termite control products, from manufacturer.
 D. Soil Treatment Application Report: After application of termiticide is completed, submit report for Owner's records and include the following:
 1. Date and time of application.
 2. Moisture content of soil before application.
 3. Termiticide brand name and manufacturer.
 4. Quantity of undiluted termiticide used.
 5. Dilutions, methods, volumes used, and rates of application.
 6. Areas of application.
 7. Water source for application.
 E. Warranties: Sample of special warranties.

1.5 QUALITY ASSURANCE
 A. Installer Qualifications: A specialist who is licensed according to regulations of authorities having jurisdiction to apply termite control treatment and products in jurisdiction where Project is located.
 1. Installer shall be licensed as a Pest Control Operator (PCO) by SC Department of Pesticide Regulation as required by state and local authorities.
 B. Regulatory Requirements: Formulate and apply termiticides and termiticide devices according to the EPA-Registered Label.
 D. Source Limitations: Obtain termite control products from single manufacturer for each product.
 E. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination" to schedule application of termiticide products.
1.6 PROJECT CONDITIONS
 A. Environmental Limitations: To ensure penetration, do not treat soil that is water saturated or frozen. Do not treat soil while precipitation is occurring. Comply with requirements of the EPA-Registered Label and requirements of SCDFPC and requirements of state and local authorities having jurisdiction.

1.7 COORDINATION
 A. Coordinate soil treatment application with excavating, filling, grading, and concreting operations. Treat soil under footings, grade beams, and ground-supported slabs before construction.

1.8 WARRANTY
 A. Soil Treatment Special Warranty: Manufacturer’s standard form, signed by Applicator and Contractor, certifying that termite control work, consisting of applied soil termiticide treatment, will prevent infestation of subterranean termites. If subterranean termite activity or damage is discovered during warranty period, re-treat soil and repair or replace damage caused by termite infestation.
 1. Warranty Period: Five years from date of Substantial Completion.

1.9 MAINTENANCE SERVICE PROPOSAL
 A. Provide a proposal for continuing service, including monitoring, inspection, and retreatment for occurrences of termite activity, from applicator to Owner, in the form of a standard yearly (or other period) continuing service agreement, starting on the date of Substantial Completion. State services, obligations, conditions, and terms for agreement period and for future renewal options.

PART 2 - PRODUCTS

2.1 SOIL TREATMENT
 A. Termiticide: Provide an EPA- and SC DPR- registered termiticide complying with requirements of authorities having jurisdiction, in an aqueous solution formulated to prevent termite infestation. Provide quantity required for application at the label volume and rate for the maximum termiticide concentration allowed for each specific use, according to product's EPA-Registered Label.
 1. Use compatible dye in termiticide to provide visible evidence of treatment.
 2. Service Life of Treatment: Soil treatment termiticide that is effective for not less than five years against infestation of subterranean termites.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for moisture content of soil per termiticide label requirements, interfaces with earthwork, slab and foundation work, landscaping, utility installation, and other conditions affecting performance of termite control.
 B. Proceed with application only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. General: Comply with the most stringent requirements of authorities having jurisdiction and with manufacturer’s written instructions for preparation before beginning application of termite control treatment. Remove all extraneous sources of wood cellulose and other edible materials such as wood debris, tree stumps and roots, stakes, formwork, and construction waste wood from soil within and around foundations.
 B. Soil Treatment Preparation: Remove foreign matter and impermeable soil materials that could decrease treatment effectiveness on areas to be treated. Loosen, rake, and level soil to be treated except previously compacted areas under slabs and footings. Termiticides may be applied before placing compacted fill under slabs if recommended in writing by termiticide manufacturer.
1. Fit filling hose connected to water source at the site with a backflow preventer, complying with requirements of authorities having jurisdiction.

3.3 APPLICATION, GENERAL
A. General: Comply with the most stringent requirements of authorities having jurisdiction and with manufacturer’s EPA-Registered Label for products.

3.4 APPLYING SOIL TREATMENT
A. Application: Mix soil treatment termitecide solution to a uniform consistency. Provide quantity required for application at the label volume and rate for the maximum specified concentration of termitecide, according to manufacturer's EPA-Registered Label, to the following so that a continuous termitecidal barrier or treated zone is established around and under building construction. Distribute treatment evenly.
 1. Slabs-on-Grade: Under ground-supported slab construction, including footings, building slabs, and attached slabs as an overall treatment. Treat soil materials before concrete footings and slabs are placed.
 2. Foundations: Adjacent soil, including soil along the entire inside perimeter of foundation walls; along both sides of interior partition walls; around plumbing pipes and electric conduit penetrating the slab; around interior column footers; and along the entire outside perimeter, from grade to bottom of footings and as recommended by treatment manufacturer. Avoid soil washout around footings.
 4. Penetrations: At expansion joints, control joints, and areas where slabs will be penetrated.

3.5 PROTECTION
A. Avoid disturbance of treated soil after application. Keep off treated areas until completely dry.
B. Protect termitecide solution, dispersed in treated soils and fills, from being diluted until ground-supported slabs are installed. Use waterproof barrier according to EPA-Registered Label instructions.
C. Post warning signs in areas of application.
D. Reapply soil treatment solution to areas disturbed by subsequent backfilling, excavation, grading, landscaping, or other construction activities following application.

END OF SECTION 313116
SECTION 321313 - CONCRETE PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes exterior cement concrete pavement for the following:
 1. Driveways
 2. Slabs on grade.
 3. Curbs and gutters.
 4. Walkways.
 5. Unit paver base.

1.3 SUBMITTALS
 A. Samples: 10-lb sample of exposed aggregate.
 B. Minutes of preinstallation conference.

1.4 QUALITY ASSURANCE
 A. Manufacturer Qualifications: Manufacturer of ready-mixed concrete products who complies with the equipment, material and production requirements of Section 701 of the South Carolina Department of Transportation Standard Specifications for Highway Construction.
 B. Concrete Testing Agency Qualifications: An independent testing agency qualified according to ASTM E 329 and ASTM C 1077 to perform material evaluation tests and to design concrete mixtures.
 C. Mockups: Cast mockups of full-size sections of exposed aggregate concrete pavement to demonstrate typical joints, surface finish, texture, color, and standard of workmanship.
 1. Build mockups in the location and of the size indicated or, if not indicated, as directed by Architect.
 2. Notify Architect seven days in advance of dates and times when mockups will be constructed.
 4. Maintain approved mockups during construction in an undisturbed condition as a standard for judging the completed pavement.
 5. Demolish and remove approved mockups from the site when directed by Architect.
 6. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
 D. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination."
1. Before submitting design mixtures, review concrete pavement mixture design and examine procedures for ensuring quality of concrete materials and concrete pavement construction practices. Require representatives, including the following, of each entity directly concerned with concrete pavement, to attend conference:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Ready-mix concrete producer.
 d. Concrete pavement subcontractor.

E. Authorities Having Jurisdiction: Conform to requirements of all authorities having jurisdiction.

1. Where conflicts exist between the requirements of the Contract Documents and those of authorities having jurisdiction, the higher quality or more restrictive requirement shall apply.

1.5 PROJECT CONDITIONS

A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

1. Where Work activities encroach into public rights-of-way, provide traffic control to maintain safe transit of work area by vehicular and pedestrian traffic.

a. All traffic control shall be in accordance with the requirements of the authorities having jurisdiction.

B. Environmental Limitations: Do not install concrete paving if subgrade is frozen, wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the ambient air temperature is below, or is expected to fall below, 40 deg F during the time of placement.

PART 2 - PRODUCTS

2.1 FORMS

A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, smooth exposed surfaces.

1. Use flexible or curved forms for curves as necessary in order to prevent a chord effect in the alignment of the finished work.

B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.

2.2 STEEL REINFORCEMENT

A. Plain-Steel Welded Wire Reinforcement: ASTM A 185, fabricated from as-drawn steel wire into flat sheets.

B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60; deformed.

C. Plain Steel Wire: ASTM A 82, as drawn.
D. Joint Dowel Bars: Plain steel bars, ASTM A 615/A 615M, Grade 60. Cut bars true to length with ends square and free of burrs.

E. Tie Bars: ASTM A 615/A 615M, Grade 60, deformed.

F. Hook Bolts: ASTM A 307, Grade A, internally and externally threaded. Design hook-bolt joint assembly to hold coupling against pavement form and in position during concreting operations, and to permit removal without damage to concrete or hook bolt.

G. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete, and as follows:

1. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.
2. For epoxy-coated reinforcement, use epoxy-coated or other dielectric-polymer-coated wire bar supports.

H. Epoxy Repair Coating: Liquid two-part epoxy repair coating, compatible with epoxy coating on reinforcement.

I. Zinc Repair Material: ASTM A 780.

2.3 CONCRETE MATERIALS

A. Concrete: Class 3000 concrete in accordance with Section 701 of the South Carolina Department of Transportation Standard Specifications for Highway Construction.

B. Exposed Aggregate: Selected, hard, and durable; washed; free of materials with deleterious reactivity to cement or that cause staining; from a single source, with gap-graded coarse aggregate as follows:

1. Aggregate Sizes: as indicated.

C. Water: ASTM C 94/C 94M.

D. Admixtures: Air-entraining, accelerating, retarding, and water reducing admixtures shall be in accordance with Section 701 of the South Carolina Department of Transportation Standard Specifications for Highway Construction.

2.4 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry.

B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

C. Water: Potable.

D. Evaporation Retarder: Waterborne, monomolecular film forming; manufactured for application to fresh concrete.
1. Products:
 a. Axim Concrete Technologies; Cimfilm.
 b. Burke by Edoco; BurkeFilm.
 c. ChemMasters; Spray-Film.
 d. Conspec Marketing & Manufacturing Co., Inc.; Aquafilm.
 e. Dayton Superior Corporation; Sure Film.
 f. Euclid Chemical Company (The); Eucobar.
 g. Kaufman Products, Inc.; Vapor Aid.
 h. Lambert Corporation; Lambco Skin.
 i. L&M Construction Chemicals, Inc.; E-Con.
 j. MBT Protection and Repair, ChemRex Inc.; Confilm.
 l. Metalcrete Industries; Waterhold.
 m. Nox-Crete Products Group, Kinsman Corporation; Monofilm.
 n. Sika Corporation, Inc.; SikaFilm.
 o. Symons Corporation; Finishing Aid.

E. Clear Waterborne Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.

1. Products:
 a. Anti-Hydro International, Inc.; AH Curing Compound #2 DR WB.
 b. Burke by Edoko; Aqua Resin Cure.
 c. ChemMasters; Safe-Cure Clear.
 d. Conspec Marketing & Manufacturing Co., Inc.; W.B. Resin Cure.
 e. Dayton Superior Corporation; Day Chem Rez Cure (J-11-W).
 f. Euclid Chemical Company (The); Kurez VOX.
 g. Kaufman Products, Inc.; Thinfilm 420.
 h. Lambert Corporation; Aqua Kure-Clear.
 i. L&M Construction Chemicals, Inc.; L&M Cure R.
 k. Nox-Crete Products Group, Kinsman Corporation; Resin Cure E.
 l. Symons Corporation; Resi-Chem Clear.
 m. Tamms Industries Inc.; Horncure WB 30.

F. White Waterborne Membrane-Forming Curing Compound: ASTM C 309, Type 2, Class B.

1. Products:
 a. Anti-Hydro International, Inc.; AH Curing Compound #2 WP WB.
 b. Burke by Edoco; Resin Emulsion White.
 d. Conspec Marketing & Manufacturing Co., Inc.; W.B. Resin Cure.
 e. Dayton Superior Corporation; Day-Chem White Pigmented Cure (J-10-W).
 f. Euclid Chemical Company (The); Kurez VOX White Pigmented.
 g. Kaufman Products, Inc.; Thinfilm 450.
 h. Lambert Corporation; Aqua Kure-White.
 i. L&M Construction Chemicals, Inc.; L&M Cure R-2.
 k. Symons Corporation; Resi-Chem White.
 l. Tamms Industries, Inc.; Horncure 200-W.

G. Special Curing Compound for Integrally Colored Concrete: ASTM C 309, water-based acrylic emulsion curing compound, formulated for use with integrally colored concrete.
1. Products: One of the following or equal:
 a. COLORCURE Concrete Sealer; L.M. Scofield Co.
 b. QC COLOR CURE; QC Construction Products.

2.5 RELATED MATERIALS

B. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, free of carbon black, nonfading, and resistant to lime and other alkalis.

1. Manufacturers:
 a. Bayer Corporation.
 b. ChemMasters.
 c. Conspec Marketing & Manufacturing Co., Inc.
 d. Davis Colors.
 e. Lambert Corporation.
 f. QC Construction Products.
 g. Scofield, L. M. Company.
 h. Solomon Colors.

2. Color: As selected by Architect from manufacturer's full range.

C. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

D. Epoxy Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to requirements, and as follows:

1. Types I and II, non-load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.

E. Chemical Surface Retarder: Water-soluble, liquid-set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to a depth of 1/8 to 1/4 inch.

