SECTION 230548 - VIBRATION CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Elastomeric isolation pads.
 2. Restrained-spring isolators.
 3. Spring hangers.
 4. Mechanical anchor bolts.
 5. Adhesive anchor bolts.
 6. Restrained isolation roof-curb rails.

B. Related Requirements:
 1. Section 210548 "Vibration Controls for Fire Suppression” for devices for fire-suppression equipment and systems.
 2. Section 220548 "Vibration Controls for Plumbing” for devices for plumbing equipment and systems.

1.3 DEFINITIONS

A. ASCE/SEI: American Society of Civil Engineers/Structural Engineering Institute

D. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device component required.
 a. Annotate to indicate application of each product submitted and compliance with requirements.
3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:
1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For each vibration isolation device.
1. Include design calculations and details for selecting vibration isolators, and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the manufacturer’s qualified professional engineer responsible for their preparation.
2. Design Calculations: Calculate static and dynamic loading due to equipment weight, operation, and wind forces required to select vibration isolators and wind restraints and for designing vibration isolation bases.
 a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, and spring deflection changes. Include certification that riser system was examined for excessive stress and that none exists.
4. Wind-Restrain Details:
 a. Design Analysis: To support selection and arrangement of wind restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Indicate association with vibration isolation devices.
 c. Coordinate vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, OSHPD or an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For situations where limited space necessitates maximum utilization for efficient installation of different components, and show coordination of vibration isolation device installation for plumbing piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For professional engineer and testing agency.
C. Welding certificates.

D. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Wind-Restraint Loading:

1. Basic Wind Speed: 120 mph.
2. Building Classification Category: III.
3. Minimum 10 lb/sq. ft. multiplied by maximum area of HVAC component projected on vertical plane normal to wind direction, and 45 degrees either side of normal.

2.2 GENERAL

A. Select vibration isolating units for the lowest operating speed of equipment, so designed that natural frequency of equipment and base mass is not less than 1.5 times the lowest operating frequency of the moving equipment, but not a multiple or harmonic of the base frequency. Furnish vibration isolation producing a uniform loading and deflection even when equipment weight is not evenly distributed, vibration isolation shall be stable during starting and stopping of equipment without excessive traverse and eccentric movement of equipment.

B. The installed vibration isolation system for each floor or ceiling mounted item of equipment shall have a maximum lateral motion under equipment start up and shut down conditions of 1/4 inch. Motions in excess shall be restrained by approved spring type mounting.

C. The type of isolation, base, and minimum static deflection shall be as required for each specific equipment application, but not less than that specified herein when supported on a solid concrete structural slab having a thickness of not less than four (4) inches. Should vibration isolators installed for the equipment prove inadequate to prevent transmission of equipment vibrations to the building structure or limit equipment vibration originated noise in the building spaces to acceptable levels, the isolators shall be replaced with units having the largest deflection that can be practicably installed.
D. All springs installed out-of-doors shall be cadmium-plated, zinc electroplated or powder-coated after fabrication. Hardware and other metal parts shall be cadmium-plated or galvanized. Galvanizing shall meet ASTM Salt Spray Test Standards and Federal Test Standard No. 14.

E. All isolators installed out-of-doors shall have base plates with bolt holes for fastening the isolators to the support members.

2.3 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation
 b. Isolation Technology, Inc
 c. Kinetics Noise Control, Inc.
 d. Mason Industries, Inc.
 e. The VMC Group
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation Co., Inc.
 h. Vibration Mountings & Controls/Korfund
 i. Vibro-Acoustics, Inc.
 2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
 3. Size: Factory or field cut to match requirements of supported equipment.
 4. Pad Material: Oil and water resistant with elastomeric properties.
 5. Surface Pattern: Waffle pattern.
 6. Infused nonwoven cotton or synthetic fibers.
 7. Load-bearing metal plates adhered to pads.

2.4 RESTRAINED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation
 b. Isolation Technology, Inc
 c. Kinetics Noise Control, Inc.
 d. Mason Industries, Inc.
 e. The VMC Group
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation Co., Inc.
 h. Vibration Mountings & Controls/Korfund
 i. Vibro-Acoustics, Inc.
 2. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
b. Top plate with threaded mounting holes.
c. Internal leveling bolt that acts as blocking during installation.

3. Restraint: Limit stop as required for equipment and authorities having jurisdiction.

4. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

5. Minimum Additional Travel: 50 percent of the required deflection at rated load.

7. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.5 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation
 b. Isolation Technology, Inc.
 c. Kinetics Noise Control, Inc.
 d. Mason Industries, Inc.
 e. The VMC Group
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation Co., Inc.
 h. Vibration Mountings & Controls/Korfund.
 i. Vibro-Acoustics, Inc.

 2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.

 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.

