SECTION 23 73 13

ROOFTOP AIR HANDLER

PART 1 GENERAL

1.01 SUBMITTALS

A. No equipment shall be fabricated or delivered until the receipt of approved shop drawings from the Owner or Owner's approved representative.

B. AHU manufacturer shall provide the following information with each shop drawing/product data submission:

1. Dimensioned arrangement drawings for each AHU including a plan and elevation view of the assembled unit with overall dimensions, lift points, unit shipping split locations and dimensions, installation and operating weights, and installation, operation and service clearances.

2. Each component of the unit shall be identified, and mechanical specifications shall be provided for unit and accessories describing construction, components, and options.

3. All performance data, including capacities and airside and waterside pressure drops, for components.

4. Fan curves shall be provided for fans with the design operating points indicated. Data shall be corrected to actual operating conditions, temperatures, and altitudes.

5. A schedule detailing necessary trap height shall be provided for each air handling unit. Schedule shall detail unit tag, unit size, appropriate trap schematic with recommended trap dimensions, and unit supplied base rail height. Contractor shall be responsible for additional trap height required for trapping and insulation beyond the unit supplied base rail height by adequate housekeeping pad.

6. Sound data shall be provided using AHRI 260 test methods. Unit discharge, inlet, and radiated sound power levels in dB shall be provided for 63, 125, 250, 500, 1000, 2000, 4000 and 8000Hz.

C. The AHU manufacturer shall list any exceptions to the specification.

1.02 WARRANTY
A. AHU manufacturer shall provide, at no additional cost, a standard parts warranty that covers a period of one year from unit start-up or 18 months from shipment, whichever occurs first. This warrants that all products are free from defects in material and workmanship and shall meet the capacities and ratings set forth in the equipment manufacturer's catalog and bulletins.

PART 2 PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

A. Approved manufacturer shall be Trane, with pre-approved alternates considered. Manufacturers not pre-approved, must obtain pre-approval in writing from consulting engineer prior to bid day. Alternates must comply with all performance and features as called for in this specification. Job awarded on basis of specified equipment. Alternate will be evaluated and considered after job is awarded.

2.02 GENERAL

A. Manufacturer to provide a full perimeter integral base frame for either ceiling suspension of units or to support and raise all sections of the unit for proper trapping. Base frame will either be bolted construction or welded construction. Refer to schedule for base height and construction type. Contractor will be responsible for providing a housekeeping pad when unit base frame is not of sufficient height to properly trap unit. Unit base frames not constructed of galvanized steel shall be chemically cleaned and coated with both a rust-inhibiting primer and finished coat of rust-inhibiting enamel. Unit base height to be included in total height required for proper trap height.

2.03 UNIT CASING

A. Unit manufacturer shall ship unit in segments as specified by the contractor for ease of installation in tight spaces. The entire air handler shall be constructed of galvanized steel. Casing finished to meet ASTM B117 250-hour salt-spray test. The removal of access panels or access doors shall not affect the structural integrity of the unit. All removable panels shall be gasketed. All doors shall have gasketing around full perimeter to prevent air leakage. Contractor shall be responsible to provide connection flanges and all other framework that is needed to properly support the unit.

B. Casing performance - Casing air leakage shall not exceed leak class 6 (CL = 6) per ASHRAE 111 at specified casing pressure, where maximum casing leakage (cfm/100 ft² of casing surface area) = CL X 0.65.

C. Air leakage shall be determined at 1.00 times maximum casing static pressure
up to 8 inches w.g. Specified air leakage shall be accomplished without the use of caulk. Total estimated air leakage shall be reported for each unit in CFM, as a percentage of supply air, and as an ASHRAE 111 Leakage Class.

D. Under 55F supply air temperature and design conditions on the exterior of the unit of 81F dry bulb and 73F wet bulb, condensation shall not form on the casing exterior. The AHU manufacturer shall provide tested casing thermal performance for the scheduled supply air temperature plotted on a psychrometric chart. The design condition on the exterior of the unit shall also be plotted on the chart. If tested casing thermal data is not available, AHU manufacturer shall provide, in writing to the Engineer and Owner, a guarantee against condensation forming on the unit exterior at the stated design conditions above. The guarantee shall note that the AHU manufacturer will cover all expenses associated with modifying units in the field should external condensate form on them. In lieu of AHU manufacturer providing a written guarantee, the installing contractor must provide additional external insulation on AHU to prevent condensation.