1. Products:
 a. Burke by Edeco; True Etch Surface Retarder.
 b. ChemMasters; Exposee.
 c. Conspec Marketing & Manufacturing Co., Inc.; Delay S.
 d. Euclid Chemical Company (The); Surface Retarder S.
 e. Kaufman Products, Inc.; Expose.
 f. Metalcrete Industries; Surfard.
 g. Nox-Crete Products Group, Kinsman Corporation; Crete-Nox TA.
 h. Scofield, L. M. Company; Lithotex.
 i. Sika Corporation, Inc.; Rugasol-S.
2.6 CONCRETE MIXTURES

A. Prepare design mixtures, proportioned according to Section 701 of the South Carolina Department of Transportation Standard Specifications for Highway Construction, for each type and strength of normal-weight concrete determined by either laboratory trial mixes or field experience.

1. Use a qualified independent testing agency for preparing and reporting proposed concrete mixture designs for the trial batch method.

B. Proportion mixtures to provide normal-weight concrete with the following properties:

2. Maximum Water-Cementitious Materials Ratio at Point of Placement: in accordance with Section 701 of the South Carolina Department of Transportation Standard Specifications for Highway Construction.
3. Slump Limit: 5 inches, plus or minus 1 inch, except where lower slump is required for automatic machine placement or other specialized applications.

C. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:

1. Air Content: 6 percent plus or minus 1.5 percent for 3/4-inch nominal maximum aggregate size

D. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.

E. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement according to the requirements of Section 701 of the South Carolina Department of Transportation Standard Specifications for Highway Construction as follows:

1. Fly Ash: 20 percent.
2. Ground Granulated Blast-Furnace Slag: 50 percent.

F. Color Pigment: Add color pigment to concrete mixture according to manufacturer's written instructions and to result in hardened concrete color consistent with approved mockup.

2.7 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to Sections 501 and 701 of the South Carolina Department of Transportation Standard Specifications for Highway Construction. Furnish batch certificates for each batch discharged and used in the Work.

1. When air temperature is between 85 deg F and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.
B. For concrete curb and gutter and pavements to be subjected to vehicular traffic, proof-roll prepared subbase surface with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding.

1. Completely proof-roll subbase in one direction. Limit vehicle speed to 3 mph.
2. Proof-roll with a loaded 10-wheel tandem-axle dump truck weighing not less than 15 tons.
3. Subbase with soft spots and areas of pumping or rutting exceeding depth of 1/2 inch require correction according to requirements in Section titled “Earth Moving.”

C. Proceed with concrete pavement operations only after nonconforming conditions have been corrected and subgrade is ready to receive pavement.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides for pavement to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.

B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT

A. General: Comply with Sections 501 and 703 of the South Carolina Department of Transportation Standard Specifications for Highway Construction and CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.

C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.

D. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

3.5 JOINTS

A. General: Form construction, isolation, and contraction joints and tool edgings true to line with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline, unless otherwise indicated.

1. When joining existing pavement, place transverse joints to align with previously placed joints, unless otherwise indicated.
B. Construction Joints: Set construction joints at side and end terminations of pavement and at locations where pavement operations are stopped for more than one-half hour unless pavement terminates at isolation joints.

1. Continue steel reinforcement across construction joints, unless otherwise indicated. Do not continue reinforcement through sides of pavement strips, unless otherwise indicated.
2. Provide tie bars at sides of pavement strips where indicated.
3. Butt Joints: Use bonding agent or epoxy bonding adhesive at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
4. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt-coat one-half of dowel length to prevent concrete bonding to one side of joint.

C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, walks, other fixed objects, and where indicated.

1. Locate expansion joints at intervals of 30 feet, unless otherwise indicated.
2. Extend joint fillers full width and depth of joint.
3. Terminate joint filler not less than 1/2 inch or more than 1 inch below finished surface if joint sealant is indicated.
4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
6. Protect top edge of joint filler during concrete placement with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.

D. Contraction (Control) Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows:

1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/2-inch radius. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover marks on concrete surfaces unless indicated to remain.

2. Spacing in Pavements: Unless otherwise indicated, locate as follows:

a. Locate transverse contraction joints at intervals twice the width of the pavement, not to exceed 10 feet.

b. Where the pavement width exceeds 10 feet to a maximum of 24 feet, locate a longitudinal contraction joint along the centerline of the pavement.

c. Where the pavement width exceeds 24 feet, locate longitudinal contraction joints at evenly spaced divisions not to exceed 10 feet.

3. Spacing in Curb: Unless otherwise indicated, locate contraction joints to coincide with the adjoining concrete pavement or, where an adjoining concrete pavement does not exist, at an interval of 10 feet.

E. Edging: Tool edges of pavement, gutters, curbs, and joints in concrete after initial floating with an edging tool to a 1/2-inch radius. Repeat tooling of edges after applying surface finishes. Eliminate tool marks on concrete surfaces unless indicated to remain.
3.6 CONCRETE PLACEMENT

A. Inspection: Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast in. Notify other trades to permit installation of their work.

B. Remove snow, ice, or frost from subbase surface and reinforcement before placing concrete. Do not place concrete on frozen surfaces.

C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.

D. Comply with the requirements of Sections 501, 701, and 720 of the South Carolina Department of Transportation Standard Specifications for Highway Construction for measuring, mixing, transporting, and placing concrete.

E. Do not add water to fresh concrete after testing.

F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

G. Consolidate concrete according to Sections 501 and 720 of the South Carolina Department of Transportation Standard Specifications for Highway Construction by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.

1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels, and joint devices.

H. Screed pavement surfaces with a straightedge and strike off.

I. Commence initial floating using bull floats or darbies to impart an open textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

J. Curbs and Gutters: When automatic machine placement is used for curb and gutter placement, submit revised mix design and laboratory test results that meet or exceed requirements. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing as specified for formed concrete. If results are not approved, remove and replace with formed concrete.

K. Slip-Form Pavers: When automatic machine placement is used for pavement, submit revised mix design and laboratory test results that meet or exceed requirements. Produce pavement to required thickness, lines, grades, finish, and jointing as required for formed pavement.

1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of paver machine during operations.

L. When adjoining pavement lanes are placed in separate pours, do not operate concrete installation equipment on placed concrete until it has attained 85 percent of its 28-day compressive strength.

M. Cold-Weather Placement: Comply with Sections 501, 701, and 702 of the South Carolina Department of Transportation Standard Specifications for Highway Construction and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
1. Concrete operations shall not be undertaken when air temperature has fallen to or is expected to fall below 40 deg F.
2. Do not use frozen materials or materials containing ice or snow.
3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mix designs.

N. Hot-Weather Placement: Comply with Sections 501, 701, and 702 of the South Carolina Department of Transportation Standard Specifications for Highway Construction and as follows when hot-weather conditions exist:

1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

3.7 FLOAT FINISHING

A. General: Do not add water to concrete surfaces during finishing operations.

B. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats, or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

1. Medium-to-Fine-Textured Broom Finish: Draw a soft bristle broom across float-finished concrete surface perpendicular to line of traffic to provide a uniform, fine-line texture.

3.8 SPECIAL FINISHES

A. Seeded Exposed-Aggregate Finish: Immediately after initial floating, spread a single layer of aggregate uniformly on pavement surface. Tamp aggregate into plastic concrete, and float finish to entirely embed aggregate with mortar cover of 1/16 inch.

1. Spray-apply chemical surface retarder to pavement according to manufacturer's written instructions.
2. Cover pavement surface with plastic sheeting, sealing laps with tape, and remove sheeting when ready to continue finishing operations.
3. Without dislodging aggregate, remove excess mortar by lightly brushing surface with a stiff, nylon-bristle broom.
4. Fine-spray surface with water and brush. Repeat water flushing and brushing cycle until cement film is removed from aggregate surfaces to depth required.

3.9 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

B. Comply with Sections 501, 701, and 702 of the South Carolina Department of Transportation Standard Specifications for Highway Construction for cold-weather protection.
C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound, or a combination of these as follows:

1. Moist Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Immediately repair any holes or tears during curing period using cover material and waterproof tape.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

3.10 PAVEMENT TOLERANCES

A. Comply with tolerances of Section 501 of the South Carolina Department of Transportation Standard Specifications for Highway Construction and as follows:

1. Elevation: 1/4 inch.
3. Surface: Gap below 10-foot-long, unleveled straightedge not to exceed 1/4 inch.
4. Lateral Alignment and Spacing of Tie Bars and Dowels: 1 inch.
5. Vertical Alignment of Tie Bars and Dowels: 1/4 inch.
6. Alignment of Tie-Bar End Relative to Line Perpendicular to Pavement Edge: 1/2 inch.
7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Pavement Edge: Length of dowel 1/4 inch per 12 inches.
8. Joint Spacing: 3 inches.

3.11 FIELD QUALITY CONTROL

A. Testing Agency: Contractual responsibilities for testing are identified in Division 1 Section “Quality Requirements”. Responsible party will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
1. Testing Frequency: Obtain at least 1 composite sample for each 100 cu. yd. or fraction thereof of each concrete mix placed each day.
 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.

2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mix. Perform additional tests when concrete consistency appears to change.

3. Air Content: ASTM C 231, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mix.

4. Concrete Temperature: ASTM C 1064; one test hourly when air temperature is 40 deg F and below and when 80 deg F and above, and one test for each composite sample.

5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.

6. Compressive-Strength Tests: ASTM C 39/C 39M; test 1 specimen at 7 days and 2 specimens at 28 days.
 a. A compressive-strength test shall be the average compressive strength from 2 specimens obtained from same composite sample and tested at 28 days.

C. Strength of each concrete mix will be satisfactory if average of any 3 consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

D. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

F. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.

G. Remove and replace concrete pavement where test results indicate that it does not comply with specified requirements.

H. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.12 REPAIRS AND PROTECTION

A. Remove and replace concrete pavement that is broken, damaged, or defective or that does not comply with requirements in this Section.

B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory pavement areas with portland cement concrete bonded to pavement with epoxy adhesive.
C. Protect concrete from damage. Exclude vehicular traffic from pavement for at least 7 days after placement. When construction traffic is permitted, maintain pavement as clean as possible by removing surface stains and spillage of materials as they occur.

D. Maintain concrete pavement free of stains, discoloration, dirt, and other foreign material. Sweep concrete pavement not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 321313
SECTION 323113 - CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Chain-link fences.
 2. Swing gates.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For each type of fence and gate assembly.
 1. Include plans, elevations, sections, details, and attachments to other work.

C. Samples: For each exposed product and for each color and texture specified.

1.4 INFORMATIONAL SUBMITTALS

A. Product certificates.

B. Product test reports.

C. Sample warranty.

1.5 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: 5 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Chain-link fence and gate frameworks shall withstand the design wind loads and stresses for fence height(s) and under exposure conditions indicated according to ASCE/SEI 7:
 1. Design Wind Load: As indicated on Drawings.
 a. Minimum Post Size: Determine according to ASTM F 1043 for post spacing not to exceed 10 feet for Material Group IA, ASTM F 1043, Schedule 40 steel pipe.
 b. Minimum Post Size and Maximum Spacing: Determine according to CLFMI WLG 2445, based on mesh size and pattern specified.
2.2 CHAIN-LINK FENCE FABRIC

A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist according to "CLFMI Product Manual" and requirements indicated below:

1. Fabric Height: As indicated on Drawings.
2. Steel Wire for Fabric: Wire diameter of \(0.192\) inch, \(0.148\) inch, \(0.120\) inch.
 a. Mesh Size: 2 inches.
 b. Zinc-Coated Fabric: ASTM A 392, Type II, \(\text{Class 1}, 1.2 \text{ oz./sq. ft.}\) \(\text{Class 2}, 2.0 \text{ oz./sq. ft.}\) with zinc coating applied \(\text{before}\) or \(\text{after}\) weaving.
 c. Zn-5-Al-MM Aluminum-Mischmetal-Coated Fabric: ASTM F 1345, Type III, \(\text{Class 1}, 0.60 \text{ oz./sq. ft.}\) \(\text{Class 2}, 1.0 \text{ oz./sq. ft.}\).
 d. Coat selvage ends of metallic-coated fabric before the weaving process with manufacturer's standard clear protective coating.
3. Selvage: Knuckled at both selvages.

2.3 FENCE FRAMEWORK

A. Posts and Rails: ASTM F 1043 for framework, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F 1043 or ASTM F 1083 based on the following:

1. Fence Height: 72 inches.
 a. Line Post: 2.375 inches in diameter.
 b. End, Corner, and Pull Posts: 2.875 inches.
3. Horizontal Framework Members: top and bottom rails according to ASTM F 1043.
5. Metallic Coating for Steel Framework:
 a. Type A zinc coating.