 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

 7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.

 8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod (where required).

 9. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.6 MECHANICAL ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. B-line, an Eaton business
 2. Hilti, Inc.
4. Mason Industries, Inc.

B. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

C. Expansion-type anchor bolts are not permitted by ASCE/SEI 7 for nonisolated equipment in excess of 10 hp.

2.7 ADHESIVE ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Hilti, Inc.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.

B. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.8 RESTRAINED ISOLATION ROOF-CURB RAILS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. California Dynamics Corporation
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.
4. Novia; A Division of C&P
5. The VMC Group
6. Thybar Corporation

B. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand wind forces.

C. Upper Frame: The upper frame shall provide continuous support for equipment and shall be captive to resiliently resist wind forces.

D. Lower Support Assembly: The lower support assembly shall be formed sheet metal section containing adjustable and removable steel springs that support the upper frame. The lower support assembly shall have a means for attaching to building structure and a wood nailer for attaching roof materials, and shall be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly. Adjustable, restrained-spring isolators shall be mounted on elastomeric vibration isolation pads and shall have access ports, for level adjustment, with
removable waterproof covers at all isolator locations. Isolators shall be located so they are accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.

E. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch thick.

F. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflashed over roof materials.

G. Acoustical Barrier: The floating member of the roof curb shall have a perimeter angle cross members to support two layers of 5/8" waterproof sheetrock laid on with staggered joints. Sheetrock must surround ducts to provide a continuous sound break. This acoustical barrier shall be caulked to minimize sound transmission between the rooftop air handling unit and the building. Where the mechanical arrangement makes attachment to the floating member unfeasible, the barrier shall be attached at the highest practical elevation of the fixed curb with provision for 1" thick closed cell neoprene flexible seals around any ductwork. A 4-inch layer of 1.5 density fiberglass shall cover the entire solid roof surface under the unit. Ductwork shall be externally lined with sound absorbent material coated with a dampening compound such as Mason Industries MDC-10 or approved equal. Complete instructions shall be provided by the spring isolation curb manufacturer. Acoustical package shall be Mason Industries, Inc. Type RSC-dB or approved equal.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and wind-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES, OSHPD or an agency acceptable to authorities having jurisdiction.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static loads within specified loading limits.
3.3 VIBRATION CONTROL DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Division 03.

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

D. Unless otherwise indicated, all floor-mounted equipment shall be set on four (4) inch high concrete housekeeping pads. Housekeeping pads shall rest on a structural floor and shall be reinforced with steel rods and interconnected with floor.

E. Install cables so they do not bend across edges of adjacent equipment or building structure.

F. Equipment Bases:
 1. Fill concrete inertia bases, after installing base frame, with 3000-psi concrete; trowel to a smooth finish.
 a. Cast-in-place concrete materials and placement requirements are specified in Division 3.

 2. Concrete Bases:
 a. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 b. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base and anchor into structural concrete floor.
 c. Place and secure anchorage devices. Use Setting Drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 d. Install anchor bolts to elevations required for proper attachment to supported equipment.
 e. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 f. Cast-in-place concrete materials and placement requirements are specified in Division 3.

G. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

H. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

I. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

J. Drilled-in Anchors:
1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
5. Set anchors to manufacturer's recommended torque, using a torque wrench.
6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Tests and Inspections:
1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless post-connection testing has been approved), and with at least seven days' advance notice.
4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
5. Test to 90 percent of rated proof load of device.
7. Measure isolator deflection.
8. Verify snubber minimum clearances.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare testing agency test and inspection reports.

E. Manufacturer’s Inspection:
1. A representative of the isolation materials manufacturer shall inspect the completed system and report in writing any installation errors, improperly selected isolation or restraint devices, or other faults that could affect the performance of the system.
2. Contractor shall submit manufacturer's representative’s final report indicating all isolation as being properly installed or requiring correction. If corrections are required, include steps to be taken to properly complete the isolation work.
3.5 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.6 VIBRATION ISOLATION SCHEDULE

A. Rooftop Air-Handling Units:
 1. Isolation Type: Restrained Isolation Roof-Curb
 2. Base Deflection: 1.5"

B. Fans in Air-Handling Units:
 1. Isolation Type: Restrained-Spring Isolator
 2. Base Deflection: 1.5"
 3. Base Type: Concrete Inertia Base.

C. Multiple Fan Array in Air-Handling Units:
 1. Isolation Type: Elastomeric Isolation Pad
 2. Base Deflection: 0.5"

D. Roof Mounted Fans:
 1. Isolation Type: Restrained Isolation Roof-Curb Rail
 2. Base Deflection: 1.5"

E. Suspended Fan Coil Units:
 1. Isolation Type: Spring Hanger
 2. Deflection: 0.5"

END OF SECTION 230548