E. Unit casing (wall/floor/roof panels and doors) shall be able to withstand up to 1.5 times design static pressure, or 8-inch w.g., whichever is less, and shall not exceed 0.0042 per inch of panel span (L/240).

F. Unit casing panels shall be 2-inch double-wall construction, with solid galvanized exterior and solid galvanized interior, to facilitate cleaning of unit interior.

G. Unit casing panels (roof, walls, floor) and doors shall be provided with a minimum thermal resistance (R-value) of 13 Hr*Ft2*°F/BTU.

H. Unit casing panels (roof, walls, floor) and external structural frame members shall be completely insulated filling the entire panel cavity in all directions so that no voids exist. Panel insulation shall comply with NFPA 90A.

I. Casing panel inner liners must not extend to the exterior of the unit or contact the exterior frame. A mid-span, no-through-metal, internal thermal break shall be provided for all unit casing panels.

J. Access panels and/or access doors shall be provided in all sections to allow easy access to drain pan, coil(s), motor, drive components and bearings for cleaning, inspection, and maintenance.

2.04 ACCESS DOORS

A. Access doors shall be 2-inch double-wall construction. Interior and exterior shall be of the same construction as the interior and exterior wall panels.
B. All doors downstream of the cooling coil shall be provided with a thermal break construction of door panel and door frame.

C. Gasketing shall be provided around the full perimeter of the doors to prevent air leakage.

D. Door hardware shall be surface-mounted to prevent through-cabinet penetrations that could likely weaken the casing leakage and thermal performance.

E. Hinges shall be interchangeable with the door handle hardware to allow for alternating door swing in the field to minimize access interference due to unforeseen job site obstructions.

F. All doors shall be a 60-inch high when sufficient unit height is available, or the maximum height allowed by the unit height.

G. Multiple door handles shall be provided for each latching point of the door necessary to maintain the specified air leakage integrity of the unit.

2.05 PRIMARY DRAIN PANS

A. All coil sections shall be provided with an insulated, double-wall, drain pan. Cooling coil drain pans shall be stainless steel.

B. The drain pan shall be designed in accordance with ASHRAE 62.1 being of sufficient size to collect all condensation produced from the coil and sloped in two planes, pitched toward drain connections, promoting positive drainage to eliminate stagnant water conditions when unit is installed level and trapped per manufacturer's requirements. See section 2.07, paragraph F through H for specifications on intermediate drain pans between cooling coils.

C. The outlet shall be located at the lowest point of the pan and shall be sufficient diameter to preclude drain pan overflow under any normally expected operating condition.

D. Drain connections shall be of the same material as the primary drain pan and shall extend a minimum 2-1/2-inch beyond the base to ensure adequate room for field piping of condensate traps.

E. The installing contractor is responsible to ensure the unit is installed level, trapped in accordance with the manufacturer's requirements, and visually inspected to ensure proper drainage of condensate.

F. Coil support members inside the drain pan shall be of the same material as the
drain pan and coil casing.

G. If drain pans are required for heating coils, access sections, or mixing sections they will be indicated in the plans.

2.06 FANS

A. Fan sections shall have a minimum of one hinged and latched access door located on the drive side of the unit to allow inspection and maintenance of the fan, motor, and drive components. Construct door(s) per Section 2.04.

B. Provide fans of type and class as specified on the schedule. Fan shafts shall be solid steel, coated with a rust-inhibiting coating, and properly designed so that fan shaft does not pass through first critical speed as unit comes up to rated RPM. All fans shall be statically and dynamically tested by the manufacturer for vibration and alignment as an assembly at the operating RPM to meet design specifications. Fans that are selected with inverter balancing shall first be dynamically balanced at design RPM. The fans then will be checked in the factory from 25% to 100% of design RPM to insure they are operating within vibration tolerance specifications, and that there are no resonant frequency issues throughout this operating range. Inverter balancing that requires lockout frequencies inputted into a variable frequency drive to in order to bypass resonant frequencies shall not be acceptable. If supplied in this manner by the unit manufacturer, the contractor will be responsible for rebalancing in the field after unit installation. Fans selected with inverter balancing shall have a maintenance free, circumferential conductive micro fiber shaft grounding ring installed on the fan motor to discharge shaft currents to ground.