2.4 SWING GATES

A. General: ASTM F 900 for gate posts and single swing gate types.

1. Gate Leaf Width: 36 inches.
2. Framework Member Sizes and Strength: Based on gate fabric height of 72 inches or less.

B. Pipe and Tubing:

1. Zinc-Coated Steel: ASTM F 1043 and ASTM F 1083; protective coating and finish to match fence framework.
2. Gate Posts: Round tubular steel.
3. Gate Frames and Bracing: Round tubular steel.

C. Frame Corner Construction: Welded.

D. Hardware:

1. Hinges: 90-degree inward and outward swing.
2. Latch: Permitting operation from both sides of gate.

2.5 FITTINGS

A. Provide fittings according to ASTM F 626.

B. Finish:
2.6 GROUT AND ANCHORING CEMENT

A. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout, recommended in writing by manufacturer, for exterior applications.

B. Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating, and that is recommended in writing by manufacturer for exterior applications.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Do not begin installation before final grading is completed unless otherwise permitted by Architect.

3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

3.3 CHAIN-LINK FENCE INSTALLATION

A. Install chain-link fencing according to ASTM F 567 and more stringent requirements specified.

B. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.

C. Post Setting: Set posts in concrete and by mechanically driving into soil at indicated spacing into firm, undisturbed soil.

1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.

2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.

a. Concealed Concrete: Place top of concrete 2 inches below grade to allow covering with surface material.

3. Mechanically Driven Posts: Drive into soil to depth of [30 inches] [36 inches]. Protect post top to prevent distortion.

D. Terminal Posts: Install terminal end, corner, and gate posts according to ASTM F 567 and terminal pull posts at changes in horizontal or vertical alignment of 30 degrees or more. For runs exceeding 500 feet, space pull posts an equal distance between corner or end posts.

E. Line Posts: Space line posts uniformly at 10 feet o.c.

F. Chain-Link Fabric: Apply fabric to inside of enclosing framework. Leave 1-inch bottom clearance between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.
3.4 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Lubricate hardware and other moving parts.

END OF SECTION 323113
SECTION 323223 - SEGMENTAL RETAINING WALLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes single-depth segmental retaining walls with and without soil reinforcement.

1.3 PERFORMANCE REQUIREMENTS

A. Structural Performance: Provide segmental retaining walls capable of withstanding the effects of gravity loads due to soil pressures resulting from grades indicated, and determined according to NCMA's "Design Manual for Segmental Retaining Walls."

1. Structural Performance: Include the effects of sloped backfill as indicated on Drawings.
2. Structural Performance: Include the effects of superimposed loads (surcharge) as indicated on Drawings.

B. Seismic Performance: Provide segmental retaining walls capable of withstanding the effects of earthquake motions determined according to NCMA's "Segmental Retaining Walls--Seismic Design Manual."

C. Drainage: Provide segmental retaining wall drainage system capable of preventing accumulation of groundwater in retained soils and in retaining wall foundation soils.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

1. For installed systems indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

B. Samples for Verification: For each color and texture of concrete unit required. Submit sections of units not less than 3 inches square.

1. Include one full-size unit for each type of concrete unit required.

C. Qualification Data: For Installer and professional engineer.

D. Product Certificates: For segmental retaining wall units and soil reinforcement, signed by product manufacturer.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Store and handle concrete units and accessories to prevent deterioration or damage due to moisture, temperature changes, contaminants, breaking, chipping, or other causes.

B. Store geosynthetics in manufacturer's original packaging with labels intact. Store on elevated platforms, protected from moisture, sunlight, chemicals, flames, temperatures above 160 deg F or below 32 deg F, and other conditions that might damage them. Verify identification of geosynthetics before using and examine them for defects as material is placed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Segmental Retaining Wall Units:
 a. Licensees of Allan Block Corporation.
 b. Licensees of Anchor Wall Systems, Inc.
 c. Licensees of Geo Western, Inc.
 d. Licensees of ICD Corporation.
 e. Licensees of Keystone Retaining Wall Systems, Inc.
 f. Licensees of Reinforced Earth Company (The).
 g. Licensees of Ridge Rock Retaining Walls Inc.
 h. Licensees of Risi Stone Systems; a division of Rothbury International Inc.
 i. Licensees of Rockwood Retaining Wall Systems.
 j. Licensees of Tensar Earth Technologies, Inc.
 k. Licensees of Versa-Lok Retaining Wall Systems; a division of Kiltie Corp.

2. Soil Reinforcement:
 a. Civil Engineering Fabrics; a division of BP Amoco Chemicals.
 b. Colbond Geosynthetics.
 c. HUESKER, Inc.
 d. Luckenhaus, Inc.
 e. Strata Systems, Inc.
 f. TC Mirafi.
 g. TENAX Corporation.
 h. Tensar Earth Technologies, Inc.
 i. Versa-Lok Retaining Wall Systems; a division of Kiltie Corp.

2.2 SEGMENTAL RETAINING WALL UNITS

A. Concrete Units: ASTM C 1372, Normal Weight, except that units shall not differ in height more than plus or minus 1/16 inch from specified dimension.

 1. Provide units that interlock with courses above and below by means of integral lugs or lips, pins, or clips.

B. Colors: As selected by Architect from manufacturer's full range.

C. Shapes: Provide units of any basic shape and dimensions that will produce segmental retaining walls of dimensions and profiles indicated without interfering with other elements of the Work and as follows:
1. Exposed Face: Machine-split textured, shaped face with deeply beveled vertical edges.

D. Cap Units: Provide cap units of same shape as other units with smooth, as-cast top surfaces without holes or lugs.

E. Special Units: Provide corner units, end units, and other shapes as needed to produce segmental retaining walls of dimensions and profiles indicated and to provide texture on exposed surfaces matching face.

2.3 INSTALLATION MATERIALS

A. Pins: Product supplied by segmental retaining wall unit manufacturer for use with units provided, made from nondegrading polymer reinforced with glass fibers.

B. Clips: Product supplied by segmental retaining wall unit manufacturer for use with units provided, made from nondegrading polymer reinforced with glass fibers.

C. Cap Adhesive: Product supplied or recommended by segmental retaining wall unit manufacturer for adhering cap units to units below.

D. Leveling Base: Comply with requirements in Division 2 Section "Subdrainage" for drainage fill.

E. Drainage Fill: Comply with requirements in Division 2 Section "Subdrainage."

F. Reinforced Soil Fill: ASTM D 2487; GW, GP, SW, SP, and SM soil classification groups or a combination of these groups; free of debris, waste, frozen materials, vegetation, and other deleterious matter; meeting the following gradation according to ASTM C 136: 20 to 100 percent passing No. 4 sieve, 0 to 60 percent passing No. 40 sieve, 0 to 35 percent passing No. 200 sieve; and with fine fraction having a plasticity index of less than 20.

G. Nonreinforced Soil Fill: Comply with requirements in Division 2 Section "Earthwork" for satisfactory soils.

H. Filter Fabric: Comply with requirements in Division 2 Section "Subdrainage."

I. Drainage Pipe: Comply with requirements in Division 2 Section "Subdrainage."

J. Soil Reinforcement: Molded geogrid made from high-density polyethylene, specifically manufactured for use as soil reinforcement and meeting the physical property, long-term design strength, interaction coefficient, coefficient of soil/geosynthetic friction, and ultimate connection strength requirements of the certifying engineer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for excavation tolerances, condition of subgrades, and other conditions affecting performance of segmental retaining walls.

1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 RETAINING WALL INSTALLATION
A. General: Place units according to NCMA's "Segmental Retaining Wall Installation Guide" and segmental retaining wall unit manufacturer's written instructions. Lay units in running bond.
 1. Form corners and ends by using special units.

B. Leveling Base: Place and compact base material to thickness indicated and with not less than 95 percent maximum dry unit weight according to ASTM D 698.

C. First Course: Place first course of segmental retaining wall units on leveling base/course for full length of wall. Place units in firm contact with each other, properly aligned and level.
 1. Tamp units into leveling base as necessary to bring tops of units into a level plane.
 2. Place and compact fill, either drainage or soil fill as indicated, to top of first course. Place fill on both sides of wall at same time without disturbing alignment of units. Fill voids between and within units with drainage fill.

D. Subsequent Courses: Remove excess fill and debris from tops of units in course below. Place units in firm contact, properly aligned, and directly on course below.
 1. For units with lugs designed to fit into holes in adjacent units, lay units so lugs are accurately aligned with holes, and bedding surfaces are firmly seated on beds of units below.
 2. For units with lips at front of units, slide units as far forward as possible for firm contact with lips of units below.
 3. For units with pins, install pins and align units according to manufacturer's written instructions.
 4. For units with clips, install clips and align units according to manufacturer's written instructions.
 5. Place fill on both sides of wall at same time, where both sides are indicated to be filled.
 6. Fill voids between and within units with drainage fill.

E. Cap Units: Place cap units and secure with cap adhesive according to manufacturer's written instructions.

3.3 FILL PLACEMENT

A. General: Comply with requirements in Division 2 Section "Earthwork," NCMA's "Segmental Retaining Wall Installation Guide," and segmental retaining wall unit manufacturer's written instructions.

B. Place, spread, and compact fill in uniform lifts for full width and length of embankment as wall is laid. Begin at back of wall and place and spread fill toward embankment.
 1. Use only hand-operated compaction equipment within 48 inches of wall, or one-half of height above bottom of wall, whichever is greater.
 2. Compact drainage fill to not less than 95 percent maximum dry unit weight according to ASTM D 698.
 3. Compact soil fill to comply with Division 2 Section "Earthwork."

C. Place filter fabric against back of wall and place layer of drainage fill at least 12 inches deep behind filter fabric to within 12 inches of finished grade. Place another layer of filter fabric between drainage fill and soil fill.
 1. Place drainage pipe in drainage fill as indicated, sloped 1:50 to drain.
 2. Place impervious fill over top edge of drainage fill layer.

D. Place soil reinforcement in horizontal joints of retaining wall where indicated and according to soil reinforcement manufacturer's written instructions. Embed reinforcement a minimum of 8 inches into retaining wall and stretch tight over compacted backfill. Anchor soil reinforcement before placing fill on it.
1. Place additional soil reinforcement at corners and curved walls to provide continuous reinforcement and to comply with manufacturer’s written instructions.
2. Place geosynthetics with seams, if any, oriented perpendicular to segmental retaining walls.
3. Do not dump fill material directly from trucks onto geosynthetics.
4. Place at least 6 inches of fill over reinforcement before compacting with tracked vehicles or 4 inches before compacting with rubber-tired vehicles.
5. Do not turn vehicles on fill until first layer of fill is compacted and second layer is placed over each soil-reinforcement layer.

3.4 CONSTRUCTION TOLERANCES

A. Variation from Level: For bed-joint lines along walls, do not exceed 1-1/4 inches in 10 feet, 3 inches maximum.
B. Variation from Indicated Batter: For slope of wall face, do not vary from indicated slope by more than 1-1/4 inches in 10 feet.
C. Variation from Indicated Wall Line: For walls indicated as straight, do not vary from straight line by more than 1-1/4 inches in 10 feet.

3.5 FIELD QUALITY CONTROL

A. Comply with requirements in Division 2 Section "Earthwork" for in-place compaction testing.

1. In each compacted backfill layer, perform at least 1 field in-place compaction test for each 150 feet or less of segmental retaining wall length.

3.6 ADJUSTING AND CLEANING

A. Remove and replace segmental retaining wall construction of the following description:

1. Broken, chipped, stained, or otherwise damaged units. Units may be repaired if methods and results are approved by Architect.
2. Segmental retaining walls that do not match approved Samples and mockups.
3. Segmental retaining walls that do not comply with other requirements indicated.

B. Replace units so segmental retaining wall matches approved Samples and mockups, complies with other requirements, and shows no evidence of replacement.

END OF SECTION 323223
SECTION 329200 - TURF AND GRASSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sodding.
 2. Planting soil and amendments.

1.3 QUALITY ASSURANCE

A. Soil-Testing Laboratory Qualifications: An independent laboratory or university laboratory, recognized by the State Department of Agriculture, with the experience and capability to conduct the testing indicated and that specializes in types of tests to be performed.

B. Soil Analysis: For each unamended soil type, furnish soil analysis and a written report by a qualified soil-testing laboratory stating percentages of organic matter; gradation of sand, silt, and clay content; cation exchange capacity; sodium absorption ratio; deleterious material; pH; and mineral and plant-nutrient content of the soil.

 1. Testing methods and written recommendations shall comply with USDA’s Handbook No. 60.
 2. The soil-testing laboratory shall oversee soil sampling, with depth, location, and number of samples to be taken per instructions from Architect. A minimum of three representative samples shall be taken from varied locations for each soil to be used or amended for planting purposes.

 a. Based on the test results, state recommendations for soil treatments and soil amendments to be incorporated. State recommendations in weight per 1000 sq. ft. or volume per cu. yd. for nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce satisfactory planting soil suitable for healthy, viable plants.
 b. Report presence of problem salts, minerals, or heavy metals, including aluminum, arsenic, barium, cadmium, chromium, cobalt, lead, lithium, and vanadium. If such problem materials are present, provide additional recommendations for corrective action.

