SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR MECHANICAL EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, induction motors for use on alternating-current power systems and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

1.4 SUBMITTALS

A. Shop Drawings and Product Data: Shop drawings and product data for motors shall be provided with the submittal package for the piece of equipment that it serves. In accordance with Division 01, Section “Submittals” provide the following:
 1. Product catalog data: nameplate data and ratings; materials of construction; mounting arrangement, size and location of motor terminal box and conduit entry, grounding lugs and coatings.

B. Warranties
 1. In addition to the warranty requirements of the General Conditions, warranties for each motor shall be covered in the warranty for the entire mechanical assembly (fan & motor, pump and motor, etc).

C. Manufacturer Seismic Qualification Certification: Submit certification that motors, accessories, and components will withstand seismic forces defined in Division 23, Section "Mechanical Vibration, Sound and Seismic Controls.” Include the following:
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Operation and Maintenance Data: For factory-installed motors to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain factory-installed motors through one source from a single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70, "National Electrical Code."

D. NRTL Listing: Motors shall be NRTL-listed.
 1. Term "Listed": As defined in "National Electrical Code," Article 100.
 2. Listing Agency Qualifications: "Nationally Recognized Testing Laboratory" (NRTL) as defined in OSHA Regulation 1910.

E. Comply with NEMA MG 1, "Motors and Generators."

F. Comply with UL 1004, "Motors, Electric."

G. Provide factory test reports in accordance with Part 2 of this Section.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Whenever possible, motor and driven equipment shall be shipped complete as an entire assembly.

B. Inspect equipment immediately upon arrival and any irregularities or damage shall be reported to the Manufacturer/Supplier immediately.

C. Store in accordance with manufacturer’s recommendations.
1.7 IDENTIFICATION

A. Nameplates: All motors shall have a stainless steel nameplate attached with stainless steel fasteners on the motor. The nameplate shall be stamped with nameplate markings listed in NEMA MG 1 20.60, plus the following:
 1. Manufacturer
 2. Model Number
 3. Serial Number
 4. Nominal efficiency
 5. Minimum efficiency
 6. Temperature Rise
 7. Bearing manufacturer’s name and catalog number

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

B. Motor requirements apply to factory-installed motors except as follows:
 1. Different ratings, performance, or characteristics for motor are specified in another Section.
 2. Motorized-equipment manufacturer requires ratings, performance, or characteristics, other than those specified in this Section, to meet performance specified.

C. Contractor assumes responsibility for the correct direction of rotation required by the equipment drives. In the event of damage due to reverse rotation, the equipment shall be repaired or replaced at no charge to the Owner.

D. Motor Bearings: Motor bearings shall be specifically designed for the drive application, and shall be approved by the Engineer. Bearings shall have a minimum bearing life of B-10 or L-10 as defined by the AFBMA. Bearings shall be designed to carry the total hydraulic and static thrust developed by the driven load. Bearings shall be grease or oil lubricated. Oil lubricated motors shall be fitted with gravity-feed oil reservoirs. Grease lubricated bearings shall be regreasable (not sealed) and shall be supplied with grease fittings and drain plugs. Medium voltage and variable frequency controlled motor bearings shall be electrically isolated from the shaft on at least one end to prevent transmission of electric current. Current drain brushes shall be fitted where it is necessary to divert the flow of electrical current from bearings. Bearings, housing and brackets shall be constructed to permit access, removal and replacement of the bearings without disassembly of the motor.

E. Rotor: The rotor shall be dynamically and statically balanced. Assembled motor shall be tested at the factory in accordance with latest applicable NEMA MG 1 and IEEE 112 methods of testing, and balanced at no more than 0.001 inches total peak-to-peak deflection on the bearing housing and the shaft. Overall vibration readings, including all vibration frequencies, shall be taken and recorded at no load and design speed.
F. **Terminal Box:** Motors shall have a watertight cable terminal box. Terminal box shall be oversized, diagonally split, and rotatable in 90° increments to allow conduit and cable entry from top, bottom and sides.

G. **Motor Leads:** Motor leads shall be a minimum of 6 inches in length. All motor leads shall be extended from the conduit box. Motors rated over 200 HP or over 600V shall have insulated tin plated copper busbar terminals with bolt holes for compression wire lugs.

H. **Drains and Breathers:** Provide drain(s) in the bottom of the motor at the lowest point(s). Enclosed motors shall be fitted with breathers.