C. Fans, including direct drive plenum fans with integral frame motors, shall be mounted on isolation bases. Internally-mounted motor shall be on the same isolation base. Fan and motor shall be internally isolated with spring isolators. A flexible connection shall be installed between fan and unit casing to ensure complete isolation. Flexible connection shall comply with NFPA 90A and UL 181 requirements. If fans and motors are not internally isolated, then the entire unit shall be externally isolated from the building, including supply and return duct work, piping, and electrical connections. External isolation shall be furnished by the installing contractor in order to avoid transmission of noise and vibration through the ductwork and building structure.

D. MOTORS AND DRIVES

1. All motors and drives shall be factory-installed and run tested. All motors shall be installed on a slide base to permit adjustment of belt tension. Slide base shall be designed to accept all motor sizes offered by the air-handler manufacturer for that fan size to allow a motor change in
the future, should airflow requirements change. Fan sections without factory-installed motors shall have motors field installed by the contractor. The contractor shall be responsible for all costs associated with installation of motor and drive, alignment of sheaves and belts, run testing of the motor, and balancing of the assembly.

2. Motors shall meet or exceed all NEMA Standards Publication MG 1 - 2006 requirements and comply with NEMA Premium efficiency levels when applicable. Motors shall comply with applicable requirements of NEC and shall be UL Listed.

3. Fan Motors shall be heavy duty, open drip-proof operable at 460 volts, 60Hz, 3-phase. If applicable, motor efficiency shall meet or exceed all NEMA Standards Publication MG 1 - 2006 requirements and comply with NEMA Premium efficiency levels when applicable. Motors shall comply with applicable requirements of NEC and shall be UL Listed.

2.07 COILS

A. Coils section header end panel shall be removable to allow for removal and replacement of coils without impacting the structural integrity of the unit.

B. Install coils such that headers and return bends are enclosed by unit casing to ensure that if condensate forms on the header or return bends, it is captured by the drain pan under the coil.

C. Coils shall be manufactured with plate fins to minimize water carryover and maximize airside thermal efficiency. Fin tube holes shall have drawn and belled collars to maintain consistent fin spacing to ensure performance and air pressure drop across the coil as scheduled. Tubes shall be mechanically expanded and bonded to fin collars for maximum thermal conductivity. Use of soldering or tinning during the fin-to-tube bonding process is not acceptable due to the inherent thermal stress and possible loss of bonding at that joint.

D. Construct coil casings of galvanized steel. End supports and tube sheets shall have belled tube holes to minimize wear of the tube wall during thermal expansion and contraction of the tube.

E. All coils shall be completely cleaned prior to installation into the air handling unit. Complete fin bundle in direction of airflow shall be degreased and steam cleaned to remove any lubricants used in the manufacturing of the fins, or dirt that may have accumulated, in order to minimize the chance for water carryover.

2.08 FILTERS

A. Provide factory-fabricated filter section of the same construction and finish as unit casings. Filter section shall have side access filter guides and access
door(s) extending the full height of the casing to facilitate filter removal. Construct doors in accordance with Section 2.04. Provide fixed filter blockoffs as required to prevent air bypass around filters. Blockoffs shall not need to be removed during filter replacement. Filters to be of size, and quantity needed to maximize filter face area of each particular unit size.

B. Filter type, MERV rating, and arrangement shall be provided as defined in project plans and schedule.

C. Manufacturer shall provide one set of startup filters.

2.09 DAMPERS

A. All dampers, with the exception of external bypass and multizones (if scheduled), shall be internally mounted. Dampers shall be premium ultra-low leak and located as indicated on the schedule and plans. Blade arrangement (parallel or opposed) shall be provided as indicated on the schedule and drawings. Dampers shall be Ruskin CD60 double-skin airfoil design or equivalent for minimal air leakage and pressure drop. Leakage rate shall not exceed 3 CFM/square foot at one-inch water gauge complying with ASHRAE 90.1 maximum damper leakage and shall be AMCA licensed for Class 1A. All leakage testing and pressure ratings shall be based on AMCA Standard 500-D. Manufacturer shall submit brand and model of damper(s) being furnished, if not Ruskin CD60.

END OF SECTION