C. Authorities Having Jurisdiction: Conform to requirements of all authorities having jurisdiction.

 1. Where conflicts exist between the requirements of the Contract Documents and those of authorities having jurisdiction, the higher quality or more restrictive requirement shall apply.
1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of conformance with state and federal laws, as applicable.

B. Sod: Harvest, deliver, store, and handle sod according to requirements in "Specifications for Turfgrass Sod Materials" and "Specifications for Turfgrass Sod Transplanting and Installation" in TPI's "Guideline Specifications to Turfgrass Sodding." Deliver sod in time for planting within 24 hours of harvesting. Protect sod from breakage and drying.

C. Bulk Materials:
 1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
 2. Provide erosion-control measures to prevent erosion or displacement of bulk materials, discharge of soil-bearing water runoff, and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
 3. Accompany each delivery of bulk fertilizers, lime, and soil amendments with appropriate certificates.

1.5 PROJECT CONDITIONS

A. Cold-Weather Protection: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen subgrade, base course, or setting beds.

B. Weather Limitations: Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions.

1.6 MAINTENANCE SERVICE

A. Initial Maintenance Service: Provide full maintenance by skilled employees of landscape Installer. Maintain as required in Part 3. Begin maintenance immediately after each area is planted and continue until Final Completion of project.

PART 2 - PRODUCTS

2.1 TURFGRASS SOD

A. Turfgrass Sod: Certified Number 1 Quality/Premium, including limitations on thatch, weeds, diseases, nematodes, and insects, complying with "Specifications for Turfgrass Sod Materials" in TPI's "Guideline Specifications to Turfgrass Sodding." Furnish viable sod of uniform density, color, and texture, strongly rooted, and capable of vigorous growth and development when planted.

 1. Turfgrass Species: as indicated on Plant Schedule.
 2. Sod shall be delivered to the project site within twenty four (24) hours after harvest at the nursery, and shall be sheltered from the sun and wind until planted by the Contractor.
 3. Contractor shall lay sod within thirty six (36) hours after harvest. Sod shall not be laid where the roots have dried due to exposure from the sun and wind, or has thinned for these or other reasons.
2.2 INORGANIC SOIL AMENDMENTS

A. Provide inorganic soil amendments in quantities and proportions recommended by soil analysis report.

B. Lime: ASTM C 602, agricultural liming material containing a minimum of 80 percent calcium carbonate equivalent and as follows:
 1. Class: O, with a minimum of 95 percent passing through No. 8 sieve and a minimum of 55 percent passing through No. 60 sieve.
 2. Provide lime in form of ground dolomitic limestone.

C. Sulfur: Granular, biodegradable, containing a minimum of 90 percent sulfur, and with a minimum of 99 percent passing through No. 6 sieve and a maximum of 10 percent passing through No. 40 sieve.

D. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.

E. Aluminum Sulfate: Commercial grade, unadulterated.

F. Perlite: Horticultural perlite, soil amendment grade.

G. Agricultural Gypsum: Minimum 90 percent calcium sulfate, finely ground with 90 percent passing through No. 50 sieve.

H. Sand: Clean, washed, natural or manufactured, and free of toxic materials.

I. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight.

J. Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight.

2.3 ORGANIC SOIL AMENDMENTS

A. Provide organic soil amendments in quantities and proportions recommended by soil analysis report.

B. Compost: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1/2-inch sieve; soluble salt content of 5 to 10 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:
 1. Organic Matter Content: 50 to 60 percent of dry weight.
 2. Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.

C. Sphagnum Peat: Partially decomposed sphagnum peat moss, finely divided or of granular texture, with a pH range of 3.4 to 4.8.

D. Wood Derivatives: Decomposed, nitrogen-treated sawdust, ground bark, or wood waste; of uniform texture and free of chips, stones, sticks, soil, or toxic materials.
 1. In lieu of decomposed wood derivatives, mix partially decomposed wood derivatives with ammonium nitrate at a minimum rate of 0.15 lb/cu. ft. of loose sawdust or ground bark, or with ammonium sulfate at a minimum rate of 0.25 lb/cu. ft. of loose sawdust or ground bark.
E. Manure: Well-rotted, unleached, stable or cattle manure containing not more than 25 percent by volume of straw, sawdust, or other bedding materials; free of toxic substances, stones, sticks, soil, weed seed, and material harmful to plant growth.

2.4 FERTILIZERS

A. Provide fertilizers in quantities and proportions recommended by soil analysis report.

B. Bonemeal: Commercial, raw or steamed, finely ground; a minimum of 4 percent nitrogen and 20 percent phosphoric acid.

C. Superphosphate: Commercial, phosphate mixture, soluble; a minimum of 20 percent available phosphoric acid.

D. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:

1. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

E. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:

1. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

2.5 PLANTING SOILS

A. Planting Soil: Imported topsoil or manufactured topsoil from off-site sources. Obtain topsoil displaced from naturally well-drained construction or mining sites where topsoil occurs at least 4 inches deep; do not obtain from agricultural land, bogs or marshes.

1. Additional Properties of Imported Topsoil or Manufactured Topsoil: Screened and free of stones 1 inch or larger in any dimension; free of roots, plants, sod, clods, clay lumps, pockets of coarse sand, paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, building debris, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, acid, and other extraneous materials harmful to plant growth; free of obnoxious weeds and invasive plants including quackgrass, Johnsongrass, poison ivy, nutfedge, nimblewill, Canada thistle, bindweed, bentgrass, wild garlic, ground ivy, perennial sorrel, and broomgrass; not infested with nematodes, grubs, other pests, pest eggs, or other undesirable organisms and disease-causing plant pathogens; friable and with sufficient structure to give good tilth and aeration. Continuous, air-filled, pore-space content on a volume/volume basis shall be at least 15 percent when moisture is present at field capacity. Soil shall have a field capacity of at least 15 percent as measured on a dry weight basis.

2. Mix imported topsoil or manufactured topsoil with soil amendments and fertilizers in the quantities recommended in the soil analysis report to produce planting soil.

2.6 PESTICIDES AND HERBICIDES

A. General: Pesticide, registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and
application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

B. Pre-Emergent Herbicide (Selective and Non-Selective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.

C. Post-Emergent Herbicide (Selective and Non-Selective): Effective for controlling weed growth that has already germinated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to be planted for compliance with requirements and other conditions affecting performance.

1. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.
2. Do not mix or place soils and soil amendments in frozen, wet, or muddy conditions.
3. Suspend soil spreading, grading, and tilling operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.
4. Uniformly moisten excessively dry soil that is not workable and which is too dusty.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Architect and replace with new planting soil.

3.2 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities, trees, shrubs, and plantings from damage caused by planting operations.

1. Protect grade stakes set by others until directed to remove them.

B. Install erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

3.3 TURF AREA PREPARATION

A. Limit turf subgrade preparation to areas to be planted.

B. Newly Graded Subgrades: Loosen subgrade to a minimum depth of 6 inches. Remove stones larger than 1 inch in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.

1. Apply superphosphate fertilizer directly to subgrade before loosening.
2. Thoroughly blend planting soil off-site before spreading or spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil.
a. Delay mixing fertilizer with planting soil if planting will not proceed within a few days.
b. Mix lime with dry soil before mixing fertilizer.

3. Spread planting soil to the depth indicated or to a min. depth of 8 inches, but not less than required to meet finish grades after light rolling and natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.
 a. Spread approximately 1/2 the thickness of planting soil over loosened subgrade. Mix thoroughly into top 4 inches of subgrade. Spread remainder of planting soil.
 b. Reduce elevation of planting soil to allow for soil thickness of sod.

C. Unchanged Subgrades: If turf is to be planted in areas unaltered or undisturbed by excavating, grading, or surface-soil stripping operations, prepare surface soil as follows:
 1. Remove existing grass, vegetation, and turf. Do not mix into surface soil.
 2. Loosen surface soil to a depth of at least 6 inches. Apply soil amendments and fertilizers according to planting soil mix proportions and mix thoroughly into top 4 inches of soil. Till soil to a homogeneous mixture of fine texture.
 a. Apply superphosphate fertilizer directly to surface soil before loosening.
 3. Remove stones larger than 1 inch in any dimension and sticks, roots, trash, and other extraneous matter.
 4. Legally dispose of waste material, including grass, vegetation, and turf, off Owner's property.

D. Finish Grading: Grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1/2 inch of finish elevation. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit finish grading to areas that can be planted in the immediate future.

E. Moisten prepared area before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

F. Before planting, obtain Architect's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.4 SODDING

A. Lay sod within 36 hours of harvesting. Do not lay sod if ground is frozen or muddy.
 1. Do not lay dormant sod without prior approval of Architect.

B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to subgrade or sod during installation. Tamp and roll lightly to ensure contact with subgrade, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.
 1. Lay sod across angle of slopes exceeding 1:3.
 2. Anchor sod on slopes exceeding 1:4 with steel staples spaced as instructed by sod manufacturer but not less than 2 anchors per sod strip to prevent slippage.
C. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inches below sod.

3.5 TURF MAINTENANCE

A. Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.

1. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
2. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use integrated pest management practices whenever possible to minimize the use of pesticides and reduce hazards.

B. Watering: Keep turf uniformly moist to a depth of 4 inches.

1. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch.
2. Water turf with fine spray at a minimum rate of 1 inch per week unless rainfall precipitation is adequate.

C. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than 1/3 of grass height. Remove no more than 1/3 of grass-leaf growth in initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height:

1. Mow bermudagrass to a height of 1/2 to 1 inch.

D. Turf Postfertilization: Apply fertilizer after initial mowing and when grass is dry.

1. Use fertilizer that will provide actual nitrogen of at least 1 lb/1000 sq. ft. to turf area.

3.6 SATISFACTORY TURF

A. Turf installations shall meet the following criteria as determined by Architect:

1. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, even-colored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities.

B. Use specified materials to reestablish turf that does not comply with requirements and continue maintenance until turf is satisfactory.

3.7 PESTICIDE AND HERBICIDE APPLICATION

A. Apply pesticides and other chemical products and biological control agents in accordance with requirements of authorities having jurisdiction and manufacturer's written instructions. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.
B. Post-Emergent Herbicides (Selective and Non-Selective): Apply only as necessary to treat already-germinated weeds and in accordance with manufacturer's written recommendations.

3.8 CLEANUP AND PROTECTION

A. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.

B. Erect temporary fencing or barricades and warning signs as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after plantings are established.

1. Unless otherwise instructed, do not permit traffic on grass paving areas until turf is established:

 a. For a minimum of 3 weeks on sodded grass pavements.

C. Remove nondegradable erosion-control measures after grass establishment period.

END OF SECTION 329200
SECTION 331100 - WATER DISTRIBUTION SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

1. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes water-distribution piping and related components outside the building for water service and fire-service mains.

B. The Section includes general requirements that will apply to all water systems. In addition, the operating utility (the authority having jurisdiction) has numerous specific requirements for materials and execution that are too varied to cover in this specification.

1. For this Project, the operating utility is Gaffney Board of Public Works.
2. Materials and execution requirements that are not covered in this Section shall comply with the requirements of the operating utility.
3. Materials and execution requirements that are covered, but are in conflict with the requirements of the operating utility, shall comply with the higher quality or more restrictive requirement.

C. Utility-furnished products include water meters that will be furnished to the site, ready for installation by Contractor.

1. Tap and Impact Fees will be paid directly to the utility by the Owner and payment of said fees shall not be included in the Contractor’s scope of services.

1.3 DEFINITIONS

A. CTS: Copper Tubing Size.

B. DIP: Ductile iron pipe.

C. EPDM: Ethylene propylene diene terpolymer rubber.

D. HDPE: High density polyethylene pipe.

E. LLDPE: Linear, low-density polyethylene plastic.

F. NPS: Nominal pipe size.

G. PE: Polyethylene plastic.

H. PVC: Polyvinyl chloride plastic.
1.4 SUBMITTALS

A. Product Data: For each type of product indicated.
 1. Ductile iron pipe.
 2. Polyvinyl chloride pipe.
 3. Tees, elbows, reducers and similar fittings.
 4. Joint restraint.
 5. Valves and valve boxes.
 6. Tapping sleeve assemblies.
 7. Fire hydrants.
 8. Fire department connections.
 9. Service connection piping and fittings

B. Shop Drawings: Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.

C. Field quality-control test reports.

D. Bacteriological test reports.

E. Record Drawings: Include the following, as required by authorities having jurisdiction, for use by Owner's surveyor in preparing record drawings:
 1. Location of water mains from centerline of road or curb. Contractor shall coordinate with Owner's surveyor to allow for location of water main prior to backfilling.
 2. Location of fire hydrants, valves, tees, elbows, reducers, and other fittings.
 3. Location and elevation of any other above ground appurtenances.
 4. Designation, size and length of water lines between fittings.
 5. Location and depth below finished grade of service connections.