I. **Screens:** Provide stainless steel screens at motor ventilation openings.

J. **Motor Shaft:** The motor shaft shall be ASTM A322 GR140 (AISI 4140) steel and shall be sized to accommodate the required power and torque. Provide shaft end with keyway for connection to coupling with the pump shaft. Coordinate shaft design requirements with driven load.

K. **Stainless Steel Hardware:** Provide corrosion resistant hardware for motor components including grease fittings, plugs, nuts, bolts, washers and screws.

L. **Motor Casing and Coating:** Housings shall be degreased, primed and painted both inside and outside with a rust inhibitive primer and corrosion resistant polyester paint. Painting shall be performed prior to installing the motor stator windings. The primer and paint materials selected shall be suitable for the environment encountered, both inside and outside of the casing.

M. **Motors connected to Variable Frequency Drives:** Shall be “inverter duty” with additional magnet wire insulation to achieve a minimum motor impulse voltage rating equal to the VFD manufacturer’s recommendations for the motor, cable size, and cable length actually installed.

N. **Shaft Grounding Ring:** Each motor shaft shall be provided with a Shaft Grounding Ring (SGR) that will provide a reliable low resistance path from the motor shaft to the motor frame to prevent the buildup of destructive high frequency shaft currents that are created by the Pulse Width Modulation of the Variable Frequency Drive units. The SGR shall encircle the shaft and shall be designed to promote efficient discharge of the high frequency shaft currents to the motor frame. The motor frame shall be inherently grounded by design.

O. **Power Factor Correction Capacitors:** Provide motor power factor correction capacitors for all motors rated 600V or less (except variable frequency controlled motors) with less than 90% uncorrected power factor. Motor power factor correction capacitors shall be sized as recommended by the motor manufacturer to correct the motor power factor to over 90%. Motor power factor correction capacitor sizes shall not be larger than the maximum size recommended by the motor manufacturer. Enclosure type shall be NEMA 12. Capacitors shall be dry film type with fuses and discharge resistors.

P. **Composite Factor:** Each motor, 1 HP or larger, or motor driven equipment, 1 HP or larger shall have a composite power factor (PF) rating of ninety (90) percent to 100 percent when the driven equipment is operating at the design duty defined on the drawings. Power factor correction devices shall be provided to meet the stated criteria.
Q. Devices such as capacitors, or equipment such as solid state power factor controllers, shall be provided as part of the motor or item of motor driven equipment when required for power factor correction. Devices shall be completely mounted and wired to the motor terminal except as follows:

1. For a motor or motor driven equipment requiring other than across-the-line starting, power factor (PF) correcting capacitors, or other equipment, shall be connected to motor terminals via a contactor (controller) with a 120 volt alternating current (VAC) coil. The 120 volt alternating current (VAC) coil shall be energized via an auxiliary contact on the contactor (controller) used to establish the "run" operating mode for the motor driven equipment.

2. For two (2) speed motors, power factor (PF) shall be corrected at each speed via separate groups of capacitors or other equipment for each speed. Each group of PF correcting components shall be connected to motor terminals via a separate contactor (controller) with a 120 volt alternating current (VAC) coil. Each 120 volt alternating current (VAC) coil shall be energized via an auxiliary contact on the contactor or controller used to establish "run" operations at each speed.

R. Locked rotor kVA shall not exceed NEMA Code Letter F for motors over 10 horsepower.

S. Motors shall have the following enclosure types in accordance with NEMA MG 1:

1. For clean dry indoor areas: open drip proof (ODP) fully-guarded
2. For outdoor locations: totally-enclosed fan-cooled for small and medium machines, weather protected type II for large machines
3. Explosion-proof machines shall be provided for hazardous areas classified in accordance with NFPA 70 (National Electrical Code). Explosion proof motors shall be NRTL-listed for the hazardous area classification.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 105 deg F and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

C. Motors ½ HP and Larger: Three phase, unless otherwise indicated.

D. Motors Smaller Than ½ HP: Single phase.

E. Frequency Rating: 60 Hz.

F. Voltage Rating: NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Premium efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Stator: Copper windings, unless otherwise indicated.
 1. Multispeed Motors: Separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: One temperature rise one class below the insulation rating class; for example, Class B temperature rise with Class F insulation.

H. Insulation: Class F, unless otherwise indicated.

I. Code Letter Designation:
 1. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION

3.1 COMMISSIONING

A. Check operating motors for unusual conditions during normal operation. Coordinate with the commissioning of the equipment for which the motor is a part.

B. Report unusual conditions.

C. Correct deficiencies.

END OF SECTION 230513