F. Minutes of preinstallation conference.

1.5 QUALITY ASSURANCE

A. Regulatory Requirements:
 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 3. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

B. Preinstallation Conference: Conduct conference to comply with requirements in Division 01 Section "Project Management and Coordination."
 1. Review methods and procedures related to water system installation including, but not limited to, the following:
 a. Review requirements of the operating utility.
 b. Review site conditions and preparatory work.
 c. Review requirements for protecting work.
d. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
e. Review inspection schedule and procedures required to monitor and document quality assurance.

C. Piping materials shall bear label, stamp, or other markings of specified testing agency.

D. Comply with ASTM F 645 for selection, design, and installation of thermoplastic (PVC and HDPE) water piping.

E. Comply with FMG's "Approval Guide" or UL's "Fire Protection Equipment Directory" for fire-service-main products.

F. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.

G. NSF Compliance: Comply with NSF 61 for materials for water-service piping and specialties for domestic water.

H. Lead Free Requirement: Section 1417 of the Federal Safe Drinking Water Act has mandated that "Any pipe, solder, or flux used after June 19, 1986, in the installation or repair of public water systems and plumbing used for drinking water must be "Lead Free". The act defines "Lead Free" as less than 0.2-percent lead in solder and flux and less than 8.0-percent lead in pipes and fittings.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:

1. Ensure that valves are dry and internally protected against rust and corrosion.
2. Protect valves against damage to threaded ends and flange faces.
3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, including fire hydrants, according to the following:

1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
2. Protect from weather. Store indoors and maintain temperature higher than ambient dew-point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use hand wheels or stems as lifting or rigging points.

D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.

F. Protect flanges, fittings, and specialties from moisture and dirt.

G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.
1.7 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:

1. Notify Architect, Owner, and Utility having jurisdiction no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of water-distribution service without Architect’s written permission.

1.8 COORDINATION

A. Where required, coordinate connection to water main with utility company.

PART 2 - PRODUCTS

2.1 STANDARDS OF OPERATING UTILITY

A. See paragraph 1.2.B above for information regarding materials standards of the operating utility.

2.2 DUCTILE-IRON PIPE (DIP)

A. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless mechanical joint or flanged ends are indicated on Drawings or required by operating utility.

1. Gaskets: AWWA C111, rubber. Use only non-toxic lubricants approved by the manufacturer and that will not support microbiological growth. Vegetable shortening shall not be used.
2. Pressure class: Class 350 for NPS 3 to NPS 12; Class 250 for NPS 14 and larger.
4. Laying length: 18 feet-0 inches to 20 feet-0 inches.
5. Pipe size: No metric sized pipe shall be permitted.
6. Testing: All pipe lengths shall be tested to 500 psi working pressure prior to shipping.
7. Marking: Clearly mark each joint of pipe at convenient intervals, as follows:

 a. Manufacturer’s name.
 b. Nominal pipe size.
 c. Letters “DI” or “Ductile”.
 d. Weight.
 e. Pressure Class.

8. Products: Subject to compliance with requirements, provide products by one of the following:

 b. Griffin Pipe Co.
 c. McWane Cast Iron Pipe Co.
 d. U.S. Pipe Co.

B. Flanged Joints: where indicated on Drawings or where required by operating utility and in accordance with standards of operating utility.
C. Mechanical Joints: where indicated on Drawings or where required by operating utility and in accordance with standards of operating utility.

2.3 POLYVINYL CHLORIDE PLASTIC PIPE (PVC)

A. PVC, AWWA Pipe: AWWA C900 (4” thru 12” NPS) or AWWA C905 (14” and larger NPS), Class 235, with bell end with gasket, and with spigot end.

1. Gaskets: ASTM F 477, rubber. Use only non-toxic lubricants approved by the manufacturer and that will not support microbiological growth. Vegetable shortening shall not be used.

3. Laying length: 18 feet-0 inches to 20 feet-0 inches

4. Pipe size: comply with outside diameter dimensions of DIP.

6. Pipe color: blue.

7. Comply with UL 1285 for fire-service mains if indicated.

8. The use of solvent weld joints is prohibited.

9. Marking: Clearly mark each joint of pipe at convenient intervals, as follows:

 a. Manufacturer’s name.
 b. Nominal pipe size.
 c. Pressure class.
 d. Material designation.
 e. National Sanitation Foundation (NSF) seal.

2.4 FITTINGS (NPS 3 AND LARGER)

A. Mechanical-Joint, Ductile-Iron Fittings: For NPS 3 and larger, AWWA C110, ductile-iron standard pattern or AWWA C153, ductile-iron compact pattern. For NPS 2 and smaller see “Service Connections” article below.

1. Glands and Gaskets: AWWA C111, ductile-iron glands, rubber gaskets. Use only non-toxic lubricants approved by the manufacturer and that will not support microbiological growth. Vegetable shortening shall not be used.

2. Nuts and Bolts: 316 Stainless Steel, material shall be marked on nuts and bolts.

3. Material: Cast iron fittings are not permitted.

4. Pressure class: Class 250.

5. Fitting size: Metric sized fittings are not permitted.

7. Products: Subject to compliance with requirements, provide products by one of the following:

 b. Griffin Pipe Co.
 c. McWane Cast Iron Pipe Co.
 d. U.S. Pipe Co.

2.5 RESTRAINED JOINTS

A. Push-on (DIP only) or mechanical joint type joint restraint where indicated on Drawings or where required by operating utility and in accordance with standards of operating utility.
1. Push-on Gaskets: AWWA C 111, for use on DIP only, approved for use on the pipe on which it is installed. Use only non-toxic lubricants approved by the manufacturer and that will not support microbiological growth. Vegetable shortening shall not be used.

2. Mechanical Joint Glands, Gaskets and Bolts: AWWA C 111, the gland, gasket and bolts shall be part of an integral system by the same manufacturer and approved for use on the pipe on which it is installed. Installation shall require only standard mechanical joint assembly techniques. Bolts shall be 316 Stainless Steel. Use only non-toxic lubricants approved by the manufacturer and that will not support microbiological growth. Vegetable shortening shall not be used.

4. PVC Pressure Rating: rated at a 2:1 safety factor for the pipe on which it is installed.

5. Products: Subject to compliance with requirements, provide products by one of the following:

 b. Griffin Pipe Co.
 c. McWane Cast Iron Pipe Co.
 d. U.S. Pipe Co.
 e. Ebba Iron Inc.
 f. Ford Meter Box Co.
 g. Sigma Corporation.

2.6 VALVES (NPS 3 AND LARGER)

A. General:

1. For NPS 2 and smaller: see “Service Connections” article below.

2. Available Manufacturers: Subject to compliance with these requirements and the standards of operating utility, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 c. Crane Co.; Crane Valve Group.
 d. East Jordan Iron Works, Inc.
 e. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 f. McWane, Inc.; Kennedy Valve Div.
 g. McWane, Inc.; M & H Valve Company Div.
 h. McWane, Inc.; Tyler Pipe Div.; Utilities Div.
 i. Mueller Co.; Water Products Div.
 j. U.S. Pipe and Foundry Company.

3. Opening direction: As required by operating utility.

4. Operating system: 2” square operating nut for below grade installation, wheel for above grade or vault installations.

5. Exterior Nuts and Bolts: 316 stainless steel

B. AWWA, Gate Valves:

1. Nonrising-Stem, Resilient-Seated Gate Valves:

 a. Description: For NPS 3 to NPS 12, gray- or ductile-iron body and bonnet; with bronze or ductile-iron gate, resilient seats, bronze stem, and stem nut.

 1) Standard: AWWA C509.
2) Minimum Pressure Rating: 250 psig.
3) End Connections: AWWA C 111, mechanical joint.

C. UL/FMG, Gate Valves:

1. UL/FMG, Nonrising-Stem Gate Valves:

 a. Description: Gray- or ductile-body and bonnet with flange for indicator post, bronze seating material, and inside screw.

 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Flanged or mechanical joint as required.

 b. Indicator Posts: UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.

2. OS&Y, Rising-Stem Gate Valves:

 a. Description: Iron body and bonnet and bronze seating material.

 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Flanged.

D. Tapping-Sleeve Assemblies:

1. Description: Sleeve and valve compatible with drilling machine.

 a. Standard: MSS SP-60.
 b. Tapping Sleeve: Ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
 c. Pressure Rating: 250 psig.
 d. Tapping Valve: AWWA C 509, cast or ductile-iron, nonrising-stem, resilient-seated gate valve.
 e. Valve End Connections: Flanged (ANSI B16.1) for end mating tapping-sleeve flange and mechanical joint (AWWA C111) for opposite end.

2.7 VALVE ACCESSORIES (NPS 3 AND LARGER)

A. Valve Boxes:

1. Material: Cast or ductile-iron, suitable for heavy traffic use and conforming to ASTM A-48, Class 20.

 a. Available Manufacturers: Subject to compliance with these requirements and the standards of operating utility, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1) East Jordan Iron Works
 2) Tyler Pipe
 3) Bingham and Taylor.
b. Model: as required by the operating utility.
c. Elevation Adjustment: as required by operating utility.
d. Inside Shaft Diameter: 5-1/4 inches.
e. Coating: Asphaltic, not less than 1 mil thick.
f. Cover: Heavy cast iron with the word WATER cast in raised letters.
g. Base: Enlarged to enclose and protect valve operating nut without actually being in contact with pipe or valve.

B. Valve Box Protection Rings:

1. Material: Reinforced, precast 3,000 psi concrete.
 b. Outside Diameter: 27 inches.
 c. Thickness: 5 inches at inner diameter with top tapering to 2 inches at outer diameter.
 d. Reinforcing: Two #3 rebar, one at 21 inch diameter and one at 24 inch diameter.
 e. Min. Weight: 110 lbs.

2.8 FIRE HYDRANTS

A. Dry-Barrel Fire Hydrants:

1. Available Manufacturers: Subject to compliance with these requirements and the standards of authorities having jurisdiction, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 d. American Foundry Group, Inc.
 e. East Jordan Iron Works, Inc.
 f. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 g. McWane, Inc.; Kennedy Valve Div.
 h. McWane, Inc.; M & H Valve Company Div.
 i. Mueller Co.; Water Products Div.
 j. Troy Valve; a division of Penn-Troy Manufacturing, Inc.
 k. U.S. Pipe and Foundry Company.

2. Description: Freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets, 5-1/4-inch main valve, drain valve, and NPS 6 mechanical-joint inlet. Include interior coating according to AWWA C550. Hydrant shall have cast-iron body, compression-type valve opening against pressure and closing with pressure.
 b. Pressure Rating: 150 psig minimum.
 c. Outlet Threads: NFPA 1963, with external hose thread used by local fire department. Include cast-iron caps with steel chains.
 d. Operating and Cap Nuts: Pentagon, 1-1/2 inches point to flat.
 e. Direction of Opening: as required by authorities having jurisdiction.
 f. Exterior Finish: Paint type and colors as required by authorities having jurisdiction.
2.9 FIRE DEPARTMENT CONNECTIONS

A. Fire Department Connections:

1. Available Manufacturers: Subject to compliance with these requirements and the standards of authorities having jurisdiction, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Fire End & Croker Corporation.
 c. Guardian Fire Equipment, Inc.
 d. Kidde Fire Fighting.
 e. Potter Roemer.
 f. Reliable Automatic Sprinkler Co., Inc.

2. Description: Freestanding, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, and threaded bottom outlet. Include lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18-inch-high brass sleeve; and round escutcheon plate.
 b. Connections: as indicated.
 c. Inlet Alignment: as indicated.
 d. Finish Including Sleeve: as indicated.

2.10 WATER METERS

A. See paragraph 1.2.C above regarding water meters.

2.11 CONCRETE VAULTS

A. Description: Precast, reinforced-concrete vault, designed for A-16 load designation according to ASTM C 857 and made according to ASTM C 858.

1. Access Hatch: of type and configuration required by operating utility.
 a. Size: Sufficient to allow easy removal of equipment housed by vault.
 b. Material: Aluminum.
 c. Load Rating:
 1) 300 psf for hatches not subjected to traffic.
 2) AASHTO H-20 for hatches in traffic areas.
 d. Available Manufacturers: Subject to compliance with these requirements and the standards of operating utility, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Bilco Co.
 2) US Foundry, Inc.
 3) Halliday Products, Inc.
2. Drain: ASME A112.6.3, cast-iron floor drain with outlet of size indicated. Include body anchor flange, light-duty cast-iron grate, bottom outlet, and integral or field-installed bronze ball or clapper-type backwater valve.

2.12 CORROSION-PROTECTION PIPING ENCASEMENT

A. Encasement for Underground Metal Pipe, Fittings and Appurtenances:

1. Standards: ASTM A 674 or AWWA C105.
2. Form: Tube.
3. Material: LLDPE film of 0.008-inch minimum thickness.

2.13 PIPE DETECTION MATERIALS

A. Detectable Warning Tape: specified in Section titled “Earth Moving”.

B. Locator Wire In addition to warning tape where required by operating utility. Specified in Section titled “Earth Moving”.

PART 3 - EXECUTION

3.1 STANDARDS OF OPERATING UTILITY

A. See paragraph 1.2.B above for information regarding execution standards of the operating utility.

3.2 EARTHWORK

A. Refer to Section titled “Earth Moving” for excavating, trenching, and backfilling.

B. Refer to Section titled “Earth Moving” for installation requirements of pipe detection materials.

3.3 PIPING APPLICATIONS

A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.

1. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.
2. Do not use flanges or unions for underground piping.
3. Flanges, unions, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.
4. Restrained joints shall be provided where required by the operating utility and where indicated on Drawings.
5. Underground Water Main Piping NPS 3 and larger shall be the following, subject to approval by the operating utility and as indicated on the Drawings:

 a. Ductile-iron, push-on-joint pipe with ductile-iron, mechanical-joint fittings and gasketed joints.
 b. PVC, push-on-joint pipe with ductile-iron, mechanical-joint fittings and gasketed joints.
3.4 VALVE APPLICATIONS

A. General Application: Use mechanical-joint-end valves for NPS 3 and larger underground installation. Use flanged-end valves for installation above ground or in vaults. Use UL/FMG, nonrising-stem gate valves for installation with indicator posts. Use corporation stops and curb stops with ends compatible with piping, for NPS 2 and smaller installation.

B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

3. Use the following for valves in vaults and above ground:
 a. Gate Valves for Water Mains: NPS 3 and Larger: AWWA, cast iron, OS&Y rising stem, resilient seated.

3.5 PIPING INSTALLATION

A. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.

1. Make connections larger than NPS 2 with tapping machine according to the following:
 a. Install tapping sleeve and tapping valve according to MSS SP-60.
 b. Install tapping sleeve on pipe to be tapped. Position flanged outlet for tapping valve.
 c. Install tapping valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.
 d. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Extract bit and close valve. Remove tapping machine.
 e. Slightly open valve briefly to flush out filings. Close valve and connect water-piping.

B. Install ductile-iron pipe according to AWWA C600, AWWA M41 and the standards of the operating utility.

1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.

C. Install PVC, AWWA pipe according to ASTM F 645, AWWA M23 and the standards of the operating utility.

D. Install fire-service-main piping according to NFPA 24 and standards of authorities having jurisdiction

1. For DIP, install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.

E. Bury piping with depth of cover over top at least 36 inches, with top at least 12 inches below level of maximum frost penetration, and according to the following:
1. Under Driveways and Streets: With at least 36 inches cover over top.
2. Under Railroad Tracks: With at least 48 inches cover over top.
3. In Loose Gravelly Soil and Rock: With at least 12 inches additional cover.

F. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.

G. Install underground piping with restrained joints at horizontal and vertical changes in direction, at locations indicated on Drawings and where required by the operating utility. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports as accepted by the operating utility.

3.6 JOINT CONSTRUCTION

A. Make pipe joints according to the following (as applicable):

1. Ductile-Iron Piping, Gasketed Joints for Water Main Piping: AWWA C600, AWWA C111 AWWA M41 and standards of the operating utility.
3. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D2774 or ASTM D3139, pipe manufacturer's written instructions and standards of the operating utility.
4. Dissimilar Materials Piping Joints: Use adapters compatible with both piping materials, with correct OD, and with system working pressure at least equal to pipe. Install according to fitting manufacturer's written instructions

3.7 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water system piping with restrained joints at horizontal and vertical changes in direction, at locations indicated on Drawings, and where required by the operating utility. Subject to acceptance by the operating utility, anchorages and restrained-joint types that may be used include the following:

1. Concrete thrust blocks.
2. Set-screw mechanical retainer glands.
3. Bolted flanged joints.
4. Pipe clamps and tie rods.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:

2. Gasketed-Joint, PVC Water- Piping: According to AWWA M23 and the standards of the operating utility.

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.
3.8 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600, AWWA M44 and standards of the operating utility. Install each underground valve with stem pointing up and with valve box.

B. UL/FMG, Gate Valves: Comply with NFPA 24 and standards of authorities having jurisdiction. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.

3.9 FIRE HYDRANT INSTALLATION

A. General: Install each fire hydrant with separate and adjoining gate valve in supply pipe, anchor with restrained joints or thrust blocks to standards of operating utility, and support in upright position.

B. AWWA Fire Hydrants: Comply with AWWA M17, standards of operating utility, and standards of authorities having jurisdiction.

3.10 FIRE DEPARTMENT CONNECTION INSTALLATION

A. Install in accordance with manufacturer’s written instructions and standards of operating utility.

B. Install straight and plumb and positioned such that the drain port is located below frost line.

C. Install ball drip valves at each check valve for fire department connection to mains.

D. Install protective pipe bollards on two sides of each fire department connection.

3.11 WATER METER INSTALLATION

A. Install utility provided water meters, piping, and specialties according to standards of the operating utility.

B. Water Meters: Install water meters, NPS 3 and larger, in meter vaults. Include shutoff valves on water meter inlets and outlets and valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.

3.12 CONCRETE VAULT INSTALLATION

A. Install precast concrete vaults according to ASTM C 891, the standards of the operating utility, and the standards of the authorities have jurisdiction.

B. Install access hatch according to the manufacturer’s written instructions, the standards of the operating utility, and the standards of the authorities have jurisdiction.

3.13 SERVICE CONNECTION INSTALLATION

A. Extend water-service piping and connect to water meter and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
1. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.

3.14 PIPE DETECTION MATERIALS INSTALLATION

A. Install continuous underground detectable warning tape and locator wire, where required by operating utility, during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping and according to standards of operating utility. Pipe detection materials are specified in Section titled "Earth Moving."

3.15 FIELD QUALITY CONTROL

A. Hydrostatic Test: Conduct test according to AWWA C 600 or C 605, as applicable, and the standards of the authorities having jurisdiction.

1. Pre-testing: The Contractor shall conduct his on pre-tests and confirm that the system is capable of passing prior to requesting the Architect’s presence to witness the test.

 a. Conduct pre-tests only after all installation is complete including joint restraint. Concrete thrust blocks shall have been in place long enough to have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
 b. Leaks shall be immediately repaired and the test shall be repeated until acceptable results are obtained.
 c. The Contractor shall notify the Architect at least 48 hours before the scheduled time of the official test. Passing test performed without the Architect present will be rejected. The Contractor will be required to retest, with the Architect present, without additional compensation.

2. Test Procedures: The line shall be slowly filled with water and all air expelled through air valves or other means. A suitable test pump, water meter and potable water source, furnished by the Contractor, shall be connected to the line by means of a tap (or other suitable means) in the line and the proper test pressure slowly applied to the line. The test pressure shall be maintained for at least two hours.

 a. Test at not less than 150 psi or one-and-one-half times working pressure, whichever is larger, for two hours. If pressure falls more than 5 psi during the test, the pump shall be reactivated and the pressure restored to the starting pressure as often as necessary. At the end of two hours, the pressure shall be restored to the starting pressure a final time and the total quantity of water used (leakage) to maintain the pressure for two hours shall be read.
 b. Open and close each valve within the system several times during the test period.
 c. Service connections, if present, shall be subjected to the hydrostatic test concurrently with the main lines.

3. Allowable Leakage: Allowable leakage shall be determined by the following formula:

 a. \(L = 0.000007SD\sqrt{P} \)
 b. Where:
 c. \(L \) = allowable leakage in gallons per hour.
 d. \(S \) = the total length of the pipe tested in feet.
 e. \(D \) = the nominal diameter of the pipe in inches.
 f. \(P \) = the average test pressure in psi gauge.
B. Preliminary Inspection: Make arrangements with Architect to conduct preliminary final inspection.

 1. Pre-inspection: The Contractor shall conduct his own pre-inspection and confirm that the system is capable of passing prior to requesting the Architect’s presence to witness the preliminary inspection.

 a. Repair or remove and replace components where test results or pre-inspections indicate that they do not comply with specified requirements.

 2. Preliminary Inspection: The Contractor shall notify the Architect at least 48 hours before the scheduled time of the preliminary inspection.

 a. Preliminary inspection shall include but shall not necessarily be limited to the following (as applicable):

 1) A visual inspection of fire hydrants: Requirements include: verification that hydrant is plumb and at correct elevation, verification that caps are in place and operational, verification that hydrant is operational and that no apparent leakage exists, verification that gate valve is in place and operational, verification that hydrant finish is adequate, verification that hydrant location is correct.

 2) A visual inspection of valves: Requirements include: verification that valves are operational, verification that valve boxes are centered, plumb, at correct elevation, and properly backfilled, verification that valve indicates that water line is at adequate depth, verification that valve location is correct, verification that valve protection rings are properly installed, and verification that any valve appurtenances are properly installed and functioning.

 3) A visual inspection of connections to existing water system: Requirements include: verification of adequacy of connection work, verification that leakage does not exist, verification that connection valve is off, verification that safeguards are in place to prevent contamination of existing system by backflow from the new system.

 4) A visual inspection of water meters, backflow preventers and other appurtenances to confirm proper installation.

 b. Repair or remove and replace components where test results or preliminary final inspections indicate that they do not comply with specified requirements.

 c. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

C. Final Inspection: Upon successful completion of the preliminary inspection and after any required documentation has been received and approved by the authorities having jurisdiction, the Contractor, Architect, representatives of the authorities having jurisdiction shall conduct a final inspection of the system.

 a. The Contractor shall notify the Architect at least 48 hours before the desired time of the pre-inspection. The Architect shall endeavor to schedule attendance by representatives of the authorities having jurisdiction at the desired time; however, the Architect provides no guarantee of availability at that time. If unavailable, the Architect will schedule the representative at the soonest reasonable time. Final inspections will not be held without the attendance of both the Architect and a representative of the authorities having jurisdiction.

 b. Final inspection shall include but shall not necessarily be limited to the items listed for the pre-inspection.

 c. Repair or remove and replace components where test results or final inspections indicate that they do not comply with specified requirements.
d. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

D. Reports of Inspection Activities.

1. Where required, the Architect will provide final required documentation to authorities having jurisdiction for the purpose of obtaining a Permit to Operate. Promptly provide any documents required from Contractor. Once Permit to Operate is received, Architect will notify Contractor. Make final connections, when necessary, and place system in operation. Do NOT place system in operation before notification by Architect that Permit to Operate has been received.

3.16 DISINFECTION AND BACTERIOLOGICAL TESTING

A. Clean and disinfect water-distribution piping as follows:

1. Purge and disinfect according to AWWA C 651 and standards of authorities having jurisdiction.
 a. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
 1) Provide adequate openings to ensure that required flushing velocities are met.
 2) Where applicable, provide protective measures as required to ensure that flushing waters do not damage property or cause erosion or flooding.
 b. Fill lines to be disinfected with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for at least 24 hours.
 c. At end of retention time, perform concentration testing of solution at the extreme end of the lines to be disinfected. Solution shall contain not less than 25 ppm of chlorine. If residual chlorine is less than 25 ppm, repeat procedure.
 d. Once an acceptable residual chlorine count is obtained, flush system with clean, potable water until no chlorine remains in water coming from the system.

B. Bacteriological Testing:

1. Perform bacteriological testing according to AWWA C 651 and the standards of the authorities having jurisdiction.
 a. Using methods acceptable to the Architect and authorities having jurisdiction, take two successive samples, at each dead-end line and at points deemed representative of the water in the newly constructed mains, at a period of at least 24 hours apart.
 1) A test for residual chlorine content must be performed within 15 minutes of the time that the sample is drawn. Residual chlorine must be below the level required by AWWA C 651 and the authorities having jurisdiction.
 b. Perform tests, at an independent laboratory certified by the authorities having jurisdiction, for coliform growth, non-coliform growth and residual chlorine.
 c. Should the test values exceed the maximum acceptable values permitted by the authorities having jurisdiction, repeat disinfection, flushing and testing until acceptable values are obtained (with the exception of residual chlorine, in which case the samples are considered invalid and system must be only be flushed and retested).
 d. Prepare reports of purging, disinfecting, and testing activities, including water sample chain of custody and copies of passing bacteriological tests, and provide to Architect.
 1) No more than 30 days can have passed between the time that the first passing sample is drawn and the time the corresponding bacteriological test results are
submitted, along with all other required water system closeout documents, to the authorities having jurisdiction.

e. After passing samples are obtained, make arrangements for follow-up samples to be taken by the authorities having jurisdiction.

f. As before, should the test values of the follow-up samples exceed maximum acceptable values, repeat disinfection, flushing and testing until acceptable values are obtained.

END OF SECTION 331100
SECTION 333100 – GRAVITY FLOW SANITARY SEWERAGE SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

1. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes gravity sanitary sewer piping and related components outside the building.

B. The Section includes general requirements that will apply to all gravity sanitary sewerage systems. In addition, the operating utility (the authority having jurisdiction) has numerous specific requirements for materials and execution that are too varied to cover in this specification.

1. For this Project, the operating utility is Gaffney Board of Public Works.
2. Materials and execution requirements that are not covered in this Section shall comply with the requirements of the operating utility.
3. Materials and execution requirements that are covered, but are in conflict with the requirements of the operating utility, shall comply with the higher quality or more restrictive requirement.

C. Tap and Impact Fees will be paid directly to the utility by the Owner and payment of said fees shall not be included in the Contractor’s scope of services.

1.3 DEFINITIONS

A. DIP: Ductile iron pipe.

B. LLDPE: Linear, low-density polyethylene plastic.

C. NPS: Nominal pipe size.

D. PP: Polypropylene plastic.

E. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

1. Polyvinyl chloride pipe.
2. Wyes, elbows, reducers and similar fittings.
3. Cleanout caps and covers.

B. Field quality-control test reports.
C. Record Drawings: Include the following, as required by authorities having jurisdiction, for use by Owner's surveyor in preparing record drawings:
 1. Designation, size and length of sewer lines between manholes or cleanouts.
 2. Location and depth below finished grade of service connections to sewer main.
 3. Location and elevation of any other below ground appurtenances.

D. Minutes of preinstallation conference.

1.5 QUALITY ASSURANCE

A. Regulatory Requirements:
 1. Comply with requirements of the authorities having jurisdiction.
 2. Comply with standards of operating utility for sanitary sewer-service piping, including materials, installation, and testing.

B. Preinstallation Conference: Conduct conference to comply with requirements in Division 01 Section "Project Management and Coordination."
 1. Review methods and procedures related to sanitary sewerage installation including, but not limited to, the following:
 a. Review requirements of the operating utility.
 b. Review site conditions and preparatory work.
 c. Review requirements for protecting work.
 d. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 e. Review inspection schedule and procedures required to monitor and document quality assurance.

C. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic materials in direct sunlight. Support to prevent sagging and bending.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

C. Handle manholes and precast concrete structures, according to manufacturer's written rigging instructions.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Sanitary Sewer Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sanitary sewer service according to requirements indicated:
 1. Notify Architect, Owner, and Utility having jurisdiction no fewer than two days in advance of proposed interruption of service.
 2. Do not proceed with interruption of water-distribution service without Architect's written permission.
1.8 COORDINATION

A. Where required, coordinate connection to existing sewer lines with operating utility.

PART 2 - PRODUCTS

2.1 STANDARDS OF OPERATING UTILITY

A. See paragraph 1.2.B above for information regarding materials standards of the operating utility.

2.2 POLYVINYL CHLORIDE PLASTIC PIPE AND FITTINGS (PVC)

A. PVC Sewer Pipe (ASTM): ASTM D 3034, Class 150, with bell end with gasket, and with spigot end.

2. Fittings: ASTM D 3034. Use of saddle type fittings is prohibited.
4. Laying length: 18 feet-0 inches to 20 feet-0 inches
5. Pipe size: comply with outside diameter dimensions of DIP.
6. Standard dimension ratio: SDR 26, unless otherwise indicated on Drawings. SDR 21 where indicated for greater depth and crossings of other utilities (AWWA C900 or DIP may alternately be indicated for these applications).
7. Pipe color: green.
8. The use of solvent weld joints is prohibited.
9. Marking: Clearly mark each joint of pipe at convenient intervals, as follows:
 a. Manufacturer’s name.
 b. Nominal pipe size.
 c. Pressure class.
 d. Material designation.
 e. National Sanitation Foundation (NSF) seal.

B. National Sanitation Foundation (NSF) seal.

2.3 CLEANOUTS

A. PVC Cleanouts: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

1. Manufacturers:
 a. Canplas Inc.
 b. IPS Corporation.
 c. NDS Inc.
 d. Plastic Oddities, Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 f. Zurn Industries, Inc.; Zurn Light Commercial Specialty Plumbing Products.

B. Frame and Cover: Traffic grade cast-iron according to the standards of the authorities having jurisdiction, as indicated or, where not indicated, in accordance with the following:
1. Use medium-duty, top-loading classification cleanouts in landscaped and foot-traffic areas.
2. Use heavy-duty, top-loading classification cleanouts in vehicle-traffic service areas.
3. Use extra-heavy-duty, top-loading classification cleanouts in roads areas.

C. Concrete Collar: Where not located as a casting embedded in pavement, provide cast-in-place concrete collar as indicated on Drawings or, where not indicated, 18 by 18 by 12 inches deep.

2.4 NONPRESSURE-TYPE PIPE COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined, and stainless steel tension band and tightening mechanism on each end.

B. Sleeve Materials:

1. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

C. Unshielded Flexible Couplings: Elastomeric sleeve with stainless steel shear ring and stainless steel-metal tension band and tightening mechanism on each end.

1. Manufacturers:
 b. Fernco Inc.
 c. Logan Clay Products Company (The).
 d. Mission Rubber Company; a division of MCP Industries, Inc.
 e. NDS Inc.
 f. Plastic Oddities, Inc.

D. Ring-Type Flexible Couplings: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

1. Manufacturers:
 a. Fernco Inc.
 b. Logan Clay Products Company (The).
 c. Mission Rubber Company; a division of MCP Industries, Inc.

2.5 CONCRETE

A. General: Class 3000 concrete in accordance with Section 701 of the South Carolina Department of Transportation Standard Specifications for Highway Construction.

B. Portland Cement Design Mix: 3000 psi minimum, with 0.45 maximum water-cementitious materials ratio.

2. Reinforcement Bars: ASTM A 615/A 615M, Grade 60, deformed steel.

C. Manhole Channels and Benches: Field formed from concrete.
1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 a. Invert Slope: Minimum of 1 percent or as required to provide uniform slope between invert elevations indicated on Drawings.

2. Benches: Concrete, sloped to drain into channel.
 a. Slope: 8 percent.

D. Ballast and Pipe Supports: Field formed from concrete.
 2. Reinforcement Bars: ASTM A 615/A 615M, Grade 60, deformed steel.

2.6 PIPE DETECTION MATERIALS

A. Detectable Warning Tape: specified in Section titled “Earth Moving”.

B. Locator Wire In addition to warning tape where required by operating utility. Specified in Section titled “Earth Moving”.

PART 3 - EXECUTION

3.1 STANDARDS OF OPERATING UTILITY

A. See paragraph 1.2.B above for information regarding execution standards of the operating utility.

3.2 EARTHWORK

A. Refer to Section titled ”Earth Moving” for excavating, trenching, and backfilling.

B. Refer to Section titled ”Earth Moving” for installation requirements of pipe detection materials.

3.3 PIPING APPLICATIONS

A. Flexible pipe couplings may be used in applications below, unless otherwise indicated.
 1. Use nonpressure-type flexible couplings where required to join gravity-flow, nonpressure sewer piping of different material type or size, unless otherwise indicated. No other use of flexible couplings will be permitted.
 a. Unshielded flexible couplings for same or minor difference OD pipes.
 b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

B. Gravity-Flow, Nonpressure Sewer Piping: Use the following pipe materials as indicated on the Drawings.
1. PVC sewer pipe and fittings, gaskets, and gasketed joints.

3.4 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate location and arrangement of underground sanitary sewerage piping. Location and arrangement of piping layout take design considerations into account. Install piping as indicated. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, and other installation requirements.

C. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

D. Tunneling: Install pipe under streets or other obstructions that cannot be disturbed by tunneling, jacking, or combination of both.

E. Install gravity-flow, nonpressure, sanitary sewerage piping according to the following:
 1. Install piping pitched down in direction of flow, at the slope indicated or, where not indicated, at a minimum slope of 1/2 percent.
 2. Install piping with 36-inch minimum cover unless otherwise indicated.
 3. Install PVC sewer piping according to ASTM D 2321, ASTM F 1668 and the standards of the operating utility.

F. Clear interior of piping of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.5 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure, sanitary sewerage piping according to the following:
 1. Join PVC sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints and the standards of the operating utility.
 2. Join dissimilar pipe materials with nonpressure-type, flexible couplings in accordance with manufacturer's written instructions.

3.6 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to Sections 701, and 702 of the South Carolina Department of Transportation Standard Specifications for Highway Construction for measuring, mixing, transporting, and placing concrete.

3.7 CLEANOUT INSTALLATION

A. Install cleanouts and riser extension from sewer pipe to cleanout at grade. Use pipe fittings of same material as pipe at branches for cleanouts and PVC pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
B. Install cast-iron frames and covers.
 1. Use medium-duty, top-loading classification cleanouts in landscaped and foot-traffic areas.
 2. Use heavy-duty, top-loading classification cleanouts in vehicle-traffic service areas.
 3. Use extra-heavy-duty, top-loading classification cleanouts in roads areas.
 4. Set cleanout frames and covers located in earthen areas in cast-in-place concrete collar, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding earth grade.
 5. Set cleanout frames and covers in pavement with tops flush with pavement surface.

3.8 SERVICE CONNECTION INSTALLATION
A. Extend sanitary sewer-service piping and connect to building sanitary sewer system at outside face of building wall in locations and pipe sizes indicated.
 1. Terminate sanitary sewer service piping at building wall until building sanitary sewer piping is installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building sanitary sewer piping systems when those systems are installed.

3.9 CONNECTIONS TO EXISTING SANITARY SEWER
A. Where required by operating utility, connections to existing piping or manholes shall be made in the presence of an authorized inspector. Notify the Architect at least 48 hours before starting a connection.
B. Where indicated, make connections to existing piping using commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch overlap, with not less than 6 inches of concrete.
C. Protect piping and manholes to prevent concrete or debris from entering while making connections. Remove debris or other extraneous material that may accumulate.

3.10 PIPE DETECTION MATERIALS INSTALLATION
A. Install continuous underground detectable warning tape and locator wire, where required by operating utility, during backfilling of trench for underground sanitary sewerage piping. Locate below finished grade, directly over piping and according to standards of operating utility. Pipe detection materials are specified in Section titled "Earth Moving."

3.11 FIELD QUALITY CONTROL
A. During Installation: Inspect interior of piping, to determine whether line displacement or other damage has occurred, continuously during installation. Inspect after approximately 24 inches of backfill is in place, and again at completion of each section of piping between manholes.
 1. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 95 percent of piping diameter.
 c. Crushed, broken, cracked, or otherwise damaged piping or manholes.
 d. Infiltration: Water leakage into piping or manholes.
 e. Exfiltration: Water leakage from or around piping.
2. Replace defective piping and manholes using new materials, and repeat inspections until defects are within allowances specified.

B. Preliminary Inspection: Make arrangements with Architect to conduct preliminary final inspection.

1. Pre-inspection: The Contractor shall conduct his own pre-inspection and confirm that the system is capable of passing prior to requesting the Architect’s presence to witness the preliminary inspection.

 a. Repair or remove and replace components where test results or pre-inspections indicate that they do not comply with specified requirements.
 b. Remove all sand, dirt, brick, excess grout, and other foreign matter from manholes and piping. Material shall not be flushed into existing sewer lines.

2. Preliminary Inspection: The Contractor shall notify the Architect at least 48 hours before the scheduled time of the preliminary inspection.

 a. Preliminary inspection shall include but shall not necessarily be limited to the following:

 1) A visual inspection of piping. Requirements include: verification that piping is clean and unobstructed; verification that piping is straight and not visually deflected from a circular cross-section (i.e.: full moon when flashed or lamped); verification that no infiltration or exfiltration is visually evident.
 2) Verification of proper elevations, slopes, and horizontal and vertical alignment (under no circumstances will a line be accepted which is below the minimum slope required by the authorities having jurisdiction for a given line size.

 b. Repair or remove and replace components where test results or preliminary inspections indicate that they do not comply with specified requirements.
 c. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

C. Final Inspection: Upon successful completion of the preliminary final inspection and after any required documentation has been received and approved by the authorities having jurisdiction, the Contractor, Architect, representatives of the authorities having jurisdiction shall conduct a final inspection of the system.

 a. The Contractor shall notify the Architect at least 48 hours before the desired time of the pre-inspection. The Architect shall endeavor to schedule attendance by representatives of the authorities having jurisdiction at the desired time; however, the Architect provides no guarantee of availability at that time. If unavailable, the Architect will schedule the representative at the soonest reasonable time. Final inspections will not be held without the attendance of both the Architect and a representative of the authorities having jurisdiction.
 b. Final inspection shall include but shall not necessarily be limited to the items listed for the pre-inspection.
 c. Repair or remove and replace components where test results or final inspections indicate that they do not comply with specified requirements.
 d. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

D. Video Documentation: Immediately after final approval of the completed system, complete a videotaped inspection of the completed piping system utilizing equipment made expressly for the purpose. Provide a written report, inspection logs, and a copy of the inspection videotape to the Architect.

E. Reports of Inspection Activities.
1. Where required, the Architect will provide final required documentation to authorities having jurisdiction for the purpose of obtaining a Permit to Operate. Promptly provide any documents required from Contractor. Once Permit to Operate is received, Architect will notify Contractor. Make final connections, when necessary, and place system in operation. Do NOT place system in operation before notification by Architect that Permit to Operate has been received.

END OF SECTION 333100
SECTION 334100 - STORM DRAINAGE SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes gravity-flow, nonpressure storm drainage with the following components:
 1. Pipe culverts.
 2. Channel drainage systems.

1.3 DEFINITIONS
 A. Drainage Structures: catch basins, curb inlets, junction boxes, weir inlets, pond outlet structures.
 B. NPS: Nominal pipe size
 C. PE: Polyethylene plastic.
 D. SRCP: Reinforced Concrete Pipe (sealant joints)
 E. GRCP: Reinforced Concrete Pipe (gasket joints)

1.4 PERFORMANCE REQUIREMENTS
 A. Gravity-Flow, Nonpressure, Drainage-Piping Pressure Rating: Pipe joints shall be at least silt-tight, unless otherwise indicated.

1.5 SUBMITTALS
 A. Product Data: For the following:
 1. Channel drainage systems.

1.6 QUALITY ASSURANCE
 A. Authorities Having Jurisdiction: Conform to requirements of all authorities having jurisdiction.
 1. Where conflicts exist between the requirements of the Contract Documents and those of authorities having jurisdiction, the higher quality or more restrictive requirement shall apply.
1.7 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic materials in direct sunlight. Support to prevent sagging and bending.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

C. Handle manholes, drainage structures and pipe culverts according to manufacturer's written rigging instructions.

1.8 PROJECT CONDITIONS

A. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Architect no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of service without Architect's written permission.

PART 2 - PRODUCTS

2.1 CONCRETE PIPE (GRCP and SRCP)

A. Reinforced-Concrete Sewer Pipe: ASTM C 76, with bell-and-spigot or groove and tongue ends.

1. Class III, Wall B.
2. Joints shall be as follows:
 a. Where indicated as GRCP on Drawings: gasketed joints with ASTM C 443, rubber gaskets.
 b. Where indicated as SRCP on Drawings: sealant joints with ASTM C 990, bitumen or butyl-rubber sealant.

2.2 GEOTEXTILES

A. Pipe Joint Wrap Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Width: Min. 18” or sufficient to extend beyond the joint and base of pipe bell at least 6 inches on each side.
2. Length: One continuous piece of sufficient length to extend around the entire pipe circumference with a 12” overlap.
3. Survivability: Class 2; AASHTO M 288.
5. Sewn Seam Strength: 142 lbf; ASTM D 4632.
6. Tear Strength: 56 lbf; ASTM D 4533.
7. Puncture Strength: 56 lbf; ASTM D 4833.
8. Apparent Opening Size: No. 40 sieve, maximum; ASTM D 4751.
9. Permittivity: 0.5 per second, minimum; ASTM D 4491.
10. UV Stability: 50 percent after 500 hours’ exposure; ASTM D 4355.
2.3 CONCRETE

A. General: Class 3000 concrete in accordance with Section 701 of the South Carolina Department of Transportation Standard Specifications for Highway Construction.

B. Portland Cement Design Mix: 3000 psi minimum, with 0.45 maximum water-cementitious materials ratio.
 2. Reinforcement Bars: ASTM A 615/A 615M, Grade 60, deformed steel.

2.4 PLASTIC, CHANNEL DRAINAGE SYSTEMS

A. Description, General: Modular system of plastic channel sections, grates, and appurtenances; designed so grates fit into frames without rocking or rattling. Include number of units required to form total lengths indicated.

B. Manufacturers:
 1. ACO Polymer Prod.
 2. MultiDrain Corp.
 3. NDS Inc.
 4. Tuf-Tite, Inc.
 5. Zurn Industries, Inc.; Zurn Light Commercial Specialty Plumbing Products.

C. Fiberglass Systems: Include the following components:
 1. Channel Sections: Interlocking-joint, fiberglass modular units, with built-in invert slope of approximately 1 percent and with end caps. Include rounded or inclined inside bottom surface, with outlets in number, sizes, and locations indicated.
 a. Width: 6 inches.
 2. Factory- or field-attached frames that fit channel sections and grates.
 a. Material: Manufacturer's standard metal.
 3. Grates with slots or perforations that fit frames.
 a. Material: Gray iron.
 4. Covers: Solid gray iron, if indicated.
 5. Drainage Specialties: Include the following plastic components:
 a. Large Catch Basins: 24 inch square plastic body, with outlets in number and sizes indicated. Include gray-iron frame and slotted grate.

D. Supports, Anchors, and Setting Devices: Manufacturer's standard, unless otherwise indicated.

E. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.
PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Section titled "Earth Moving."

B. Protect and maintain erosion and sedimentation controls, which are specified in Section titled "Site Clearing," during earthwork operations.

3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take design considerations into account. Install piping as indicated. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

C. Install manholes or drainage structures for changes in direction unless fittings are indicated. Use manholes or drainage structures for branch connections unless direct connection into existing sewer is indicated.

D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

E. Tunneling: Install pipe under streets or other obstructions that cannot be disturbed by tunneling, jacking, or a combination of both.

F. Install gravity-flow, nonpressure drainage piping according to the following as applicable:

1. Install piping pitched down in direction of flow, at minimum slope of 0.20 percent, unless otherwise indicated.
2. Install piping below frost line.
3. Install reinforced-concrete sewer piping, according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure drainage piping according to the following as applicable:

1. Join reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual" for rubber-gasket, bitumen, or butyl-rubber sealant joints as applicable.

B. Wrap pipe joints with pipe joint wrap geotextile at least 18 inches in width. For larger pipe diameters where an 18 inch width is insufficient to completely cover the pipe bell, use a width sufficient to cover and extend beyond the bell at least 6 inches.
3.4 CONCRETE PLACEMENT
 A. Place cast-in-place concrete according to Sections 701, and 702 of the South Carolina Department of Transportation Standard Specifications for Highway Construction for measuring, mixing, transporting, and placing concrete.

3.5 CHANNEL DRAINAGE SYSTEM INSTALLATION
 A. Assemble and install components according to manufacturer’s written instructions.
 B. Install with top surfaces of components, except piping, flush with finished surface.
 C. Assemble channel sections to form slope down toward drain outlets. Use sealants, adhesives, fasteners, and other materials recommended by system manufacturer.
 D. Embed channel sections and drainage specialties in 4 inch minimum concrete around bottom and sides.
 E. Fasten grates to channel sections if indicated.

3.6 FIELD QUALITY CONTROL
 A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 1. Submit separate reports for each system inspection.
 2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 95 percent of piping diameter.
 c. Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.
 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 4. Reinspect and repeat procedure until results are satisfactory.
 B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 1. Do not enclose, cover, or put into service before inspection and approval.
 2. Test completed piping systems according to authorities having jurisdiction.
 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours’ advance notice.
 4. Submit separate report for each test.
 C. Leaks and loss in test pressure, if applicable, constitute defects that must be repaired.
 D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.
3.7 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Collect flushed materials in sediment trapping devices: do not flush into downstream drainage systems or receiving waterbodies.

END OF SECTION 334100
SECTION 334600 – SUBDRAINAGE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes subdrainage (underdrain) systems for the following:
 1. Retaining walls.

1.3 DEFINITIONS
 A. PE: Polyethylene plastic.
 B. PVC: Polyvinyl chloride plastic.
 C. Subdrainage: Drainage system that collects and removes subsurface or seepage water.

1.4 QUALITY ASSURANCE
 A. Authorities Having Jurisdiction: Conform to requirements of all authorities having jurisdiction.
 1. Where conflicts exist between the requirements of the Contract Documents and those of authorities having jurisdiction, the higher quality or more restrictive requirement shall apply.

PART 2 - PRODUCTS

2.1 PERFORATED-WALL PIPES AND FITTINGS
 A. Perforated PE Pipe and Fittings:
 1. NPS 6 and Smaller: ASTM F 405 or AASHTO M 252, Type CP; corrugated, for coupled joints.
 2. Couplings: Manufacturer's standard, band type.

2.2 SOLID-WALL PIPES AND FITTINGS
 A. PE Drainage Tubing and Fittings: AASHTO M 252, Type S, corrugated, with smooth waterway, for coupled joints.
2.3 AGGREGATE MATERIALS
 A. Filter Aggregate: specified in Section titled "Earth Moving."

2.4 SOIL MATERIALS
 A. Backfill: Satisfactory Soil specified in Section titled "Earth Moving."

2.5 GEOTEXTILES
 A. Subsurface Drainage Geotextile specified in Section titled "Earth Moving."

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine surfaces and areas for suitable conditions where subdrainage systems are to be installed.
 B. Locate and mark existing utilities, underground structures, and aboveground obstructions before beginning installation and avoid disruption and damage of services.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EARTHWORK
 A. Excavating, trenching, and backfilling are specified in Section titled "Earth Moving."

3.3 PIPING APPLICATIONS
 A. Subdrainage Piping:
 1. Perforated PE pipe and fittings, couplings, and coupled joints.
 B. Header Piping:
 1. PE drainage pipe or tubing, as applicable, and fittings, couplings, and coupled joints.

3.4 RETAINING-WALL SUBDRAINAGE INSTALLATION (PERFORATED PIPE TYPE)
 A. Place supporting layer of filter aggregate over compacted subgrade to compacted depth of not less than 4 inches. Place against wall to a width sufficient for subdrainage pipe and required distance between pipe and outside edge of filter aggregate.
 B. Install subdrainage pipe as indicated on drawings and in Part 3 "Piping Installation" Article for retaining-wall subdrainage.
C. Add filter aggregate to width indicated on drawings or, where not indicated, of sufficient width to provide at least 9 inches between outside wall of pipe and outside edge of filter aggregate. Fill to a level 9 inches above top of pipe to perform tests.

D. After satisfactory testing, place additional filter aggregate against wall to width of at least 12 inches to within 12 inches of finish grade.

E. Place filter aggregate in layers not exceeding 3 inches in loose depth; compact each layer as placed.

F. Place layer of flat-style geotextile filter fabric, of sufficient width to cover filter aggregate surface, over top of filter aggregate. Where required, overlap longitudinal edges at least 4 inches.

G. Fill to Grade: Place satisfactory soil fill material over filter fabric. Place material in loose-depth layers not exceeding 6 inches. Thoroughly compact each layer. Fill to finish grade.

3.5 PIPING INSTALLATION

A. Install piping beginning at low points of system, true to grades and alignment indicated, with unbroken continuity of invert. Bed piping with full bearing in filtering aggregate. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions and other requirements indicated.

1. Retaining-Wall Subdrainage (Perforated Pipe Type): When water discharges at end of wall into stormwater piping system, install piping pitched down in direction of flow, at a minimum slope of 0.5 percent and with a minimum cover of 36 inches, unless otherwise indicated. However, when water discharges through wall at regular intervals, pipe may be installed with a minimum slope of zero percent.

2. Lay perforated pipe with perforations down.

B. Use increasers, reducers, and couplings made for different sizes or materials of pipes and fittings being connected. Reduction of pipe size in direction of flow is prohibited.

C. Install PE piping according to ASTM D 2321.

3.6 PIPE JOINT CONSTRUCTION

A. Join perforated, PE pipe and fittings with couplings for soil-tight joints according to AASHTO's "Standard Specifications for Highway Bridges," Division II, Section 26.4.2.4, "Joint Properties"; or according to ASTM D 2321.

B. Special Pipe Couplings: Join piping made of different materials and dimensions with special couplings made for this application. Use couplings that are compatible with and fit materials and dimensions of both pipes.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect low elevations of subdrainage system to solid-wall-piping storm drainage system at concrete drainage structures as follows:

1. Cut end of connection pipe passing through structure wall to be flush with inside wall, unless otherwise indicated.
2. On inside of structure wall, encase outside of pipe to flush with face of wall with grout.
3. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
4. Protect piping and structures to prevent concrete or debris from entering while making connections. Remove debris or other extraneous material that may accumulate.

3.8 IDENTIFICATION

A. Materials and their installation are specified in Section titled "Earth Moving." Arrange for installation of green warning tapes directly over piping.

1. Install detectable warning tape over piping and over edges of underground structures.

3.9 FIELD QUALITY CONTROL

A. Inspection: Before placing drainage course around and above pipe, inspect pipe to confirm that: it is not crushed or damaged; that joints are sound and properly made; that interior of pipe is unobstructed and free flowing; that pipe is properly aligned and at indicated elevation and grade; and that connections to drainage structures are properly made, sound, and water-tight. As drainage course and backfill is installed, monitor operations to ensure that pipe is not damaged or displaced by placement or compaction operations.

3.10 CLEANING

A. Clear interior of installed piping and structures of dirt and other superfluous material as work progresses. Maintain swab or drag in piping and pull past each joint as it is completed. Place plugs in ends of uncompleted pipe at end of each day or when work stops.

END OF SECTION 334600